| 研究生: |
孔冠傑 Kung, Kuan-Chieh |
|---|---|
| 論文名稱: |
台灣西南部動態坐標系統之建立 Establishment of a Dynamic Datum for SW Taiwan |
| 指導教授: |
景國恩
Ching, Kuo-En |
| 共同指導教授: |
陳國華
Chen, Kwo-Hwa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 149 |
| 中文關鍵詞: | 全球定位系統 、速度模型 、克利金法 、塊體模型 |
| 外文關鍵詞: | GPS, velocity model, Kriging, block model |
| 相關次數: | 點閱:165 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
相對於歐亞板塊,菲律賓海板塊以82 mm/yr朝西北方向擠壓,使得位於兩板塊交界處之臺灣地區控制點坐標發生位移。目前臺灣採用傳統靜態基準的三維大地坐標控制系統TWD97@2010.0坐標框架,此框架下之各點坐標隨著時間的累積而將失其精確性。本研究以台灣西南部作為研究區域,蒐集中央地質調查所2002.0至2011.0的221個GPS移動站觀測資料,透過坐標之時間序列分析求得速度量,並藉由內插法及塊體模型法建立地表速度模型,以修正坐標偏移量以維護坐標系統的精確度,本研究同時使用44個台灣西南部地區之GPS連續站觀測資料進行模型精度的驗證。內插法模型假設地表速度場在空間的變化為連續的,因此,本研究以Kriging內插法建立速度模型,並以指數模式之半變異元求得權重關係建立區域地表速度模型。得移動站速度實際觀測值與模型計算值於N方向上之RMS為0.31 mm/yr;E方向為0.28 mm/yr;連續站的速度量差異在N方向為1.86 mm/yr;E方向為2.21 mm/yr。另由塊體模型(DEFNODE)建立的速度模型,在考慮8條斷層作用之影響下,移動站速度實際觀測值與模型計算值於N方向的RMS為2.04 mm/yr;E方向為2.82 mm/yr;連續站速則在N方向為2.01 mm/yr;E方向為2.88 mm/yr。本研究亦採用坐標轉換法以考慮地殼變形的影響。本文最後以44個連續站坐標作為模型檢驗站,評估震間時期點位坐標,從2004.0至2010.167的變化,並比較三種方式維持坐標系統的精確度能力以及估計其坐標使用年限,不考慮地震假設下,Kriging模型坐標使用年限可至2030年;塊體模型坐標則至2018年;坐標轉換法僅為2009年,因此,Kriging模型為台灣西南部建立動態坐標最佳方式。
Taiwan is also one of countries located at the plate boundary between the Eurasian plate and Philippine Sea plate. Philippine Sea plate moves toward the Eurasian plate with 82 mm/yr, which results in the generation of the Taiwan mountain belt. Therefore, we could observe the surface displacement due to the crustal deformation at the plate boundary environment. Taiwan Datum is a static geocentric datum complaint with the International Terrestrial Reference Frame 1994 at the first epoch, January 2010, in which coordinates of control points are unchanged with time. In order to consider the crustal deformation effect, we select 221 campaign-mode GPS stations for GPS horizontal velocity field and establishing intersiesmic velocity model by Kriging and block model. Unbiased estimation and optimal prediction are characteristic of Kriging. Using exponential model of semivariogram establish Kriging velocity model. The block model of secular field started with analytical model representing horizontal crustal motion developed using the computer code DEFNODE which incorporates 8 faults located in SW Taiwan. For Kriging model, the RMS residual for 221 campaign-mode GPS vectors were 0.31 mm/year in north component and 0.28 mm/year in the east component. The RMS residual for 44 continuous GPS velocity vectors were 1.86 mm/year in north component and 2.21 mm/year in the east component. For block model, the RMS residual for 221 campaign-mode GPS vectors were 2.04 mm/year in north component and 2.82 mm/year in the east component. The RMS residual for 44 continuous GPS velocity vectors were 2.01 mm/year in north component and 2.88 mm/year in the east component. The last method is coordinate transformation which takes advantage of Mathematics to consider the crustal deformation effect. In the final, 44 continuous GPS stations serve as examine-point to compare these methods what is the best way to establish dynamic datum in terms of accuracy and age limit of coordinate system. In interseismic period, the useful time of Kriging model is till 2030; block model is till 2018; coordinate transformation is only 2009. In the conclusion, Kriging is the best method for dynamic datum in SW Taiwan.
中央氣象局全球資訊網(http://www.cwb.gov.tw),2002-2010年台灣地震活動彙整。
尤瑞哲,2003,測量坐標系統,第二版,國立成功大學測量及空間資訊學系,台南,共308頁。
王宏霖,2006,以反射震測法研究木屐寮斷層及其附近構造。國立中央大學地球物理研究所碩士論文,共148頁。
石瑞銓、陳平護、呂明達、陳文山,2002,地震地質調查及活動斷層資料庫建置。
吉田要 1931,台南州小梅油田調查報告。台灣總督府殖產局,第696號,第1-12頁。
何春蓀,1976,台灣西部的麓山構造,台灣省地質調查所彙刊,25,9-28
何春蓀,2003,臺灣地質概論, 經濟部中央地質調查所, 共 163 頁。
周定芳,1996,臺灣西南外海A構造區內漸新統與白堊系之儲集層特性分析,國立成功大學地球科學系碩士論文。
林文勇、劉至忠、劉正倫,2012,臺灣大地基準之一九九七坐標系統 2010 年成果. 地籍測量: 中華民國地籍測量學會會刊, 31(3), 1-16。
林啟文、盧詩丁、石同生、張徽正、石瑞銓,2000,從野外調查探討台灣西南部四條存疑性活動斷層地存在,經濟部中央地質調查所彙刊,13,77-102。
林朝棨 1957,台灣地形,台灣省文獻委員會,共424頁。
計畫—淺層地球物理探勘(1/5),經濟部中央地質調查所九十一年度委辦計畫。
孫習之,1970,臺灣省新營至嘉義平原區域航照地質之研究,台灣石油地質,7,133-144。
孫習之,1971,臺灣省新營至嘉義平原區域航照地質之研究,台灣石油地質,8,65-76。
孫習之、施垚鑫,1960,高雄縣大岡山至鳳山區間地質調查報告,中油內部報告。
徐貴新,1999,台灣地區土壤重金屬含量空間特性分析,國立台灣大學農業工程學研究所碩士論文。
徐鐵良、張憲卿,1979,台灣第四紀斷層,中國地質學會專刊,155-165
翁淑卿,2002,台南台地暨鄰近地區之台南層及構造運動,國立中央大學應用地質研究所碩士論文,共117頁。
翁群評,2001,小岡山斷層及其附近構造,國立裝央大學地球物理研究所,共118頁。
耿文博,1981,台南以東丘陵區之地質,經濟部中央地質調查所彙刊第一號,第1-31頁。
張嘉強、李振燾、陳文豐、李安邦、李豐華、孫永大,2001,基本控制點檢測作業規範,內政部土地測量局委託研究報告。
張麗旭、周敏、陳培源,1947,民國35年12月5日台南之地震,台灣省地質調查所彙刊地1號,第11~18頁。
莊舒雲,2008,台灣西南部之地殼變形及塊體模擬研究,國立成功大學地球科學研究所碩士論文。
郭炫佑,1999,後甲里斷層及其附近構造,國立中央大學地球物理研究所碩士論文,共83頁。
陳文山、李錫堤,2003,地震地質及活動斷層資料庫建置:槽溝開挖與古地震研究計畫(2/5)-四、後甲里斷層的古地震研究,經濟部中央地質調查所,14頁。
陳永全,2004,六龜地區礫岩沈積環境與潮州斷層之研究,國立台灣大學地質科學研究所碩士論文,共56頁。
陳延宗,2007,以反射震測法研究左鎮斷層及其附近構造. 中央大學地球物理研究所學位論文。
黃明萬,2000,Kriging方法於地質圖製作之應用,國立交通大學土木工程所碩士論文。
黃鑑水、劉桓吉、張憲卿,1992,台灣南部觸口斷層之地質調查與勘探研究(一):國科會防災科技報告81-22號。
楊志成、顏一勤、宋時驊、黃能偉、陳勇全、陳文山、陳于高、吳樂群、張徽正、侯進雄、林啟文,2005,六甲斷層近萬年來滑移速率之探討。經濟部中央地質調查所特刊,第十六號,第1~16頁。
鄭百佑,2002,結合克利金法與模糊理論對土壤重金屬含量空間分布之推估,國立台灣大學生物環境系統工程學研究所碩士論文。
盧詩丁、石同生、李元希、林燕慧、劉燕求、黃存慧、林偉雄、林啟文,2003,新化斷層,經濟部中央地質調查所施政計畫報告-活動斷層調查報告。
盧詩丁、石同生、林啟文,2000,六甲斷層。經濟部中央地質調查所施政計畫報告-活動斷層調查報告。
盧詩丁、石同生、林啟文,2000,木屐寮斷層。經濟部中央地質調查所施政計畫報告-活動斷層調查報告。
Angelier, J., H.-C. Chu, J.-C. Lee, and J.-C. Hu (2000), Active faulting and earthquake hazard: The case study of the Chihshang fault, Taiwan, J. Geodyn., 29, 151-185.Blick, G., C. Crook, D. Grant, and J. Beavan (2005), Implementation of a Semi-Dynamic Datum for New Zealand, Int. Assoc. Geod. Symposia, 128, 38-43.
Beavan, J. (1998), Revised horizontal velocity model for the New Zealand geodetic datum , Institute of Geological and Nuclear Science Client Report 43865B, Lower Hutt, New Zealand.
Beavan, J., and Wallace, L. M. (2004), The effect of earthquakes on the New Zealand Geodetic System: A scenario for a major Wellington Fault earthquake, and results from the August 2003 Fiordland earthquake. Report. Institute of Geological & Nuclear Sciences Ltd, 49.
Beavan, J., and Blick, G. (2007, January), Limitations in the NZGD2000 deformation model. In Dynamic Planet (pp. 624-630). Springer Berlin Heidelberg.
Beavan, R. J. (2008), Consultancy services for coordinates for PositioNZonLine, Phase 2 (PONL-02).
Blick, G., Crook, C., Grant, D., and Beavan, J. (2005), Implementation of a semi-dynamic datum for New Zealand. In A Window on the Future of Geodesy (pp. 38-43). Springer Berlin Heidelberg.
Bonilla, M. G. (1975), A review of recently active faults in Taiwan. US Geological survey open-file report, 75, 41-58.
Bos, A. G., W. Spakman, and M. C. J. Nyst (2003), Surface deformation and tectonic setting of Taiwan inferred from a GPS velocity field, J. Geophys. Res., 108, 2458, doi:10.1028/2002JB002336.
Bürgmann, R., and Dresen, G. (2008), Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations. Annu. Rev. Earth Planet. Sci., 36, 531-567.
Bourne, S. J., England, P. C., and Parsons, B. (1998), The motion of crustal blocks driven by flow of the lower lithosphere and implications for slip rates of continental strike-slip faults. Nature, 391(6668), 655-659.
Chang, C.-P., T.-Y. Chang, J. Angelier, H. Kao, J.-C. Lee, and S.-B. Yu (2003), Strain and stress field in Taiwan oblique convergent system: Constraints from GPS observations and tectonic data, Earth Planet. Sci. Lett., 214, 115-127.
Chen H.-Y., S.-B. Yu, L.-C. Kuo, and C.-C. Liu (2006), Coseismic and postseismic displacements of the 10 December 2003 (MW 6.5) Chengkung, eastern Taiwan, earthquake, Earth Planets Space, 58, 5-21.
Cheng, L.-W., J.-C. Lee, J.-C. Hu, and H.-Y. Chen (2009), Coseismic and postseismic slip distribution of the 2003 Mw = 6.5 Chengkungearthquake in eastern Taiwan: Elastic modeling from inversion of GPS data, Tectonophysics, 466, 335-343.
Ching, K.-E., R.-J. Rau, J.-C. Lee, and J-C Hu (2007), Contemporary deformation of tectonic escape in SW Taiwan from GPS observations, 1995-2005, Earth Planet. Sci. Lett., 262, 601-619.
Ching, K.-E., K. M. Johnson, R.-J. Rau, R. Y. Chuang, L.-C. Kuo, and P.-L. Leu (2011), Inferred fault geometry and slip distribution of the 2010 Jiashian, Taiwan, earthquake is consistent with a thick-skinned deformation model, Earth Planet. Sci. Lett., 301, 78-86.
Chlieh, M., De Chabalier, J. B., Ruegg, J. C., Armijo, R., Dmowska, R., Campos, J., and Feigl, K. L. (2004), Crustal deformation and fault slip during the seismic cycle in the North Chile subduction zone, from GPS and InSAR observations. Geophysical Journal International, 158(2), 695-711.
Clift, P. D., H. Schouten, and A. E. Draut (2003), A general model of arc-continent collision and subduction polarity reversal from Taiwan and the Irish Caledonides, in Intra-Oceanic Subduction Systems: Tectonic and Magmatic Processes, Spec. Publ., Geol. Soc. London, vol. 219, edited by R. D. Larter and P. T. Leat, pp. 81-98, The Geological Society of London, London, UK.
Dach, R., Hugentobler, U., Fridez, P., and Meindl, M. (2007), Bernese GPS software version 5.0. Astronomical Institute, University of Bern, 640.
Deffontaines, B., Lacombe, O., Angelier, J., Chu, H. T., Mouthereau, F., Lee, C. T., ... and Liew, P. M. (1997), Quaternary transfer faulting in the Taiwan Foothills: evidence from a multisource approach. Tectonophysics, 274(1), 61-82.
El-Fiky, G. S. (2000), Elastic and inelastic strains in the Japanese Islands deduced from GPS dense array. Earth Planets and Space, 52(11), 1107-1112.
Grant, D. B. and M. B. Pearse (1995), Proposal for a dynamic national geodetic datum for New Zealand, IUGG XXI General Assembly Boulder Colorado, 2-14.
Grant, D. B., G. H. Blick, M. B. Pearse, R. J. Beavan, P. J. Morgan (1999), The development and implementation of New Zealand Geodetic Datum 2000, IUGG99 General Assembly, Birmingham UK, 18-30.
Hatanaka, Y., Iizuka, T., Sawada, M., Yamagiwa, A., Kikuta, Y., Johnson, J. M., and Rocken, C. (2003), Improvement of the analysis strategy of GEONET. Bull. Geogr. Surv. Inst, 49, 11-37.
HATANAKA, Y., TOBITA, M., KUROISHI, Y., and IMAKIIRE, T. (2007), Efficient Maintenance of the Japanese Geodetic Datum 2000 Using Crustal Deformation Models–PatchJGD and Semi-Dynamic Datum Yoshiyuki TANAKA, Hiroaki SAITA, Jun SUGAWARA, Kazumi IWATA, Tomoo TOYODA, Hideaki HIRAI, Tamotsu KAWAGUCHI, Shigeru MATSUZAKA. Bulletin of the Geographical Survey Institute, 54.
Ho, C.-S. (1986), A synthesis of the geologic evolution of Taiwan, Tectonophysics, 125, 1-16.
Hsu, Y.-J., N. Bechor, P. Segall, S.-B. Yu, L.-C. Kuo, and K.-F. Ma (2002), Rapid afterslip following the 1999 Chi-Chi, Taiwan, earthquake, Geophys. Res. Lett., 29, 10.1029/2002GL014967.
Hsu, Y.-J., P. Segall, S.-B. Yu, L.-C. Kuo, and C. A. Williams (2007), Temporal and spatial variations of postseismic deformation following the 1999 Chi-Chi, Taiwan earthquake, Geophys. J. Int., 169, 367-379.
Hsu, Y.-J., S.-B. Yu, M. Simons, L.-C. Kuo, and H.-Y. Chen (2009a), Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms, Tectonophysics, 479, 4-18.
Hsu, Y.-J., J.-P. Avouac, S.-B. Yu, C.-H. Chang, Y.-M. Wu, and J. Woessner (2009b), Spatio-temporal Slip, and Stress Level on the Faults within the Western Foothills of Taiwan: Implications for Fault Frictional Properties, Pure Appl. Geophys., doi:10.1007/s00024-009-0510-5.
Hsu, Y.-J., S.-B. Yu, and H.-Y. Chen (2009c), Coseismic and postseismic deformation associated with the 2003 Chengkung, Taiwan earthquake, Geophys. J. Int., 176, 420-430.
Hu, J.-C., C.-S. Hou, L.-C. Shen, Y.-C. Chan, R.-F. Chen, C. Huang, R.-J. Rau, K.-H. Chen, C.-W. Lin, M.-H. Huang, and P. F. Nien (2007), Fault activity and lateral extrusion inferred from velocity field revealed by GPS measurements in the Pingtung area of southwestern Taiwan. J. Asian Earth Sci., 31, 287-302.
Huang, C.-Y., W.-Y. Wu, C.-P. Chang, S. Tsao, P.-B. Yuan, C.-W. Lin, and K.-Y. Xia (1997), Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan, Tectonophysics, 281, 31-51.
Huang, C.-Y., P.-B. Yuan, C.-W. Lin, T.-K. Wang, and C.-P. Chang (2000), Geodynamic processes of Taiwan arc-continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica, Tectonophysics, 325, 1-21.
Jordan, A., Denys, P., and Blick, G. (2007), Implementing localised deformation models into a semi-dynamic datum. In Dynamic Planet (pp. 631-637). Springer Berlin Heidelberg.
Journel, A. G., and Huijbregts, C. J. (1978), Mining geostatistics (Vol. 600). London: Academic press.
Kraus K. and E. M. Mikhail (1972), Linear Least-squares interpolation. paper presented at the Twelfth Congress of the International Society of Photogrammetry, Canada.
Lacombe, O., Mouthereau, F., Deffontaines, B., Angelier, J., Chu, H. T., and Lee, C. T. (1999), Geometry and Quaternary kinematics of fold-and-thrust units of southwestern Taiwan. Tectonics, 18(6), 1198-1223.
Lacombe, O., F. Mouthereau, J. Angelier, and B. Deffontaines (2001), Structural, geodetic and seismological evidence for tectonic escape in SW Taiwan, Tectonophysics, 333, 323-345.
Lacombe, O., F. Mouthereau, J. Angelier, H.-T. Chu, and J.-C. Lee (2003), Frontal belt curvature and oblique ramp development at an obliquely collided irregular margin: Geometry and kinematics of the NW Taiwan fold-thrust belt, Tectonics, 22, 1025, doi:10.1029/2002TC001436.
Lallemand, S. E., and H. Tsien (1997), An introduction to active collision in Taiwan Tectonophysics, 274, 1-4.
Lee, J.-C., J. Angelier, H.-T. Chu, J.-C. Hu, and F.-S. Jeng (2001), Continuous monitoring of an active fault in a plate suture zone a creepmeter study of the Chihshang Fault, eastern Taiwan, Tectonophysics, 333, 219-240.
Lin, A.-T., and A. B. Watts (2002), Origin of the West Taiwan Basin by orogenic loading and flexure of a rifted continental margin, J. Geophys. Res., 107, 2185, doi:10.1029/2001JB000669.
Lin, A.-T., A. B. Watts, and S. P. Hesselbo (2003), Cenozoic stratigraphy and subsidence history of the South China Seamargin in theTaiwan region, Basin Res., 15, 453-478.
Lu C.-Y., and Malavieille J (1994), Oblique convergence, indentation and rotation tectonic in the Taiwan mountain belt: insights from experimental modeling, Earth Planet. Sci. Lett., 121, 477-494.
Lu, C.-Y., K.-J. Chang, F.-S. Jeng, and W.-T. Jian (1998), Impact of basement high on the structure and kinematics of the western Taiwan thrust wedge: insights from sandbox models, Terr. Atmos. Ocean. Sci., 9, 533-550.
McCaffrey, R. (1995), DEFNODE users’ guide. Rensselaer Polytechnic Institute, Troy, 2004.
McCaffrey, R. (2002), Crustal block rotations and plate coupling, in Plate Boundary Zones, Geodyn. Ser., vol. 30, edited by S. Stein and J. Freymueller, pp. 101-122, AGU, Washington, D. C.
McCaffrey, R., Qamar, A. I., King, R. W., Wells, R., Khazaradze, G., Williams, C. A., ... and Zwick, P. C. (2007), Fault locking, block rotation and crustal deformation in the Pacific Northwest. Geophysical Journal International, 169(3), 1315-1340.
Mikhail M., and F. Ackermann (1976), Observations and Least-squares. Harper and Row, New York.
Moritz, H. (1978), Least-squares collocation. Reviews of Geophysics and Space Physics 16 (3):421-430.
Moritz, H. (1989), Advanced physical geodesy. Second ed. Herbert Wichmann, Karlsruhe.
Murray-Moraleda, J. (2009), GPS: Applications in Crustal Deformation Monitoring. In Encyclopedia of Complexity and Systems Science (pp. 4249-4283). Springer New York.
Nur, A., and G. Mavko (1974), Post-seismic viscoelastic rebound, Science, 183, 204-206.
Okada, Y. (1985), Surface deformation due to shear and tensile faults in a half-space. Bulletin of the seismological society of America, 75(4), 1135-1154.
Okada, Y. (1992), Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2), 1018-1040.
Ozawa, S., T. Nishimura, H. Suito, T. Kobayashi, M. Tobita, and T. Imakiire (2011), Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake, Nature, 475, 373-376.
Pearse, M. B. (2001), A proposal for vertical datum development in New Zealand. OSG Technical Report 10, Land Information New Zealand, Wellington.
Pearson, C., R. McCaffrey, J. Elliott, and R. Snay (2010), HTDP 3.0: Software for Coping with the Coordinate Changes Associated with Crustal Motion, J. Surv. Eng., 136, 80-90.
Pearson, C., and R. Snay (2012), Introducing HTDP 3.1 to transform coordinates across time and spatial reference frames, GPS Solut., doi:10.1007/s10291-012-0255-y.
Peltzer, G., P. Rosen, F. Rogez, and K. Hudnut (1996), Postseismic rebound in fault step-overs caused by pore fluid flow, Science, 273, 1202-1206.
Pollitz, F. F., Wicks, C., and Thatcher, W. (2001), Mantle flow beneath a continental strike-slip fault: Postseismic deformation after the 1999 Hector Mine earthquake. Science, 293(5536), 1814-1818.
Rau, R.-J., K.-E. Ching, J.-C. Hu, and J.-C. Lee (2008), Crustal deformation and block kinematics in transition from collision to subduction: GPS measurements in northern Taiwan, 1995-2005, J. Geophys. Res., 113, B09404, doi:10.1029/2007JB005414.
Reilinger, R. E., Ergintav, S., Bürgmann, R., McClusky, S., Lenk, O., Barka, A., ... and Töksoz, M. N. (2000), Coseismic and postseismic fault slip for the 17 August 1999, M= 7.5, Izmit, Turkey earthquake. Science, 289(5484), 1519-1524.
Roeloffs, E. (1996), Poroelastic techniques in the study of earthquake-related hydrological phenomena, Advances in geophysics, 37, 135-195.
Sagiya, T., S. Miyazaki, and T. Tada (2000), Continuous GPS array and present-day crustal deformation of Japan, PAGEOPH, 157, 2303-2322.
Savage, J. C. (1980), Dislocations in seismology. Dislocations in solids, 3, 251-339.
Schwarz, C. R., and Wade, E. B. (1990), The North American datum of 1983: Project methodology and execution. Journal of Geodesy, 64(1), 28-62.
Shyu, J.B.H. (1999), The sedimentary environment of southern Pingdong plain since the last glacial. Master's Thesis, National Taiwan University, Taipei, 212p
Shyu, J. B. H., K. Sieh, Y.-G. Chen, and C.-S. Liu (2005), Neotectonic architecture of Taiwan and its implications for future large earthquakes, J. Geophys. Res., 110, B08402, doi:10.1029/2004JB003251.
Snay, R. A. (1999), Using the HTDP software to transform spatial coordinates across time and between reference frames. Surveying and Land Information Systems, 59(1), 15-25.
Snay, R. A. (2012), Evolution of NAD 83 in the United States: Journey from 2D toward 4D, J. Surv. Eng., 138, 161-171.
Sun, S. C. (1964), Photogeologic study of the Tainan-Kaohsiung coastal plain area, Taiwan. Petrol. Geol. Taiwan, 3, 39-51.
Suppe, J. (1980), Imbricated structure of western foothills belt, south-central Taiwan, Petrol. Geol. Taiwan, 17, 1-16.
Suppe, J. (1981), Mechanics of mountain building and metamorphism in Taiwan, Mem. Geol. Soc. China, 4, 67-89.
Suppe, J. (1984), Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan, Mem. Geol. Soc. China, 6, 21-33.
Tanaka, Y., H. Saita, J. Sugawara, K. Iwata, T. Toyoda, H. Hirai, T. Kawaguchi, and S. Matsuzaka (2007), Efficient maintenance of the Japanese geodetic datum 2000 using crustal deformation models – PatchJGD & semi-dynamic datum, Bull. Geogr. Surv. Inst., 54, 49-59.
Teng, L. S. (1990), Geotectonic evolution of late Cenozoic arc continent collision in Taiwan, Tectonophysics, 183, 57-76.
Teng, L. S. (1996), Extensional collapse of the northern Taiwan mountain belt, Geology, 24, 949-952.
Thatcher, W., and J. B. Rundle (1984), A viscoelastic coupling model for the cyclic deformation due to periodically repeated earthquakes at subduction zones, J. Geophys. Res., 89, 7631-7640.
Tregoning, P., and Jackson, R. (1999), The need for dynamic datums. Geomatics Research Australasia, 87-102.
Tse, S.-T., and J. R. Rice (1986), Crustal earthquake instability in relation to the depth variation of frictional slip properties, J. Geophys. Res., 91, 9452-9472.
Tsuji, H. (2005), Towards the Realization of Geo-Referencing Infrastructure for Dynamic Japan (GRID-Japan) Hiromichi TSUJI and Kazuo KOMAKI. Bulletin of the Geographical Survey Institute, 52.
Viallon, C., P. Huchon, and E. Barrier (1986), Opening of the Okinawa basin and collision in Taiwan: A retreating trench model with lateral anchoring, Earth Planet. Sci. Lett., 80, 145-155.
Walcott R.I. (1984) The major structural elements of New Zealand , An introduction to the recent crustal movements of New Zealand , Miscellaneous Series 7, Royal Society of New Zealand.
Ward, S. N. (1994), A multidisciplinary approach to seismic hazard in southern California, Bull. Seism. Soc. Am., 84, 1293-1309.
WINEFIELD, R., CROOK, C., and BEAVAN, J. (2010), The Application of a Localised Deformation Model after an Earthquake. In Proceedings of XXIV FIG Congress 2010 (pp. 11-16).
Yang, K.-M., H.-H. Ting, and J. Yuan (1991), Structural styles and tectonic modes of Neogene extensional tectonics in southwestern Taiwan: implications for hydrocarbon exploration, Petrol. Geol. Taiwan, 26, 1-31.
Yoshiyuki T., S. Hiroaki, S. Jun, I. Kazumi, T. Tomoo, H. Hideaki, K. Tamotsu, M. Shigeru, H. Yuki, T. Mikio, K. Yuki, and I. Tetsuro (2007), Efficient maintenance of the Japanese geodetic datum 2000 using crustal deformation models – PatchJGD & semi-dynamic datum, Bulletin of the Geographical Survey Institute, 54.
Yu, S.-B., and H.-Y. Chen (1994), Global positioning system measurements of crustal deformation in the Taiwan arc-continent collision zone, Terr. Atmos. Ocean. Sci., 5, 477-498.
Yu, S.-B., H.-Y. Chen, and L.-C. Kuo (1997), Velocity field of GPS Stations in the Taiwan area, Tectonophysics, 274, 41-59.
Yu, S.-B., L.-C. Kuo, R.-S. Punongbayan, and E.-G. Ramos (1999), GPS observation of crustal motion in the Taiwan-Luzon region, Geophys. Res. Lett., 26, 923-926.
Yu, S.-B., and L.-C. Kuo (2001), Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan, Tectonophysics, 333, 199-217.
Yu, S.-B., L.-C. Kuo, Y.-J. Hsu, H.-H. Su, C.-C. Liu, C.-S. Hou, J.-F. Lee, T.-C. Lai, C.-C. Liu, C.-L. Liu, T.-F. Tseng, C.-S. Tsai, and T.-C. Shin (2001), Preseismic deformation and coseismic displacements associated with the 1999 Chi-Chi, Taiwan earthquake, Bull. Seism. Soc. Am., 91, 995-1012.
Yu, S.-B., Y.-J. Hsu, L.-C. Kuo, H.-Y. Chen, and C.-C. Liu (2003), GPS measurement of postseismic deformation following the 1999 Chi-Chi, Taiwan, earthquake, J. Geophys. Res., 108,10.1029/2003JB002396.
Zhuang, J., C.-P. Chang, Y. Ogata, and Y.-I. Chen (2005), A study on the background and clustering seismicity in the Taiwan region by using point process models, J. Geophys. Res., 110, B05S18, doi:10.1029/2004JB003157.