簡易檢索 / 詳目顯示

研究生: 戴于涵
Tai, Yu-Han
論文名稱: 研究miR-99a在口腔癌中扮演的角色
The study of miR-99a in oral cancer
指導教授: 吳梨華
Wu, Li-Wha
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 52
中文關鍵詞: miR-99a口腔癌鱗狀細胞癌MTMR3細胞侵襲自體吞噬
外文關鍵詞: miR-99a, oral cancer, squamous cell carcinoma, MTMR3, invasion, autophagy
相關次數: 點閱:127下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 頭頸部鱗狀細胞癌為全世界第六常見的癌症。口腔癌為頭頸部鱗狀細胞癌的一種,且在台灣位居男性十大癌症死因之第四位。在許多癌症中,已發現microRNA的失衡和癌症的發展及轉移有關。microRNA為一長約19~25個核甘酸構成的小片段不編碼的序列,藉由和標的基因mRNA上3’-UTR鹼基配對來調控標的基因後轉譯修飾的表現。我們實驗室利用microRNA microarray發現在口腔癌細胞株中的miR-99a表現量和正常口腔角質細胞比是下降的。進一步利用Real-time PCR也發現miR-99a的表現量在口腔癌細胞株和臨床病人檢體中皆是下降, 因此我們推論miR-99a在口腔癌可能扮演抑癌基因的角色。瞬間轉染 miR-99a或是在miR-99a 穩定表現的口腔癌細胞株中,皆可發現miR-99a可以抑制口腔癌細胞的爬行和侵襲能力;而miR-99a對於細胞增生的部分則因不同細胞株有不同的影響。我們也利用antagomiR-99a抑制miR-99a,發現可以促進口腔癌細胞的爬行和侵襲能力。運用microRNA 標的基因預測軟體我們找到4個miR-99a可能標的的下游基因。接著利用含有3’-UTR的冷光酶報導系統(luciferase reporter assay) 和定點突變(site-directed mutagenesis)證明miR-99a會藉由調控MTMR3(myotubularin related protein 3) 的3’-UTR明顯降低其冷光酶的活性。而在MTMTR3 的 3’-UTR中,miR-99a的 seed region發生突變情況下則冷光酶活性不變。半定量RT-PCR結果顯示miR-99a和MTMR3 mRNA表現量在口腔癌病人檢體中呈現反向關係,在口腔癌細胞株中則否。Western blot結果則顯示不管是內源性或是外源性,miR-99a和MTMR3 蛋白質表現量在口腔癌細胞株中皆呈反向關係。由於MTMR3在口腔癌細胞株中的角色尚未被說明,因此我們減弱內生性具有高表現MTMR3的 OC2。減弱OC2中的MTMR3可以明顯減弱口腔癌細胞株生長速率,爬行和侵襲Matrigel能力,由此可知MTMR3在口腔癌細胞株中扮演致癌基因的角色。由以上結果我們認為miR-99a在口腔癌細胞中扮演抑癌基因的角色,透過調控MTMR3表現量。未來我們還會繼續研究miR-99a和MTMR3的作用機轉和在口腔癌細胞中扮演的角色。

    Head and neck cancer is the six most common carcinomas worldwide. Oral cancer, one of head and neck cancer types, is the fourth leading causes of male cancer death in Taiwan. The deregulation of certain microRNAs has been associated with the progression and metastasis of various cancer types. MicroRNAs are noncoding RNA molecules in a length of 19~25 nucleotides, which can mediate gene expression by base pairing to the 3’untralslated region (3’-UTR) of target mRNAs. Using human microRNA microarray analysis, we found that miR-99a was most down-regulated in oral cancer cells when compared to normal oral keratinocytes. Real-time PCR analysis further confirmed the down-regulation of miR-99a both in the majority of tested oral cancer cell lines and human clinical specimens. Therefore, we hypothesized that miR-99a might act as a tumor suppressor in oral cancer. Transient and stable expression of miR-99a inhibited the migration and invasion of oral cancer cells while having differential expression on cell proliferation depending on the cell types. Using antagomiR-99a to silence the effect of miR-99a enhanced cell migration and invasion. Four genes were predicted to be putative downstream targets of miR-99a. We then used 3’-UTR-bearing luciferase reporter assays and site-directed mutagenesis and confirmed that miR-99a could significantly decrease the luciferase activity regulated by the MTMR3(Homo sapiens myotubularin related protein 3) 3’-UTR but not the one with mutations in miR-99a seed region. Semi-quantitative RT-PCR analysis showed an inverse expression of miR-99a and MTMR3 mRNA in clinical specimens but not in oral cancer cells. Western blot analysis, however, showed the inverse relation of endogenous or exogenous miR-99a and MTMR3 protein expression in oral cancer cells. Since the role of MTMR3 in oral cancer has not been elucidated, knocking down MTMR3 expression in high MTMR3-expressing OC2 cells significantly impaired the ability of oral cancer cells to proliferate, migrate or invade Matrigel, suggesting an oncogenic role of MTMR3 in oral cancer cells. Together, our findings suggest that miR-99a acts as tumor suppressor through regulating MTMR3 expression in oral cancer cells. We will continue to study the mechanistic relationship of miR-99a and MTMR3, and the functional implication of this relation in oral cancer.

    中文摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 VIII 附錄目錄 IX 英文縮寫對照表(Abbreviations) X 壹.緒論 1 1.1口腔癌 1 1.2微型核糖核酸(microRNA) 1 1.3 microRNA與HNSCC 2 1.4 miR-99a的介紹與研究近況 3 1.5 MTMR3的介紹及其與Autophagy的相關性 4 1.6研究動機與特定目標 5 貳.材料與方法 6 2.1材料 6 2.2口腔癌病人檢體和口腔癌細胞來源、資料及培養 7 2.3引子列表 7 2.4建構pGL3-MTMR3-3’-UTR, pGL3-FGFR3-3’-UTR, pGL3-X-3’-UTR, pGL3-Y-3’-UTR重組質體 8 2.5建構pMSCV-PIG-Pre-miR-99a重組質體 8 2.6定點突變(Site-Directed Mutagenesis) 9 2.7建構pFlag-CMV2-MTMR3重組質體 9 2.8瞬間轉染(Transient transfection) 9 2.9冷光酶報導系統(Dual-Luciferase reporter assay) 10 2.10反轉錄聚合酶連鎖反應 10 2.11 shRNA knockdown 11 2.12細胞生長速率 11 2.13傷口癒合實驗 11 2.14西方點墨法 11 2.15免疫螢光染色 12 2.16統計分析 12 叁.結果 13 3.1 miR-99a在口腔癌中表現量下降 13 3.2 miR-99a的增加表現會抑制口腔癌細胞株傷口癒合及侵襲的能力;但對於口腔癌細胞株的生長速率影響因細胞株不同而不同 13 3.3穩定miR-99a的表達會抑制口腔癌細胞株傷口癒合及侵襲的能力;但對於口腔癌細胞株的生長速率影響因細胞株不同而不同 14 3.4 MTMR3是miR-99a的下游標的基因 15 3.5 外生性miR-99a藉由直接標的到MTMR3-3'-UTR來調控此基因蛋白質的表現量 16 3.6 miR-99a和MTMR3的表現量在口腔癌細胞株和臨床病人檢體中,具有反向表現之關係 17 3.7 減弱 MTMR3的表現會抑制OC2生長速率和傷口癒合能力 18 3.8 EGFP-MTMR3 表現於細胞質 19 肆.結論與討論 20 伍.參考文獻 22 作者自述 52 圖目錄 Figure 1 miR-99a的增加表現量對於口腔癌細胞株生長速率的影響25 Figure 2 miR-99a的增加表現量會抑制口腔癌細胞株傷口癒合的能力26 Figure 3 miR-99a的增加表現量會抑制口腔癌細胞株侵襲能力28 Figure 4建立穩定表現miR-99a的細胞株29 Figure 5穩定表現miR-99a影響口腔癌細胞株之生長速率的能力隨細胞株不 同而不同31 Figure 6穩定表現miR-99a的口腔癌細胞株具有較差的傷口癒合能力32 Figure 7穩定表現miR-99a的HSC-3會抑制口腔癌細胞株侵襲能力33 Figure 8 MTMR3為miR-99a的下游標的基因34 Figure 9大量表現miR-99a會降低MTMR3表現量37 Figure 10口腔癌細胞株和臨床病人檢體中內生性MTMR3之表現40 Figure 11削弱內生性MTMR3對於OC2的影42 Figure 12 EGFP-MTMR3主要表現於細胞45 附錄目錄 附錄1. 衛生署統計98和99年之國人十大死因46 附錄2. 衛生署統計2010年之男性十大癌症死因47 附錄3. microRNA生合成48 附錄4. 影響3-phosphoinositide代謝和作用的酵素49 附錄5. 人類中 myotubularin-related proteins 成員50 附錄6.miR-99a在口腔癌細胞中和病人檢體中的表現量51

    1. Tsantoulis, P.K., et al., Advances in the biology of oral cancer. Oral Oncol, 2007. 43(6): p. 523-34.
    2. Hunter, K.D., E.K. Parkinson, and P.R. Harrison, Profiling early head and neck cancer. Nat Rev Cancer, 2005. 5(2): p. 127-35.
    3. Chen, Y.J., et al., Head and neck cancer in the betel quid chewing area: recent advances in molecular carcinogenesis. Cancer Sci, 2008. 99(8): p. 1507-14.
    4. Haddad, R.I. and D.M. Shin, Recent advances in head and neck cancer. N Engl J Med, 2008. 359(11): p. 1143-54.
    5. Leemans, C.R., B.J. Braakhuis, and R.H. Brakenhoff, The molecular biology of head and neck cancer. Nat Rev Cancer, 2011. 11(1): p. 9-22.
    6. Lo, W.L., et al., Outcomes of oral squamous cell carcinoma in Taiwan after surgical therapy: factors affecting survival. J Oral Maxillofac Surg, 2003. 61(7): p. 751-8.
    7. Garzon, R., et al., MicroRNA expression and function in cancer. Trends Mol Med, 2006. 12(12): p. 580-7.
    8. Garzon, R., G. Marcucci, and C.M. Croce, Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov, 2010. 9(10): p. 775-89.
    9. Krol, J., I. Loedige, and W. Filipowicz, The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet, 2010. 11(9): p. 597-610.
    10. Winter, J., et al., Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol, 2009. 11(3): p. 228-34.
    11. Cimmino, A., et al., miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A, 2005. 102(39): p. 13944-9.
    12. Esquela-Kerscher, A. and F.J. Slack, Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer, 2006. 6(4): p. 259-69.
    13. Lee, Y.S. and A. Dutta, MicroRNAs in cancer. Annu Rev Pathol, 2009. 4: p. 199-227.
    14. Meng, F., et al., MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology, 2007. 133(2): p. 647-58.
    15. Chen, L.H., et al., MicroRNA as a Novel Modulator in Head and Neck Squamous Carcinoma. J Oncol, 2010. 2010: p. 135632.
    16. Tran, N., et al., MicroRNA expression profiles in head and neck cancer cell lines. Biochem Biophys Res Commun, 2007. 358(1): p. 12-7.
    17. Cervigne, N.K., et al., Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma. Hum Mol Genet, 2009. 18(24): p. 4818-29.
    18. Yamada, H., et al., Detailed characterization of a homozygously deleted region corresponding to a candidate tumor suppressor locus at 21q11-21 in human lung cancer. Genes Chromosomes Cancer, 2008. 47(9): p. 810-8.
    19. Sakata, K., et al., Commonly deleted regions on the long arm of chromosome 21 in differentiated adenocarcinoma of the stomach. Genes Chromosomes Cancer, 1997. 18(4): p. 318-21.
    20. Ohgaki, K., et al., Mapping of a new target region of allelic loss to a 6-cM interval at 21q21 in primary breast cancers. Genes Chromosomes Cancer, 1998. 23(3): p. 244-7.
    21. Yamamoto, N., et al., Frequent allelic loss/imbalance on the long arm of chromosome 21 in oral cancer: evidence for three discrete tumor suppressor gene loci. Oncol Rep, 1999. 6(6): p. 1223-7.
    22. Bockmuhl, U., et al., Genomic alterations associated with malignancy in head and neck cancer. Head Neck, 1998. 20(2): p. 145-51.
    23. Yamamoto, N., H. Noma, and T. Shibahara, Allelic imbalance on the long arm of chromosome 21 in human oral squamous cell carcinoma: relationship between allelic imbalances (LOH and MSI) and clinicopathologic features. Bull Tokyo Dent Coll, 2001. 42(4): p. 211-23.
    24. Yamamoto, N., et al., Analysis of the ANA gene as a candidate for the chromosome 21q oral cancer susceptibility locus. Br J Cancer, 2001. 84(6): p. 754-9.
    25. Wong, T.S., et al., Mature miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue. Clin Cancer Res, 2008. 14(9): p. 2588-92.
    26. Nam, E.J., et al., MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res, 2008. 14(9): p. 2690-5.
    27. Catto, J.W., et al., Distinct microRNA alterations characterize high- and low-grade bladder cancer. Cancer Res, 2009. 69(21): p. 8472-81.
    28. Gao, W., et al., MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J Cancer Res Clin Oncol, 2011. 137(4): p. 557-66.
    29. Doghman, M., et al., Regulation of insulin-like growth factor-mammalian target of rapamycin signaling by microRNA in childhood adrenocortical tumors. Cancer Res, 2010. 70(11): p. 4666-75.
    30. Kikkawa, N., et al., miR-489 is a tumour-suppressive miRNA target PTPN11 in hypopharyngeal squamous cell carcinoma (HSCC). Br J Cancer, 2010. 103(6): p. 877-84.
    31. Sun, D., et al., miR-99 family of MicroRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation. Cancer Res, 2011. 71(4): p. 1313-24.
    32. Oneyama, C., et al., MicroRNA-mediated downregulation of mTOR/FGFR3 controls tumor growth induced by Src-related oncogenic pathways. Oncogene, 2011.
    33. Wald, A.I., et al., Alteration of microRNA profiles in squamous cell carcinoma of the head and neck cell lines by human papillomavirus. Head Neck, 2011. 33(4): p. 504-12.
    34. Nandurkar, H.H. and R. Huysmans, The myotubularin family: novel phosphoinositide regulators. IUBMB Life, 2002. 53(1): p. 37-43.
    35. Wishart, M.J. and J.E. Dixon, PTEN and myotubularin phosphatases: from 3-phosphoinositide dephosphorylation to disease. Trends Cell Biol, 2002. 12(12): p. 579-85.
    36. Clague, M.J. and O. Lorenzo, The myotubularin family of lipid phosphatases. Traffic, 2005. 6(12): p. 1063-9.
    37. Taguchi-Atarashi, N., et al., Modulation of local PtdIns3P levels by the PI phosphatase MTMR3 regulates constitutive autophagy. Traffic, 2010. 11(4): p. 468-78.
    38. Vergne, I. and V. Deretic, The role of PI3P phosphatases in the regulation of autophagy. FEBS Lett, 2010. 584(7): p. 1313-8.
    39. Byfield, M.P., J.T. Murray, and J.M. Backer, hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J Biol Chem, 2005. 280(38): p. 33076-82.
    40. Eisenberg-Lerner, A., et al., Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ, 2009. 16(7): p. 966-75.
    41. Karantza-Wadsworth, V. and E. White, Role of autophagy in breast cancer. Autophagy, 2007. 3(6): p. 610-3.
    42. Kenific, C.M., A. Thorburn, and J. Debnath, Autophagy and metastasis: another double-edged sword. Curr Opin Cell Biol, 2010. 22(2): p. 241-5.

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE