簡易檢索 / 詳目顯示

研究生: 侯至謙
Hou, Chih-Chien
論文名稱: 擺頭式光纖雷射於銅焊接之特性研究
Characterization of Copper Welding with a Wobble Fiber Laser
指導教授: 林震銘
Lin, Jen-Ming
施士塵
Shih, Shih-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 207
中文關鍵詞: 光纖雷射擺頭振鏡軌跡銅搭接焊
外文關鍵詞: Fiber laser, Wobble Scanning Strategy, Copper Lap Joint Welding
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 口試合格證書 I 摘要 II Characterization of Copper Welding with a Wobble Fiber Laser III 誌謝 XXII 目錄 XXIII 表目錄 XXX 圖目錄 XXXIV 符號說明 XLI 第一章 緒論 1 1.1研究背景及目的 1 1.2文獻回顧 5 1.2.1 雷射焊接性質 5 1.2.2 銅焊接特性 7 1.2.3 雷射光源選擇 9 1.2.4 擺頭路徑條件 11 1.2.5間隙條件效應 14 1.2.6雷射焊接微結構電性分析 16 1.2.7雷射焊接機械強度 19 1.2.8 焊接底板溫度 21 1.2.9雷射焊接熔池模擬 23 1.3 研究動機與方法 24 1.4 本文架構 26 第二章 應用理論 28 2.1雷射光束特性 28 2.1.1高斯模態於空間中的聚焦 29 2.1.2 雷射光束品質 31 2.2雷射焊接數值分析理論 32 2.2.1雷射熱傳模型 32 2.2.2動量與熱傳方程式 33 2.2.3FLUENT軟體之固液相變轉換 34 2.2.4VOF(Volume of fraction)自由表面計算 37 2.2.5介面追蹤、動量與能量方程式 37 2.2.6 表面張力 38 2.2.7有限差分法 40 2.2.8金屬蒸氣反衝壓力 41 2.3 擺頭振鏡圓軌跡路徑 41 2.3.1擺頭路徑定義 41 2.3.2 擺頭路徑能量分佈 42 2.4四點探針電阻率量測理論 44 2.5焊接接點破壞分析 46 第三章 數值分析 48 3.1 擺頭雷射銅焊接數值模擬 48 3.1.1 FLUENT軟體簡介 49 3.1.2 擺頭雷射焊接模擬流程 50 3.1.3 雷射熱源與假設條件 51 3.1.3.1高斯旋轉體熱源 51 3.1.4 擺頭能量分佈性 52 3.1.4.1 能量分佈邊界條件 53 3.1.5 擺頭雷射模型建立與模擬條件設定 57 3.1.6 材料性質設定與假設條件 59 3.1.7 擺頭雷射搭接網格設定 62 3.1.8 擺頭雷射搭接模擬(擺頭線速度79 mm/s、139 mm/s、222 mm/s) 63 3.1.8.1銅搭接溫度場結果 63 3.1.8.2銅搭接速度場結果 69 3.2 銅搭接間隙數值分析模擬 71 3.2.1 間隙模型設定與模擬條件 71 3.2.2 間隙模型之網格設定 72 3.2.3 銅搭接間隙模擬結果 74 3.3 銅搭接厚度效應模擬結果 76 3.3.1 厚度效應模型設定與模擬條件 76 3.3.2 厚度效應模型之網格設定 77 3.3.3 銅搭接厚度效應模擬結果 78 3.4 數值模擬分析總結 80 第四章 實驗 81 4.1 連續式雷射焊接實驗設備配置 82 4.1.1 實驗參數條件 82 4.1.2 焊接實驗試片與材料性質 83 4.1.3 拉伸測試 84 4.1.4 四點探針電阻率量測 84 4.1.5 焊道成份分析(EDS) 85 4.1.6 3D雷射共焦輪廓儀 86 4.1.7 熱電偶溫度量測 86 4.1.8 焊道硬度量測 87 4.2 擺頭雷射搭接之強度、微觀結構、電性討論 88 4.2.1 0.1mm鎳片-0.5mm銅-0.5mm銅搭接實驗結果 89 4.2.2 40μm電鍍鎳銅-0.5mm銅搭接實驗結果 91 4.2.3 0.1mm鎳片-0.5mm銅-0.5mm銅搭接之數值模擬與實驗結果比較 93 4.2.4 雷射搭接實驗電性 95 4.2.4.1 0.1mm鎳片-0.5mm銅-0.5mm銅搭接電性 95 4.2.4.2 40μm電鍍鎳銅-0.5mm銅搭接電性 96 4.2.5 雷射搭接實驗焊道成份 97 4.2.5.1 0.1mm鎳片-0.5mm銅-0.5mm銅搭接焊道成份討論 98 4.2.5.2 電鍍鎳銅-銅搭接焊道成份討論 101 4.2.6 焊道成份與硬度驗證 104 4.2.7 連續式雷射焊接介面強度 107 4.2.7.1 0.1mm鎳片-0.5mm銅-0.5mm銅拉伸試驗結果 108 4.2.7.2 40μm電鍍鎳銅-0.5mm銅拉伸實驗結果 109 4.2.7.3 搭接實驗強度比較 112 4.2.8 底板溫度量測實驗 113 4.2.8.1底板溫度量測結果 113 4.2.8.1 焊接條件對底板溫度結果討論 115 4.2.9 擺頭線速度調整綜合討論 116 4.3 搭接焦點實驗 116 4.3.1 焦點位置實驗 118 4.3.1.1 0.1mm鎳片-0.5mm銅-0.5mm銅焦點實驗 118 4.3.1.2 40μm電鍍鎳銅-0.5mm銅焦點實驗 119 4.3.2 連續焊焦點位置實驗結果討論 121 4.4 間隙搭接實驗 122 4.4.1 間隙條件焊道表面與熔池分佈 123 4.4.2 間隙對電性影響 129 4.4.4 0.1mm鎳片-0.5mm銅-0.5mm銅間隙實驗與數值模擬比較 131 4.4.5 間隙搭接實驗結果討論 133 4.5 厚度效應(0.3mm to 0.5mm & 0.5mm to 0.3mm)對熔融深度及電性影響 133 4.5.1 厚度效應對熔融深度影響 135 4.5.1.1 厚度效應電性量測 137 4.5.2 厚度效應實驗與數值模擬比較 138 4.6 結果與討論 139 第五章 綜合討論與建議 141 5.1綜合討論 141 5.2相關建議與未來展望 145 參考文獻 147 附錄A 底板溫度量測模擬驗證 153 附錄B 能量分佈模擬驗證 155 B.1 模擬結果驗證 155 B.2 程式碼 158

    1.Gulotta, T.M., et al., Life Cycle Assessment and Life Cycle Costing of unitized regenerative fuel cell: A systematic review. Environmental Impact Assessment Review, 2022. 92: p. 106698.
    2.Kogel-Hollacher, M., et al. Meeting the challenges in e-mobility with laser welding and sophisticated system technology. in Laser-based Micro-and Nanoprocessing XVIII. 2024. SPIE.
    3.Fortune Business Insights. Industrial Laser Market Size. 2025 [cited 2025 April 2]; Available from: https://www.fortunebusinessinsights.com/industrial-lasers-market-102063.
    4.Ali, S. and J. Shin, In-depth characterization of laser-welded aluminum-and-copper dissimilar joint for electric vehicle battery connections. Materials, 2022. 15(21): p. 7463.
    5.Helm, J., et al., Laser welding of laser-structured copper connectors for battery applications and power electronics. Welding in the World, 2020. 64: p. 611-622.
    6.Hummel, M., et al., New approaches on laser micro welding of copper by using a laser beam source with a wavelength of 450 nm. Journal of Advanced Joining Processes, 2020. 1: p. 100012.
    7.Chen, H.-C., et al., Enhanced welding efficiency in laser welding of highly reflective pure copper. Journal of Materials Processing Technology, 2015. 216: p. 287-293.
    8.Baumann, R., et al., Tailored absorptivity: Increasing the laser weldability of copper through surface structuring. Materials Letters, 2021. 283: p. 128700.
    9.Mukherjee, T., et al., Keyhole mode wobble laser welding of a nickel base superalloy-Modeling, experiments, and process maps. Journal of Manufacturing Processes, 2023. 106: p. 465-479.
    10.黃俊榮, AZ型鎂合金微銲接之最適參數研究, in 工業教育學系. 2005, 國立臺灣師範大學. p. 1-104.
    11.Xiao, X., et al., Progress on experimental study of melt pool flow dynamics in laser material processing, in Liquid metals. 2021, IntechOpen.
    12.Gong, S., et al., Weld pool dynamics in deep penetration laser welding. 2021: Springer.
    13.Hess, A., et al., Forced deep-penetration welding with low-power second-harmonic assistance of cw copper welding with 1 μm wavelength. Physics Procedia, 2010. 5: p. 29-36.
    14.Kaplan, A.F., Model of the absorption variation during pulsed laser heating applied to welding of electronic Au/Ni-coated Cu-leadframes. Applied surface science, 2005. 241(3-4): p. 362-370.
    15.Mondal, B., et al., Vapor pressure versus temperature relations of common elements. Materials, 2022. 16(1): p. 50.
    16.Möbus, M., et al., Process comparison of laser deep penetration welding in pure nickel using blue and infrared wavelengths. Welding in the World, 2024. 68(6): p. 1473-1484.
    17.Perez Zapico, E., et al., Influence of process parameters in blue laser welding of copper and aluminum thin sheets. Journal of Laser Applications, 2022. 34(4).
    18.Sudo, M., et al., The effect of plume removal on welding efficiency of pure copper using 1.5 kW blue diode laser. Applied Physics A, 2025. 131(4): p. 273.
    19.Sadeghian, A. and N. Iqbal, Blue laser welding of low thickness Ni-coated copper and mild steel for electric vehicle (EV) battery manufacturing. Optics & Laser Technology, 2022. 155: p. 108415.
    20.Schleser, M., et al., Laser beam welding of copper under vacuum to extend the process limits. Welding in the World, 2025: p. 1-12.
    21.Yoon, H.-S. and H.-S. Bang, The effect of wobbling on the welding characteristics in Al/Cu fiber laser welded joints. The International Journal of Advanced Manufacturing Technology, 2023. 127(11-12): p. 5343-5352.
    22.Dimatteo, V., et al., Experimental investigation on the effect of spot diameter on continuous-wave laser welding of copper and aluminum thin sheets for battery manufacturing. Optics & Laser Technology, 2022. 145: p. 107495.
    23.Li, J., et al., Mitigation of porosity in adjustable-ring-mode laser welding of medium-thick aluminum alloy. International Journal of Heat and Mass Transfer, 2024. 227: p. 125514.
    24.Li, J., et al., Numerical and experimental study on keyhole dynamics and pore formation mechanisms during adjustable-ring-mode laser welding of medium-thick aluminum alloy. International Journal of Heat and Mass Transfer, 2023. 214: p. 124443.
    25.Zhang, Y., et al., Study of spatter net forming mechanism and penetration mode under flexible ring mode laser welding. Journal of Materials Research and Technology, 2023. 24: p. 2213-2225.
    26.Wu, Z., et al., High frequency beam oscillation keyhole dynamics in laser melting revealed by in-situ x-ray imaging. Communications Materials, 2023. 4(1): p. 5.
    27.Song, Y., et al., Influence of Scanning Paths on the Weld Pool Behavior, Microstructure, and Mechanical Property of AA2060 Al-Li Alloy Joints by Laser Beam Oscillation Welding. Coatings, 2024. 14(8): p. 1065.
    28.Cheng, H., et al., Processing modes in laser beam oscillating welding of Al6Cu alloy. Journal of Manufacturing Processes, 2021. 68: p. 1261-1270.
    29.Gao, M., et al., Evolutions in microstructure and mechanical properties of laser lap welded AZ31 magnesium alloy via beam oscillation. Journal of Manufacturing Processes, 2019. 45: p. 92-99.
    30.Roy, A., et al., Analysis of Stirring Action to Control Grain Refinement of Inconel 625 Superalloy Bead on Plate Using Laser Wobble Technology. Journal of Materials Engineering and Performance, 2025: p. 1-10.
    31.Franco, D., et al., Analysis of copper sheets welded by fiber laser with beam oscillation. Optics & Laser Technology, 2021. 133: p. 106563.
    32.Liu, M., et al., Influence of oscillating laser on forming characteristics and molten pool flow behavior of aluminum alloy double-wire additive manufacturing. Journal of Laser Applications, 2023. 35(2).
    33.Wang, H., et al., Influence of assembly gap size on the structure and properties of SUS301L stainless steel laser welded lap joint. Materials, 2021. 14(4): p. 996.
    34.Chianese, G., et al., Characterization of photodiodes for detection of variations in part-to-part gap and weld penetration depth during remote laser welding of copper-to-steel battery tab connectors. Journal of Manufacturing Science and Engineering, 2022. 144(7): p. 071004.
    35.Jarwitz, M., et al., Weld seam geometry and electrical resistance of laser-welded, aluminum-copper dissimilar joints produced with spatial beam oscillation. Metals, 2018. 8(7): p. 510.
    36.Dimatteo, V., et al., The effect of process parameters on the morphology, mechanical strength and electrical resistance of CW laser-welded pure copper hairpins. Journal of Manufacturing Processes, 2021. 62: p. 450-457.
    37.Devi, N., et al., Failure behavior of copper Laser-Welded joints in lap shear specimens. Engineering Fracture Mechanics, 2022. 269: p. 108521.
    38.Liu, G., et al., Optimization of laser welding of DP780 to Al5052 joints for weld width and lap-shear force using response surface methodology. Optics & Laser Technology, 2020. 126: p. 106072.
    39.Silva, A., J. De Backer, and G. Bolmsjö, Temperature measurements during friction stir welding. The International Journal of Advanced Manufacturing Technology, 2017. 88: p. 2899-2908.
    40.Huang, R.-S., L.-M. Liu, and G. Song, Infrared temperature measurement and interference analysis of magnesium alloys in hybrid laser-TIG welding process. Materials Science and Engineering: A, 2007. 447(1-2): p. 239-243.
    41.Ke, W., et al., Modeling and numerical study of keyhole-induced porosity formation in laser beam oscillating welding of 5A06 aluminum alloy. Optics & Laser Technology, 2021. 133: p. 106540.
    42.Koo, B.S., P. Thasanaraphan, and H.F. Nied, Numerical simulation of the formation of hourglass welds during laser welding. Journal of Materials Processing Technology, 2019. 263: p. 176-185.
    43.Steen, W.M. and J. Mazumder, Laser material processing. 2010: springer science & business media.
    44.Bergman, T.L., Fundamentals of heat and mass transfer. 2011: John Wiley & Sons.
    45.Gerhart, A.L., J.I. Hochstein, and P.M. Gerhart, Munson, Young and Okiishi's fundamentals of fluid mechanics. 2020: John Wiley & Sons.
    46.Fluent, A., Ansys fluent theory guide. Ansys Inc., USA, 2011. 15317: p. 724-746.
    47.Brackbill, J.U., D.B. Kothe, and C. Zemach, A continuum method for modeling surface tension. Journal of computational physics, 1992. 100(2): p. 335-354.
    48.DeWitt, D.P. and G.D. Nutter, Theory and practice of radiation thermometry. 1991: John Wiley & Sons.
    49.Semak, V. and A. Matsunawa, The role of recoil pressure in energy balance during laser materials processing. Journal of physics D: Applied physics, 1997. 30(18): p. 2541.
    50.Dimatteo, V., A. Ascari, and A. Fortunato, Continuous laser welding with spatial beam oscillation of dissimilar thin sheet materials (Al-Cu and Cu-Al): Process optimization and characterization. Journal of Manufacturing Processes, 2019. 44: p. 158-165.
    51.Ai, Y., et al., The analysis of energy distribution characteristics of molten pool in welding of aluminum alloy with oscillating laser. Sustainability, 2023. 15(8): p. 6868.
    52.Waremra, R.S. and P. Betaubun. Analysis of electrical properties using the four point probe method. in E3S Web of conferences. 2018. EDP Sciences.
    53.Kang, M., et al., Tensile–shear fracture behavior prediction of high-strength steel laser overlap welds. Metals, 2018. 8(5): p. 365.
    54.吴甦, et al., 高能束焊接数值模拟中的新型热源模型. 焊接学报, 2004(1): p. 91-94.
    55.Xue, Z., et al., Molten pool characterization of laser lap welded copper and aluminum. Journal of Physics D: Applied Physics, 2013. 46(49): p. 495501.
    56.Sinhmar, S., et al., Investigation of corrosion and electrical resistance in laser welded Al-Cu joints for EV batteries. Journal of Energy Storage, 2024. 104: p. 114436.
    57.Chen, S., et al., Interfacial microstructures and mechanical property of Ni/Al dissimilar butt joint made by laser welding. Journal of Manufacturing Processes, 2020. 50: p. 17-23.
    58.Huang, W., et al. Effect of Metal Mixing on Mechanical Performance of Laser Keyhole Welding of Nickel and Copper. in International Manufacturing Science and Engineering Conference. 2022. American Society of Mechanical Engineers.
    59.Ning, J., et al., Effects of double-pass welding and extrusion on properties of fiber laser welded 1.5-mm thick T2 copper joints. Journal of Materials Processing Technology, 2016. 237: p. 75-87.
    60.Han, C., et al., Multiphase-field simulation of grain coalescence behavior and its effects on solidification cracking susceptibility during welding of Al-Cu alloys. Materials & Design, 2021. 211: p. 110146.
    61.Miyagi, M. and X. Zhang, Investigation of laser welding phenomena of pure copper by x-ray observation system. Journal of Laser Applications, 2015. 27(4).
    62.Jiang, Z., et al., Grain refinement and laser energy distribution during laser oscillating welding of Invar alloy. Materials & Design, 2020. 186: p. 108195.

    無法下載圖示 校內:2030-08-05公開
    校外:2030-08-05公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE