簡易檢索 / 詳目顯示

研究生: 黃于倫
Hwang, Yu-Luen
論文名稱: 利用衝突訓練模式探討矛盾訊息的記憶形成過程
Investigating the Memory Process of Conflicting Information using Contradictory Training Paradigms
指導教授: 姜學誠
Chiang, Hsueh-Cheng
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 57
中文關鍵詞: 學習記憶矛盾記憶衝突訓練模式
外文關鍵詞: learning and memory, conflicting memory, contradictory training
相關次數: 點閱:98下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 動物的行為模式是大腦經過縝密計算後的總和。然而在日常生活中,有可能因為廣泛的接受到大量訊息而產生矛盾。究竟大腦是如何處理和歸類這些矛盾目前還不得而知。為了理解大腦辨識矛盾的彈性,我們藉由果蠅作為研究的動物模型,利用兩種古典制約模式(嗅覺聯想厭惡及喜好訓練)來進行研究。
    在我們的矛盾的訓練模式下,研究結果顯示相較於單獨使用一種學習的訓練果蠅立即學習表現的能力是較差的。有趣的是,當這些訓練過的果蠅休息了一段時間後,會重新出現了喜好行為。但是與傳統快速形成的抗麻醉性(ARM)記憶與長期記憶(LTM)相比,矛盾訓練下所形成的記憶顯示出明顯的延遲。這暗示了衝突的訊息會破壞正常的記憶形成,尤其穩定型的記憶。另外,透過抑制果蠅蕈狀體(MB)中特定神經元的蛋白質合成,我們也發現此矛盾記憶在果蠅腦中進行接收、固化以及讀取資訊的區域。我們透過人為操縱特定調控厭惡及喜好的多巴胺神經元及蕈狀體輸出的神經元來剖析矛盾記憶的形成過程。我們驚訝的發現矛盾記憶不是傳統的厭惡或喜好的記憶。矛盾記憶會共用厭惡及喜好的部分神經網絡而形成前所未有的全新記憶。

    An animal’s behavior is the result of deliberate and meticulous brain processing. However, on a daily basis, we acquire vast amounts of arbitrary information which can be conflicting. How our brain assorts through this inconsistency is inexplicable. To explore this cognitive flexibility, we consecutively trained the fruit fly, Drosophila melanogaster, under two different olfactory classical conditioning paradigms, aversive and appetitive associative learning; using the same odor for the conditioned stimulus (CS+) in both paradigms.
    Results of our study show that under the contradictory training protocol, flies exhibited poor immediate learning in comparison to learning of either reinforcement used alone. Interestingly, when the same flies were rested after training, over time the approach behavior of appetitive learning then reappears. This appetitive memory formed shows significant and unique delay in its consolidation process, in contrast to the conventional, rapidly consolidated anesthesia-resistant memory (ARM) and appetitive long-term memory (LTM). This suggests that conflicting information results in the disruption of normal memory formation, particularly outstanding in stable form memory. We also uncovered the region of where such conflicting memory is acquired, consolidated and retrieved through the inhibition of protein-synthesis in particular mushroom body (MB) neuron subsets. Through artificial manipulations, we attempted to dissect and partition the components of conflicting memory using specifically designated aversive and appetitive modulating DANs and MBONs. This resulted in a striking revelation of conflicting memory being neither canonical aversive memory nor appetitive memory. Conflicting memory shares neural substrates from both aversive and appetitive memory to give outcome to a whole new unprecedented memory.

    中文摘要 III Abstract V Abbreviations VII Contents VIIIII List of figures X Introduction 1 1.1 Behavior through Learning and Memory 2 1.2 The Drosophila Model 3 1.3 Aversive and Appetitive memory in Drosophila 5 Materials and Methods 7 2.1 Fly strains 8 2.2 Behavioral analyses 8 2.3 Drug feeding 9 2.4 Statistical analysis 9 Results 11 3.1 Contradicotry Training interferes with Initial learning 12 3.2 Conflicting information causes Interference within a 30-minute time window 12 3.3 Appetitive Memory Predominates over time 13 3.4 Contradictory Training disrupts 3-hour Appetitive ARM 13 3.5 Eliminiation of possible Contributing Factors: Pre-exposure of CS+ and Pre-electric shock 15 3.6 Consolidation of Stable memory is Delayed by Contradictory training 15 3.7 Protein synthesis is required in the γ neurons for Consolidation of Long-term Conflicting memory 16 3.8 Acceleration of Conflicting LTM formation via activation of MB γ lobe 17 3.9 MB αβ and α'β' neurons are critical for Conflicting Memory Retrieval 18 3.10 MB γ neurons are critical for Conflicting Memory Acquisition 19 3.11 Inhibition of MB α'β' neurons do not obstruct Conflicting memory Consolidation 19 3.12 Negatively reinforcing Dopaminergic neurons drive Protein synthesis dependent Long-term Conflicting memory 20 3.13 MBON-γ2α'1 is essential for Appetitive memory but not Conflicting memory 20 Discussion and Conclusion 22 4.1 Conclusion 23 4.2 Effect of Conflicting learned information on Memory 23 4.3 Appetitive Phenotypic Conflicting Memory 25 4.4 Memory process of Conflicting Memory 26 4.5 Integration of Approach and Aversion Pathways 28 References 31 Figures 41 Tables 56

    Akalal, D.-B. G., D. Yu and R. L. Davis (2010). "A late-phase, long-term memory trace forms in the γ neurons of Drosophila mushroom bodies after olfactory classical conditioning." The Journal of neuroscience : the official journal of the Society for Neuroscience 30(49): 16699-16708.
    Aso, Y., D. Hattori, Y. Yu, R. M. Johnston, N. A. Iyer, T. T. Ngo, H. Dionne, L. F. Abbott, R. Axel, H. Tanimoto and G. M. Rubin (2014a). "The neuronal architecture of the mushroom body provides a logic for associative learning." Elife 3: e04577.
    Aso, Y., A. Herb, M. Ogueta, I. Siwanowicz, T. Templier, A. B. Friedrich, K. Ito, H. Scholz and H. Tanimoto (2012). "Three Dopamine Pathways Induce Aversive Odor Memories with Different Stability." PLOS Genetics 8(7): e1002768.
    Aso, Y. and G. M. Rubin (2016). "Dopaminergic neurons write and update memories with cell-type-specific rules." eLife 5: e16135.
    Aso, Y., D. Sitaraman, T. Ichinose, K. R. Kaun, K. Vogt, G. Belliart-Guérin, P. Y. Plaçais, A. A. Robie, N. Yamagata, C. Schnaitmann, W. J. Rowell, R. M. Johnston, T. T. Ngo, N. Chen, W. Korff, M. N. Nitabach, U. Heberlein, T. Preat, K. M. Branson, H. Tanimoto and G. M. Rubin (2014b). "Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila." Elife 3: e04580.
    Blum, A. L., W. Li, M. Cressy and J. Dubnau (2009). "Short- and long-term memory in Drosophila require cAMP signaling in distinct neuron types." Curr Biol 19(16): 1341-1350.
    Brand, A. H. and N. Perrimon (1993). "Targeted gene expression as a means of altering cell fates and generating dominant phenotypes." Development 118(2): 401-415.
    Burke, C. J., W. Huetteroth, D. Owald, E. Perisse, M. J. Krashes, G. Das, D. Gohl, M. Silies, S. Certel and S. Waddell (2012). "Layered reward signalling through octopamine and dopamine in Drosophila." Nature 492(7429): 433-437.
    Cervantes-Sandoval, I., A. Martin-Pena, J. A. Berry and R. L. Davis (2013). "System-like consolidation of olfactory memories in Drosophila." J Neurosci 33(23): 9846-9854.
    Chen, C. C., J. K. Wu, H. W. Lin, T. P. Pai, T. F. Fu, C. L. Wu, T. Tully and A. S. Chiang (2012). "Visualizing long-term memory formation in two neurons of the Drosophila brain." Science 335(6069): 678-685.
    Claridge-Chang, A., R. D. Roorda, E. Vrontou, L. Sjulson, H. Li, J. Hirsh and G. Miesenböck (2009). "Writing memories with light-addressable reinforcement circuitry." Cell 139(2): 405-415.
    Crittenden, J. R., E. M. Skoulakis, K. A. Han, D. Kalderon and R. L. Davis (1998). "Tripartite mushroom body architecture revealed by antigenic markers." Learn Mem 5(1-2): 38-51.
    Crossley, M., F. D. Lorenzetti, S. Naskar, M. O’Shea, G. Kemenes, P. R. Benjamin and I. Kemenes (2019). "Proactive and retroactive interference with associative memory consolidation in the snail Lymnaea is time and circuit dependent." Communications Biology 2(1): 242.
    Das, G., M. Klappenbach, E. Vrontou, E. Perisse, C. M. Clark, C. J. Burke and S. Waddell (2014). "Drosophila learn opposing components of a compound food stimulus." Curr Biol 24(15): 1723-1730.
    Davis, H. P. and L. R. Squire (1984). "Protein synthesis and memory: a review." Psychol Bull 96(3): 518-559.
    Davis, R. L. (2010). "Rac in the act of forgetting." Cell 140(4): 456-458.
    Dubnau, J., A. S. Chiang and T. Tully (2003). "Neural substrates of memory: from synapse to system." J Neurobiol 54(1): 238-253.
    Endo, Y., K. Mitsui, M. Motizuki and K. Tsurugi (1987). "The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins." J Biol Chem 262(12): 5908-5912.
    Folkers, E., P. Drain and W. G. Quinn (1993). "Radish, a Drosophila mutant deficient in consolidated memory." Proceedings of the National Academy of Sciences 90(17): 8123-8127.
    Folkers, E., P. Drain and W. G. Quinn (1993). "Radish, a Drosophila mutant deficient in consolidated memory." Proc Natl Acad Sci U S A 90(17): 8123-8127.
    Hamada, F. N., M. Rosenzweig, K. Kang, S. R. Pulver, A. Ghezzi, T. J. Jegla and P. A. Garrity (2008). "An internal thermal sensor controlling temperature preference in Drosophila." Nature 454(7201): 217-220.
    Heisenberg, M., A. Borst, S. Wagner and D. Byers (1985). "Drosophila Mushroom Body Mutants are Deficient in Olfactory Learning." Journal of Neurogenetics 2(1): 1-30.
    Hige, T., Y. Aso, M. N. Modi, G. M. Rubin and G. C. Turner (2015). "Heterosynaptic Plasticity Underlies Aversive Olfactory Learning in Drosophila." Neuron 88(5): 985-998.
    Hikosaka, O., H. F. Kim, M. Yasuda and S. Yamamoto (2014). "Basal ganglia circuits for reward value-guided behavior." Annual review of neuroscience 37: 289-306.
    Hirano, Y., T. Masuda, S. Naganos, M. Matsuno, K. Ueno, T. Miyashita, J. Horiuchi and M. Saitoe (2013). "Fasting launches CRTC to facilitate long-term memory formation in Drosophila." Science 339(6118): 443-446.
    Huang, C., P. Wang, Z. Xie, L. Wang and Y. Zhong (2013). "The differential requirement of mushroom body α/β subdivisions in long-term memory retrieval in Drosophila." Protein & cell 4(7): 512-519.
    Isabel, G., A. Pascual and T. Preat (2004). "Exclusive consolidated memory phases in Drosophila." Science 304(5673): 1024-1027.
    Jenett, A., G. M. Rubin, T. T. Ngo, D. Shepherd, C. Murphy, H. Dionne, B. D. Pfeiffer, A. Cavallaro, D. Hall, J. Jeter, N. Iyer, D. Fetter, J. H. Hausenfluck, H. Peng, E. T. Trautman, R. R. Svirskas, E. W. Myers, Z. R. Iwinski, Y. Aso, G. M. DePasquale, A. Enos, P. Hulamm, S. C. Lam, H. H. Li, T. R. Laverty, F. Long, L. Qu, S. D. Murphy, K. Rokicki, T. Safford, K. Shaw, J. H. Simpson, A. Sowell, S. Tae, Y. Yu and C. T. Zugates (2012). "A GAL4-driver line resource for Drosophila neurobiology." Cell Rep 2(4): 991-1001.
    Josselyn, S. A., S. Kohler and P. W. Frankland (2015). "Finding the engram." Nat Rev Neurosci 16(9): 521-534.
    Kakidani, H. and M. Ptashne (1988). "GAL4 activates gene expression in mammalian cells." Cell 52(2): 161-167.
    Kandel, E. and T. Abel (1995). "Neuropeptides, adenylyl cyclase, and memory storage." Science 268(5212): 825-826.
    Keene, A. C., M. J. Krashes, B. Leung, J. A. Bernard and S. Waddell (2006). "Drosophila dorsal paired medial neurons provide a general mechanism for memory consolidation." Curr Biol 16(15): 1524-1530.
    Kim, J. J. and M. G. Baxter (2001). "Multiple brain-memory systems: the whole does not equal the sum of its parts." Trends in Neurosciences 24(6): 324-330.
    Kitamoto, T. (2002). "Conditional disruption of synaptic transmission induces male-male courtship behavior in Drosophila." Proc Natl Acad Sci U S A 99(20): 13232-13237.
    Krashes, M. J., A. C. Keene, B. Leung, J. D. Armstrong and S. Waddell (2007). "Sequential use of mushroom body neuron subsets during drosophila odor memory processing." Neuron 53(1): 103-115.
    Krashes, M. J. and S. Waddell (2008). "Rapid consolidation to a radish and protein synthesis-dependent long-term memory after single-session appetitive olfactory conditioning in Drosophila." J Neurosci 28(12): 3103-3113.
    Lee, P. T., H. W. Lin, Y. H. Chang, T. F. Fu, J. Dubnau, J. Hirsh, T. Lee and A. S. Chiang (2011). "Serotonin-mushroom body circuit modulating the formation of anesthesia-resistant memory in Drosophila." Proc Natl Acad Sci U S A 108(33): 13794-13799.
    Liu, C., P. Y. Plaçais, N. Yamagata, B. D. Pfeiffer, Y. Aso, A. B. Friedrich, I. Siwanowicz, G. M. Rubin, T. Preat and H. Tanimoto (2012). "A subset of dopamine neurons signals reward for odour memory in Drosophila." Nature 488(7412): 512-516.
    Margulies, C., T. Tully and J. Dubnau (2005). "Deconstructing memory in Drosophila." Curr Biol 15(17): R700-713.
    Masek, P., K. Worden, Y. Aso, G. M. Rubin and A. C. Keene (2015). "A dopamine-modulated neural circuit regulating aversive taste memory in Drosophila." Curr Biol 25(11): 1535-1541.
    McGuire, S. E., P. T. Le and R. L. Davis (2001). "The role of Drosophila mushroom body signaling in olfactory memory." Science 293(5533): 1330-1333.
    Moffat, K. G., J. H. Gould, H. K. Smith and C. J. O'Kane (1992). "Inducible cell ablation in Drosophila by cold-sensitive ricin A chain." Development 114(3): 681-687.
    Owald, D., J. Felsenberg, C. B. Talbot, G. Das, E. Perisse, W. Huetteroth and S. Waddell (2015a). "Activity of defined mushroom body output neurons underlies learned olfactory behavior in Drosophila." Neuron 86(2): 417-427.
    Owald, D. and S. Waddell (2015b). "Olfactory learning skews mushroom body output pathways to steer behavioral choice in Drosophila." Curr Opin Neurobiol 35: 178-184.
    Perazzona, B., G. Isabel, T. Preat and R. L. Davis (2004). "The role of cAMP response element-binding protein in Drosophila long-term memory." J Neurosci 24(40): 8823-8828.
    Perisse, E., D. Owald, O. Barnstedt, C. B. Talbot, W. Huetteroth and S. Waddell (2016). "Aversive Learning and Appetitive Motivation Toggle Feed-Forward Inhibition in the Drosophila Mushroom Body." Neuron 90(5): 1086-1099.
    Perisse, E., Y. Yin, A. C. Lin, S. Lin, W. Huetteroth and S. Waddell (2013). "Different kenyon cell populations drive learned approach and avoidance in Drosophila." Neuron 79(5): 945-956.
    Plaçais, P. Y., S. Trannoy, G. Isabel, Y. Aso, I. Siwanowicz, G. Belliart-Guérin, P. Vernier, S. Birman, H. Tanimoto and T. Preat (2012). "Slow oscillations in two pairs of dopaminergic neurons gate long-term memory formation in Drosophila." Nat Neurosci 15(4): 592-599.
    Pulver, S. R., S. L. Pashkovski, N. J. Hornstein, P. A. Garrity and L. C. Griffith (2009). "Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae." J Neurophysiol 101(6): 3075-3088.
    Qin, H., M. Cressy, W. Li, J. S. Coravos, S. A. Izzi and J. Dubnau (2012). "Gamma neurons mediate dopaminergic input during aversive olfactory memory formation in Drosophila." Curr Biol 22(7): 608-614.
    Quinn, W. G. and Y. Dudai (1976). "Memory phases in Drosophila." Nature 262(5569): 576-577.
    Quinn, W. G., W. A. Harris and S. Benzer (1974). "Conditioned behavior in Drosophila melanogaster." Proc Natl Acad Sci U S A 71(3): 708-712.
    Reaume, C. J., M. B. Sokolowski and F. Mery (2011). "A natural genetic polymorphism affects retroactive interference in Drosophila melanogaster." Proceedings. Biological sciences 278(1702): 91-98.
    Séjourné, J., P. Y. Plaçais, Y. Aso, I. Siwanowicz, S. Trannoy, V. Thoma, S. R. Tedjakumala, G. M. Rubin, P. Tchénio, K. Ito, G. Isabel, H. Tanimoto and T. Preat (2011). "Mushroom body efferent neurons responsible for aversive olfactory memory retrieval in Drosophila." Nat Neurosci 14(7): 903-910.
    Semon, R. (1921). "The Mneme." London: George Allen & Unwin.
    Shuai, Y., B. Lu, Y. Hu, L. Wang, K. Sun and Y. Zhong (2010). "Forgetting Is Regulated through Rac Activity in Drosophila." Cell 140(4): 579-589.
    Strausfeld, N. J., L. Hansen, Y. Li, R. S. Gomez and K. Ito (1998). "Evolution, discovery, and interpretations of arthropod mushroom bodies." Learning & memory (Cold Spring Harbor, N.Y.) 5(1-2): 11-37.
    Tanaka, N. K., H. Tanimoto and K. Ito (2008). "Neuronal assemblies of the Drosophila mushroom body." J Comp Neurol 508(5): 711-755.
    Technau, G. and M. Heisenberg (1982). "Neural reorganization during metamorphosis of the corpora pedunculata in Drosophila melanogaster." Nature 295(5848): 405-407.
    Tempel, B. L., N. Bonini, D. R. Dawson and W. G. Quinn (1983). "Reward learning in normal and mutant Drosophila." Proc Natl Acad Sci U S A 80(5): 1482-1486.
    Tonegawa, S., X. Liu, S. Ramirez and R. Redondo (2015). "Memory Engram Cells Have Come of Age." Neuron 87(5): 918-931.
    Trannoy, S., C. Redt-Clouet, J. M. Dura and T. Preat (2011). "Parallel processing of appetitive short- and long-term memories in Drosophila." Curr Biol 21(19): 1647-1653.
    Tully, T., S. Boynton, C. Brandes, J. M. Dura, R. Mihalek, T. Preat and A. Villella (1990). "Genetic dissection of memory formation in Drosophila melanogaster." Cold Spring Harb Symp Quant Biol 55: 203-211.
    Tully, T., T. Preat, S. C. Boynton and M. Del Vecchio (1994). "Genetic dissection of consolidated memory in Drosophila." Cell 79(1): 35-47.
    Tully, T. and W. G. Quinn (1985). "Classical conditioning and retention in normal and mutant Drosophila melanogaster." J Comp Physiol A 157(2): 263-277.
    Vogt, K., C. Schnaitmann, K. V. Dylla, S. Knapek, Y. Aso, G. M. Rubin and H. Tanimoto (2014). "Shared mushroom body circuits underlie visual and olfactory memories in Drosophila." eLife 3: e02395-e02395.
    Waddell, S. (2013). "Reinforcement signalling in Drosophila; dopamine does it all after all." Curr Opin Neurobiol 23(3): 324-329.
    Wu, Y., Q. Ren, H. Li and A. Guo (2012). "The GABAergic anterior paired lateral neurons facilitate olfactory reversal learning in Drosophila." Learn Mem 19(10): 478-486.
    Xie, Z., C. Huang, B. Ci, L. Wang and Y. Zhong (2013). "Requirement of the combination of mushroom body γ lobe and α/β lobes for the retrieval of both aversive and appetitive early memories in Drosophila." Learn Mem 20(9): 474-481.
    Yamagata, N., T. Ichinose, Y. Aso, P.-Y. Plaçais, A. B. Friedrich, R. J. Sima, T. Preat, G. M. Rubin and H. Tanimoto (2015). "Distinct dopamine neurons mediate reward signals for short- and long-term memories." Proceedings of the National Academy of Sciences of the United States of America 112(2): 578-583.
    Yamazaki, D., M. Hiroi, T. Abe, K. Shimizu, M. Minami-Ohtsubo, Y. Maeyama, J. Horiuchi and T. Tabata (2018). "Two Parallel Pathways Assign Opposing Odor Valences during Drosophila Memory Formation." Cell Rep 22(9): 2346-2358.
    Yang, C. H., M. F. Shih, C. C. Chang, M. H. Chiang, H. W. Shih, Y. L. Tsai, A. S. Chiang, T. F. Fu and C. L. Wu (2016). "Additive Expression of Consolidated Memory through Drosophila Mushroom Body Subsets." PLoS Genet 12(5): e1006061.
    Yin, J. C., J. S. Wallach, M. Del Vecchio, E. L. Wilder, H. Zhou, W. G. Quinn and T. Tully (1994). "Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila." Cell 79(1): 49-58.
    Zars, T., M. Fischer, R. Schulz and M. Heisenberg (2000). "Localization of a short-term memory in Drosophila." Science 288(5466): 672-675.

    下載圖示 校內:2025-08-01公開
    校外:2025-08-01公開
    QR CODE