| 研究生: |
侯文星 Hou, Wen-Hsin |
|---|---|
| 論文名稱: |
718鎳基超合金細晶製程之研究 Grain refining process of nickel-based superalloy 718 |
| 指導教授: |
李驊登
Lee, Hwa-Teng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 超合金 、δ相 、靜態再結晶 、超細晶 、固溶限 |
| 外文關鍵詞: | superalloy, δ phase, static recrystallization, ultra-fine grains, solvus |
| 相關次數: | 點閱:203 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是探討獲得718超合金不同細晶等級的製程,首先是針對一般工業應用的細晶製程進行探討,因後熱處理-靜態再結晶,無法調整細化718超合金的晶粒組織,ASTM No.6~8一般工業應用等級的細晶材料,必須使用高能量和高精密的設備,嚴格管控熱成形製程,使產生完全的動態再結晶組織,但本研究探討另一可行的方法,藉由熱加工後的冷卻方式,控制相的析出量,結合靜態再結晶處理,獲得均勻的晶粒組織;研究製程是將完鍛後的工件進行水冷,以抑制δ相析出,使δ相無法影響再結晶之進行,並保存熱成形過程中的應變能,以低於δ相固溶限 (solvus) 30°C的溫度加熱,促使連續再結晶的發生,能獲得平均ASTM No.7 (31.8μm)的均勻細晶組織,突破以往無法使用靜態再結晶,調整晶粒組織的限制。
而ASTM No.9或更細之718超合金細晶材料,傳統之細晶製程必須在應變成形之前,施以時效處理,使析出大量的針狀δ相,藉由接續熱成形製程中之動態再結晶,或冷間成形應變後的靜態再結晶過程中,利用先前析出大量的δ相,抑制再結晶晶粒的成長,而獲得細晶組織,但是通常會有局部未完全再結晶組織;本研究研發的新細晶製程,反而先在高於δ相固溶限以上的溫度,進行固溶化處理,讓基地中原有的δ相完全固溶,此時Nb的固溶量趨於飽和狀態,再施以冷成形應變,使基地產生大量差排成為δ相析出成核位置,在750~950°C的靜態再結晶處理時,促使球狀微細的δ相快速析出,利用其強大抑制晶界移動的效果阻礙晶粒成長,即使在950°C的高溫熱處理,仍能獲得2.5μm或更細的細晶組織;研究方法藉由加熱溫度的控制,即能獲得200nm~2.5μm不同等級的細晶組織,較國際發表使用傳統細晶製程,所獲得4μm細晶組織更為細緻,且由硬度、常溫拉伸和650°C高溫拉伸和650°C應力破斷測試,各種細晶等級材料各具不同的應用特色。
This study investigated the process for grain refinement of superalloy 718 with various fine grain levels. Post heat treatment fails to refine the grain structure of superalloy 718. The fine grain grade of ASTM No.6~8 for general industry application should be controlled during manufacturing by inducing full dynamic recrystallization through means of a carefully-controlled hot forming process performed in a powerful and precise forging machine. This work presents an alternative method for obtaining a fine and uniform grain structure through means of static recrystallization and proper control of the δ phase formation. In the proposed method, the component is cooled in water immediately after forging to suppress δ phase precipitation and preserve the internal strain energy produced by the hot deformation process. The component is then heated to a temperature 30°C lower than the δ solvus temperature of 1030°C, resulting in continuous recrystallization of the microstructure. Our results demonstrate that the proposed static recrystallization method yields a fine microstructure with an average grain size of ASTM No.7 (31.8 μm).
For acquiring a finer grain structure, Inconel 718 is traditionally refined by aging treatment, and a high volume fraction of acicular δ phase precipitates before forming. During the following static or dynamic recrystallization process, the existing δ phase inhibits recrystallized grain growth and acquires a fine grain structure. In the proposed approach, the Inconel 718 specimens are re-solution heat treated at a temperature higher than the δ solvus temperature to ensure thorough dissolution of the precipitated δ phase into the austenitic matrix and produce a niobium oversaturated matrix. Finally, the specimens are cold compressed to produce a dislocation saturated matrix and are then recrystallized at 750~950°C to induce the rapid precipitation of fine δ phase. The δ phase precipitates exert a strong grain-boundary pinning effect, and thus a fine grain of less than 2.5μm is obtained despite the high recrystallization temperature of 950°C. The average grain size in the refined microstructure is found to be 200nm~2.5 μm, which is finer than the finest grain size of 4μm reported in the literature, achieved by using the conventional process. Hardness testing and tensile testing at 25°C and 650°C revealed that various fine grain structures have their own characteristics.
1.M. Donachie & S. Donachie, "Superalloys: A Technical Guide". 2003, ASM International.
2.D.F. Paulonis & J.J. Schirra. "Alloy 718 at Pratt & Phitney-historical perspective and future challenges", in Superalloys 718, 625, 706 and Various Derivatives. 2001, TMS.
3.R.E. Schafrik, D.D. Ward, & J.R. Groh. "Application of alloy 718 in GE aircraft engines: past, present and next five years", in Superalloys 718, 625, 706 and Various Derivatives. 2001, TMS.
4.康永昌, 主導性新產品開發輔導計畫書: 718鎳基超合金產品開發計劃. 2007.
5.J.R. Davis, ed. "ASM Special Handbook: Heat-Resistance Materials". 1997, ASM International.
6.B.H. Sencer, G.M. Bond, F.A. Garner, M.L. Hamilton, S.A. Maloy, & W.F. Sommer, "Correlation of radiation-induced changes in mechanical properties and microstructural development of Alloy 718 irradiated with mixed spectra of high-energy protons and spallation neutrons", Journal of Nuclear Materials, 2001, Vol.296, pp. 145-154.
7.O. Spaltmann. "Update on the Markets for Superalloys & Specialty Steels", in Consarc Experience Seminar 2012. 2012, Philadelphia , PA, USA, SMR GmbH.
8.許樹恩, ed. "材料手冊:Ⅱ非鐵金屬材料". 1983, 中國材料科學學會.
9.郭建亭, "高溫合金材料學(上冊)應用基礎理論". 2008, 科學出版社.
10.G.N. Maniar & J.E. Bridge, "Effect of gamma-gamma prime mismatch, volume fraction gamma prime, and gamma prime morphology on elevated temperature properties of Ni, 20 Cr, 5.5 Mo, Ti, AI alloys", Metallurgical Transactions, 1971, Vol.2, pp. 95-102.
11.J.R. Davis, ed. "ASM Specility Handbook: Nickle, Coblt, and Their Alloys". 2000, ASM International.
12.AMS, AMS 5662M: Nickel alloy, corrosion and heat-resistant, bars,forgings, and rings 52.5Ni - 19Cr - 3.0Mo - 5.1Cb (Nb) -0.50Al -18Fe consumable electrode or vacuum induction melted 1775°F (968°C) Solution Heat Treated, Precipitation-Hardenable. 2004, SAE International.
13.N.K. Park, I.S. Kim, Y.S. Na, & J.T. Yeom, "Hot forging of a nickle-base superalloy", Journal of Materials Processing Technology, 2001, Vol.111, pp. 98-102.
14.J.L. Russell, M.L. Lasonde, & L.A. Jackman. "Microstructure development and thermal response of delta processed billet and bar for alloy 718", in Superalloys 718, 625, 706 and Derivatives 2005. 2005, TMS.
15.Y. Desvallees, M. Bouzidi, F. Bois, & N. Beaude. "Delta phase in Inconel 718: mechanical properties and forging process requirements", in Superalloys 718,625,706 and Various Derivatives. 1994, TMS.
16.N.A. Wilkinson. "Forging of 718 - the importance of T.M.P. ", in Superalloy 718-Metallurgy and Application. 1989, The Minerials, Metals & Materials Society.
17.S. Mukhtarov, V. Valitov, M.F.X. Giglitti, P.R. Subramamian, J.S. Mate, & N. Dudova, "Influence of severe thermomechanical treatment on formation of nanocrystalline structure in Ni 718 and Ni 718plus alloys and their mechanical properties", Materials Science Forum, 2008, Vol.584-586, pp. 458-463.
18.S.H. Fu, J.X. Dong, M.C. Zhang, & X.S. Xie, "Alloy design and development of Inconel 718 type alloy", Materials Science & Engineering A, 2009, Vol.499, pp. 215-220.
19.C. Slama & M. Abdellaoui, "Structural characterization of the aged Inconel 718", Journal of Alloys and Compounds, 2000, Vol.306(1-2), pp. 277-284.
20.S. Azadian, L.Y. Wei, & R. Warren, "Delta phase precipitation in Inconel 718", Materials Characterization, 2004, Vol.53, pp. 7-16.
21.S.H. Chang, "In situ TEM observation of gamma ', gamma ' and delta precipitations on Inconel 718 superalloy through HIP treatment", Journal of Alloys and Compounds, 2009, Vol.486(1-2), pp. 716-721.
22.D.C. Madeleine, ed. "The Microstructure of Superalloy". 1997, Gordon and Breach Science Publishers.
23.C.T. Sims & W.C. Hagel, "The Superalloys", ed. C.T. Sims & Hagel, W.C. 1972.
24.R.W. Cahn & P. Haasen, eds. "Physical Metallurgy ". 1983, Elsevier Science Publishers B.V.
25.楊哲人 & 黃啟銘, "Inconel 718合金之δ相於熱處理與熱機處理之析出研究", 國立臺灣大學材料科學與工程學系碩士論文, 2008.
26.S.J. Hong, W.P. Chen, & T.W. Wang., "A diffraction study of the γ ″ phase in Inconel 718 superalloy ", Metallurgical and Materials Transactions A, 2001, Vol.32A, pp. 1887-1901.
27.H. Yuan & W.C. Liu, "Effect of the δ phase on the hot deformation behavior of Inconel 718", Materials Science and Engineering: A, 2005, Vol.408(1-2), pp. 281-289.
28.M. Sundararaman, P. Mukhopadhyay, & S. Banerjee, "Some aspects of the precipitation of metastable intermetallic phases in Inconel 718", Metallurgical Transactions A, 1992, Vol.23A, pp. 2015-2028.
29.M. Sundararaman, P. Mukhopadhyay, & S. Banerjee, "Precipitation of the δ-Ni3Nb phase in two nickle base superalloy", Metallurgical Transaction A, 1988, Vol.19A, pp. 453-465.
30.L.A. Jackman, G.J. Smith, A.W. Dix, & M.L. Lasonde. "Rotary forge processing of direct aged Inconel 718 for aircraft engine shafts", in Superalloys 718, 625 and Various Derivatives. 1991, TMS.
31.X. Han, L. Wu, H. Xia, R. Liu, S. Wang, & Z. Chen, "Superplastic properties of Inconel 718", Journal of Materials Processing Technology, 2003, Vol.137, pp. 17-20.
32.V.A. Valitov, S.K. Mukhtavrov, & Y.A. Raskulova, "Processing and superplastic properties of nanocrystalline alloy 718 during warm deformation", Rev.Adv.Mater.Sci., 2006, Vol.11, pp. 159-166.
33.B.P. Kashyap & M.C. Chaturvedi, "The effect of prior annealing on high temperature flow properties of and microstructural evolution in SPF grade IN718 superalloy", Materials Science & Engineering A, 2007, Vol.445-446, pp. 364-373.
34.H. Lu, X.Jia, K. Zhang, & C. Yao, "Fine-grained pretreatment process and superplasticity for Inconel 718 superalloy", Materials Science & Engineering A, 2002, Vol.A326, pp. 382-385.
35.B. Pieraggi & J.F. Uginet. "Fatigue and creep properties in relation with alloy 718 microstructure", in Superalloys 718,625,706 and Various Derivatives. 1994, TMS.
36.P. Ma, Y. Yuan, & Z. Zhong. "Creep behavior of magnesium microalloyed wrought superalloys", in Superalloy 1988. 1988, TMS.
37.K. Banerjee, "The role of magnesium in superalloys—a review", Materials Sciences and Applications, 2011, Vol.2, pp. 1243-1255.
38.X. Liu, J. Dong, X. Xie, & K.-M. Chang, "The appearance of magnesium and its effect on the mechanical properties of Inconel 718 with low sulfur content", Materials Science and Engineering: A, 2001, Vol.303(1–2), pp. 262-266.
39.W.R. Sun, S.R. Guo, J.H. Lee, N.K. Park, Y.S. Yoo, S.J. Choe, & Z.Q. Hu, "Effects of phosphorus on the delta-Ni3Nb phase precipitation and the stress rupture properties in alloy 718", Materials Science & Engineering A, 1998, Vol.247, pp. 173-179.
40.H. Song, S. Guo, & Z. Hu, "Beneficial effect of phosphorus on the creep behavior of inconel 718", Scripta Materialia, 1999, Vol.41-2, pp. 215-219.
41.D.D. Krueger. "The development of direct age 718 for gas turbine engine disk applications", in Superalloy 718- Metallurgy and Applications. 1989, TMS.
42.C. Wang & R. Li, "Effect of double aging treatment on structure in Inconel 718 alloy", Journal of Material Science 2004, Vol.39, pp. 2593-2595.
43.A.P. Institute, Nickel base alloy 718 (UNS N07718) for oil and gas drilling and production equipment. 2009, American Petroleum Institute. pp. 18.
44.O.A. Onyewuenyi. "Alloy 718 - alloy optimization for application in oil and gas production", in Superalloy 718 - Metallurgy and Applications. 1989, TMS.
45.D.E. Camus, R.A. Jaramillo, J.A. Plybum, & F.S. Suarez. "Evolution of microstructure during hot rolling of Inconel alloy 625 and 718", in Superalloy 718, 625, 706 and Various Derivatives. 1997, TMS.
46.Y. Wang, W.Z. Shao, L. Zhen, L. Lin, & Y.X. Cui, "Investigation on dynamic recrystallization behavior in hot deformed superalloy Inconel 718", Materials Science Formum, 2007, Vol.546-549, pp. 1297-1300.
47.Y. Wang, W.Z. Shao, L. Zhen, & X.M. Zhang, "Microstructure evolution during dynamic recrystallization of hot deformed superalloy 718", Materials Science and Engineering: A, 2008, Vol.486(1–2), pp. 321-332.
48.D. Cai, L. Xiong, W. Liu, G. Sun, & M. Yao, "Characterization of hot deformation behavior of a Ni-base superalloy using processing map", Materials & Design, 2009, Vol.30(3), pp. 921-925.
49.F.L. Sui, L.X. Xu, L.Q. Chen, & X.H. Liu, "Processing map for hot working of Inconel 718 alloy", Journal of Materials Processing Technology, 2011, Vol.211, pp. 433-440.
50.R.S. Cremisio, J.F. Radavich, & H.M. Butler, The effect of thermomechanical history on the stability of alloy 718, in Superalloy Proceedings of the First International Conference. 1968, Met. Soc. AIME. pp. 597-618.
51.A.W. Dix, J.M. Hyzak, & R.P. Singh. "Application of ultra fine grain alloy 718 forging billet", in Superalloy 1992. 1992, TMS.
52.E.E. Brown, R.C. Boeltner, & D.L. Ruckle, Minigrain processing of nickel base alloys, in Superalloy Proceedings of Second International Conference. 1972, Met. Soc. AIME, New York. pp. L1-L7.
53.C. Ruiz, A. Obabueki, & K. Gillespie. "Evaluation of the microstructure and mechanical properties of Delta processed alloy 718", in Superalloys 1992. 1992, TMS.
54.Y. Wang, L. Zhen, W.Z. Shao, L. Yang, & X.M. Zhang, "Hot working characteristics and dynamic recrystallization of delta-processed superalloy 718", Journal of Alloys and Compounds, 2009, Vol.474, pp. 341-346.
55.Y. Wang, W.Z. Shao, L. Zhen, & B.Y. Zhang, "Hot deformation behavior of delta-processed superalloy 718", Materials Science & Engineering A, 2011, Vol.528, pp. 3218-3227.
56.R.M.F. Jones & L.A. Jackman, "The structural evolution of superalloy ingots during hot working", JOM, 1999, Vol.51, pp. 27-31.
57.H.Y. Zhanga, S.H. Zhanga, M. Chenga, & Z.X. Li, "Deformation characteristics of δ phase in the delta-processed Inconel 718 alloy", Materials Characterization, 2010, Vol.61, pp. 49-53.
58.S.C. Medeiros, Y.V.R.K. Prasad, W.G. Frazier, & R. Srinivasan, "Microstructural modeling of metadynamic recrystallization in hot working of IN 718 superalloy", Materials Science & Engineering A, 2000, Vol.293, pp. 198-207.
59.L.X. Zhou & T.N. Baker, "Effects of dynamic and metadynamic recrystallization on microstructure of wrought IN-718 due to hot deformation", Materials Science & Engineering A, 1995, Vol.196, pp. 89-95.
60.N.K. Park, J.H. Kim, & J.T. Teom, "Recrystallization and grain growth during alloy 718 processing", Materials Science Formum, 2007, Vol.539-543, pp. 3094-3099.
61.J.W. Yoon, N.Y. Kim, J.H. Kim, J.T. Yeom, & N.K. Park, "Recrystallization and grain growth behavior of alloy 718 casting during hot working", Key Engineering Materials, 2007, Vol.345-346, pp. 57-60.
62.http://www.specialmetals.com/documents/Inconel%20alloy%20718SPF.pdf
63.S. Chupatanakul & P. Nash, "Dilatometric measurement of carbon enrichment in austenite during bainite transformation", Journal of Materials Science, 2006, Vol.41(15), pp. 4965-4969.
64.J.S. Abell, K.G. Barraclough, I.R. Harris, A.W. Vere, & B. Cockayne, "A dilatometric study of the orthorhombic-tetragonal phase transition in barium sodium niobate", Journal of Materials Science, 1971, Vol.6(8), pp. 1084-1092.
65.B. Sarkar, B. Jha, V. Kumar, S. Chaudhuri, & S. Jha, "Development and characterization of steel containing very fine ferrite grains", Journal of Materials Engineering and Performance, 2005, Vol.14(2), pp. 219-223.
66.V. Beaubois, J. Huez, S. Coste, O. Brucelle, & J. Lacaze, "Short term precipitation kinetics of delta phase in strain free Inconel 718 alloy", Materials Science and Technology 2004, Vol.20, pp. 1019-1026.
67.A. Thomas, M. EI-Wahabi, J.M. Cabrera, & J.M. Prado, "High temperature deformation of Inconel 718", Journal of Materials Processing Technology, 2006, Vol.177, pp. 469-472.
68.W.C. Liu, F.R. Xiao, & M. Yao, "The influence of cold rolling on the precipitation of delta phase in Inconel 718 alloy", Scripta Materialia, 1997, Vol.37, pp. 53-57.
69.S. Guo, D. Li, H. Pen, Q. Guo, & J. Hu, "Hot deformation and processing maps of Inconel 690 superalloy", Journal of Nuclear Materials, 2011, Vol.410(1–3), pp. 52-58.
70.Y.S. Na, Y.M. Rhyim, J.H. Lee, & J.Y. Lee, "Critical strain for the Initiation of dynamic recrystallization in a Ni-Fe base alloy", Materials Science Forum, 2004, Vol.449-452, pp. 577-580.
71.F.J. Humphreys & M. Hatherly, "Recrystallization and Related Annealing Phenomena". 2004, Oxford, Elsevier Ltd.
72.L. Rongbin, Y. Mei, L. Wenchang, & H. Xianchang, "Effects of cold rolling on precipitates in Inconel 718 alloy", Journal of Materials Engineering and Performance, 2002, Vol.11, pp. 504-508.
73.G.W. Han & Y.Y. Zhang, "Segregation of niobium and aluminum in GH783 alloy ingots", Materials Science and Engineering: A, 2005, Vol.412(1–2), pp. 198-203.
74.M. Stockinger, E. Kozeschnik, B. Buchmayr, & W. Horvath. "Modelling of δ phase dissolution during preheating of Inconel 718 turbine disks", in Superalloys 718, 625, 706 and Various Derivatives. 2001, TMS.
75.H.J. Lu, C.G. Yao, K.F. Zhang, & X.C. Jia, "Fine-grain forming process, mechanism and properties of GH4169 alloy", Materials for Mechanical Engineering (in Chinese). 2003, Vol.27, pp. 15-17.
76.R. Abbaschian, L. Abbaschian, & R.E. Reed-Hill, eds. "Physical Metallurgy Principles", Fourth ed. 2010, Cengage Learning.
77.O.B. Armida & J.F. Radavich. "A current T-T-T diagram for wrought alloy 718", in Superalloy 718, 625 and Various Derivatives. 1991, TMS.
78.D.A. Porter, K.E. Easterling, & M.Y. Sherif, "Phase Transformations in Metals and Alloys". 2009, CRC Press.
79.I. Kirman & D.H. Warrington, "The precipitation of Ni3Nb phase in a Ni-Fe-Cr-Nb-alloy", Metall. Trans. A, 1970, Vol.1, pp. 2667-2675.
80.P.R. Bhowal & J.J. Schirra, Full scale gatorizing of fine grain Inconel 718, in Superallogs 718, 625, 706 and Various Derivatives, E.A. Loria, Editor. 2001, TMS. pp. 193-201.
81.Y. Rong, S. Chen, G. Hu, M. Gao, & R.P. Wei, "Prediction and characterization of variant electron diffraction patterns for γ˝ and δ precipitates in an Inconel 718 alloy", Metallurgical and Materials Transactions A, 1999, Vol.30A, pp. 2297-2303.
82.W.F. Hosford, ed. "Mechanical Behavior of Materials". 2005, Cambridge University Press, New York.
校內:2015-07-17公開