| 研究生: |
林洦沅 Lin, Bo-Yuan |
|---|---|
| 論文名稱: |
電燒刀沾黏情形的量測與改良 Quantification and Improvement of the Adhesion of Electrical Surgical Units |
| 指導教授: |
葉明龍
Yeh, Ming-Long |
| 共同指導教授: |
蕭志坤
Hsiao, Chih-Kun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 單極 、雙極 、組織沾黏 、電刀系統 、材料試驗機 |
| 外文關鍵詞: | Monopolar, bipolar, tissue adhesion, ESU system, MTS |
| 相關次數: | 點閱:122 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前於臨床一般手術或微創手術中,已大量使用電燒刀去進行燒灼及同時止血,但是因為電燒切除組織的過程中會同時產生的周邊不需切除組織的燒傷與及電刀與組織沾黏或者燒灼所產生的氣體等問題。且在近年來少有相關的資料提供完整改善或者量化評估電刀沾黏力等問題的系統,所以本篇研究探討以力學觀點建立一個離體實驗評估電燒刀組織沾黏之情形,再進一步利用現有的技術來改善電刀組織沾黏的情形,同時建立之後電燒器械沾黏情形特性之評估系統。
本篇實驗選用豬肝作為實驗燒灼的組織材料;採用市售不銹鋼及經過拋光後的不銹鋼和表面貼覆聚四氟乙烯(PTFE)與聚乙二醇(PEG)高分子材料共四種電刀,將電燒系統能量參數設定為40瓦特純切割模式,材料試驗機進行10 公厘來回深度燒灼,且在同一塊豬肝進行電燒測試四把不同電刀;一塊豬肝會創造出20個傷口且循環執行6次,因此每一支電刀燒灼30個傷口,並採集相關數據記錄。在於每次0.5、1、2及4秒不同燒灼時間進行實驗相互比較沾黏力量及傷害體積與沾黏重量;運用材料試驗機於每次電燒時記錄電燒刀與組織之間的黏著力,且在每五次燒灼完畢後的電刀利用電子天秤量測記錄電刀與組織沾黏重量,並使用數位照相機記錄豬肝每次燒傷情形再經由ImageJ將傷口尺寸數值化。
聚乙二醇薄膜材料具有較小接觸角,再來為拋光電刀及不銹鋼電刀和聚四氟乙烯電刀;其組織沾黏力結果顯示,在不同的電燒時間點,30次電燒的平均最大沾黏力發生於每次電燒1秒,其中以表面貼附聚乙二醇電刀有最小平均沾黏力,再來為拋光電刀、聚四氟乙烯電刀及不銹鋼電刀;但在電燒時間為每次2和4秒時,其燒灼切割過程中產生較每次0.5秒及1秒還小的沾黏力;電刀造成的傷口與組織沾黏的重量都隨著電燒時間的增加而增加,但其四把不同表面型態及材料之電刀在統計計算上並無明顯差異。
在微創手術中,減少電刀與組織的沾黏是每個研究必須所要克服的重大議題;找到具有較抗沾黏之電刀材料或相關參數減少沾黏或精準控制傷口大小之數據,在本實驗當中電燒兩秒鐘,所造成的沾黏力較小,且切割深度也達到手術目標,所以在本篇研究當中建議採用此參數作為手術的依據。
Recently, electrical surgical unit (ESU) becomes more popular in regular surgery and minimally invasive surgery (MIS) to diathermy. Yet, during tissue removal, the formation of tissue adhesion on the tips and smoke remains a major problem during MIS.
Only limited studies have investigated the influences of energy and material properties of electrode on adhesion surface and further quantify the adhesion phenomenon. This study tries to build an ex vivo tissue adhesion evaluation system of ESU based on the adhesion volume, adhesion strength and weight and histology, This system can become standard evaluation system for ESU and for improvement of current ESU
In this study, four types of monopolar electrical surgical unit materials including commercial stainless steel (SS) (Control), polished SS (experimental 1), polytetrafluoroethylene (PTFE) coated SS (experimental 2) and polyethylene glycol (PEG) coated polished SS (experimental 3) were investigated. Pork liver was used as tissue for cauterization. The blade was linked to the Valley labTM ESU and the operating mode was set at “pure cutting” with power at 40 watts. Four different diathermy times (the contact duration of blade and tissue) of 0.5s, 1s, 2s and 4s were investigated. At beginning, each blade was connected to InstronTM materials testing system (MTS) and given an entire cyclic stroke 10 mm beneath the liver surface. After diathermy, the detach force was recorded for each test, and after every five tests, then the tip of each blade was put on a balance to measure the adhesion weights. The damage volume caused from diathermy for each test was recorded by a digital camera and was quantitated by the software ImageJ. Single liver was tested by 4 blades 5 times and each blade was tested on 6 livers for each cauterizing time.
Surface morphology and roughness analysis by optical microscopy for polish SS tip was used to compare with the commercial SS tip. Contact angle analysis for the hydrophilicity was conducted for all 4 types of tips.
The tip modified with PEG shows significant less contact angle comparing to all other 3 types of tips. The corresponding maximum volume of damage was about 143.34 mm3 (PTFE) and adhesion weights were assessed at around 20.27 mg (PEG). No significant difference in adhesion weight and damaged volume. The maximum adhesion force was occurred at 1 second cauterization, and PEG tip has the smallest adhesion force followed by polished, PTFE and regular SS tip. It is interesting to find the adhesion strengths for 2 and 4 seconds cauterization were less than those for 0.5 and 1 seconds.
This novel ex vivo model allows standardized, objective and quantitative assessment of tissue-ESU-induced adhesion effects and damage in porcine liver tissue. It will likely provide future insight into the understanding mechanism of cauterization between ESU and tissue, and then help in the development of non-stick medical instruments.
1. O'Connor, J.L. and D.A. Bloom, William T. Bovie and electrosurgery. Surgery, 1996. 119(4): p. 390-6.
2. Advincula, A.P. and K. Wang, The evolutionary state of electrosurgery: where are we now? Curr Opin Obstet Gynecol, 2008. 20(4): p. 353-8.
3. Vellimana, A.K., D.M. Sciubba, J.C. Noggle, and G.I. Jallo, Current technological advances of bipolar coagulation. Neurosurgery, 2009. 64(3 Suppl): p. 11-8; discussion 19.
4. Sutton, P.A., S. Awad, A.C. Perkins, and D.N. Lobo, Comparison of lateral thermal spread using monopolar and bipolar diathermy, the Harmonic Scalpel and the Ligasure. Br J Surg, 2010. 97(3): p. 428-33.
5. Sung, Y.-C., The Design of Anti-Sticking Electrosurgical Instrument with Irrigation for Laparoscope. 2007.
6. Massarweh, N.N., N. Cosgriff, and D.P. Slakey, Electrosurgery: history, principles, and current and future uses. J Am Coll Surg, 2006. 202(3): p. 520-30.
7. Ward, A.K., C.M. Ladtkow, and G.J. Collins, Material removal mechanisms in monopolar electrosurgery. Conf Proc IEEE Eng Med Biol Soc, 2007. 2007: p. 1180-3.
8. Nagelschmidt, F., The Thermal Effects produced by High-frequency Currents, and the Therapeutical Uses of Diathermic Treatment. Proc R Soc Med, 1911. 4(Electro Ther Sect): p. 1-12.
9. Livaditis, G.J., Comparison of monopolar and bipolar electrosurgical modes for restorative dentistry: a review of the literature. J Prosthet Dent, 2001. 86(4): p. 390-9.
10. Lantis, J.C., II, F.M. Durville, R. Connolly, and S.D. Schwaitzberg, Comparison of coagulation modalities in surgery. J Laparoendosc Adv Surg Tech A, 1998. 8(6): p. 381-94.
11. Brill, A.I., Bipolar electrosurgery: Convention and innovation. Clinical Obstetrics and Gynecology, 2008. 51(1): p. 153-158.
12. Bruners, P., T. Schmitz-Rode, R.W. Gunther, and A. Mahnken, Multipolar hepatic radiofrequency ablation using up to six applicators: preliminary results. Rofo, 2008. 180(3): p. 216-22.
13. Bruners, P., H. Muller, R.W. Gunther, T. Schmitz-Rode, and A.H. Mahnken, Fluid-modulated bipolar radiofrequency ablation: an ex-vivo evaluation study. Acta Radiol, 2008. 49(3): p. 258-66.
14. Bruners, P., J. Lipka, R.W. Gunther, T. Schmitz-Rode, and A.H. Mahnken, Bipolar radiofrequency ablation: is the shape of the coagulation volume different in comparison to monopolar RF-ablation using variable active tip lengths? Minim Invasive Ther Allied Technol, 2008. 17(5): p. 267-74.
15. Bruners, P., M. Hodenius, M. Baumann, J. Oversohl, R.W. Gunther, T. Schmitz-Rode, and A.H. Mahnken, Magnetic thermal ablation using ferrofluids: influence of administration mode on biological effect in different porcine tissues. Cardiovasc Intervent Radiol, 2008. 31(6): p. 1193-9.
16. Dodde, R.E., J.S. Gee, J.D. Geiger, and A.J. Shih, Monopolar electrosurgical thermal management for minimizing tissue damage. IEEE Trans Biomed Eng, 2012. 59(1): p. 167-73.
17. Luo, R.G., F. Gao, Y.K. Gu, J.H. Huang, and C.L. Li, Radioablation settings affecting the size of lesions created ex vivo in porcine livers with monopolar perfusion electrodes. Acad Radiol, 2010. 17(8): p. 980-4.
18. Clasen, S., H. Rempp, D. Schmidt, C. Schraml, R. Hoffmann, C.D. Claussen, and P.L. Pereira, Multipolar radiofrequency ablation using internally cooled electrodes in ex vivo bovine liver: correlation between volume of coagulation and amount of applied energy. Eur J Radiol, 2012. 81(1): p. 111-3.
19. Ceviker, N., S. Keskil, and K. Baykaner, A new coated bipolar coagulator: technical note. Acta Neurochir (Wien), 1998. 140(6): p. 619-20.
20. Mikami, T., Y. Minamida, I. Koyanagi, and K. Houkin, Novel bipolar forceps with protein repellence using gold-polytetrafluoroethylene composite film. Neurosurgery, 2007. 60(2 Suppl 1): p. ONS157-60; discussion ONS160-1.
21. Mikami, T., A. Takahashi, K. Hashi, S. Gasa, and K. Houkin, Performance of bipolar forceps during coagulation and its dependence on the tip material: a quantitative experimental assay. Technical note. J Neurosurg, 2004. 100(1): p. 133-8.
22. Arito, H. and R. Soda, Pyrolysis products of polytetrafluoroethylene and polyfluoroethylenepropylene with reference to inhalation toxicity. Ann Occup Hyg, 1977. 20(3): p. 247-55.
23. Hafeli, U.O., M.C. Warburton, and U. Landau, Electrodeposition of radioactive rhenium onto stents to prevent restenosis. Biomaterials, 1998. 19(10): p. 925-33.
24. Ishihara, K., K. Fukumoto, Y. Iwasaki, and N. Nakabayashi, Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 2. Protein adsorption and platelet adhesion. Biomaterials, 1999. 20(17): p. 1553-9.
25. Kobayashi, H., M. Ogawa, N. Kosaka, P.L. Choyke, and Y. Urano, Multicolor imaging of lymphatic function with two nanomaterials: quantum dot-labeled cancer cells and dendrimer-based optical agents. Nanomedicine (Lond), 2009. 4(4): p. 411-9.
26. Corpet, D.E., G. Parnaud, M. Delverdier, G. Peiffer, and S. Tache, Consistent and fast inhibition of colon carcinogenesis by polyethylene glycol in mice and rats given various carcinogens. Cancer Res, 2000. 60(12): p. 3160-4.
27. Borgens, R.B. and D. Bohnert, Rapid recovery from spinal cord injury after subcutaneously administered polyethylene glycol. J Neurosci Res, 2001. 66(6): p. 1179-86.
28. Stavisky, R.C., J.M. Britt, A. Zuzek, E. Truong, and G.D. Bittner, Melatonin enhances the in vitro and in vivo repair of severed rat sciatic axons. Neurosci Lett, 2005. 376(2): p. 98-101.
29. Hanawa, T., A comprehensive review of techniques for biofunctionalization of titanium. J Periodontal Implant Sci, 2011. 41(6): p. 263-72.
30. Tanaka, S., A. Yoshida, K. Fukuzawa, A. Takei, G. Kanda, K. Takami, H. Kumagai, M. Takami, M. Itoh, K. Imamura, R. Fujiwara, and K. Hirata, Recognition of inferiorly dislocated fast pathways guided by three-dimensional electro-anatomical mapping. J Interv Card Electrophysiol, 2011. 32(2): p. 95-103.
31. Tanaka, Y., Y. Matsuo, T. Komiya, Y. Tsutsumi, H. Doi, T. Yoneyama, and T. Hanawa, Characterization of the spatial immobilization manner of poly(ethylene glycol) to a titanium surface with immersion and electrodeposition and its effects on platelet adhesion. J Biomed Mater Res A, 2010. 92(1): p. 350-8.
32. Tanaka, Y., H. Doi, Y. Iwasaki, S. Hiromoto, T. Yoneyama, K. Asami, H. Imai, and T. Hanawa, Electrodeposition of amine-terminated poly(ethylene glycol) to titanium surface. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2007. 27(2): p. 206-212.
33. Shadmi, A. and B. Griffel, Electro-microscopic observations of liver lesions after intravenous inoculation of mouldy hay extracts. Ann Rech Vet, 1985. 16(3): p. 201-12.
34. Wahba, R., C. Bangard, R. Kleinert, S. Rosgen, J.H. Fischer, K.J. Lackner, A.H. Holscher, and D.L. Stippel, Electro-physiological parameters of hepatic radiofrequency ablation--a comparison of an in vitro versus an in vivo porcine liver model. Langenbecks Arch Surg, 2009. 394(3): p. 503-9.
35. Wannagat, L., [Segmental angiography of the liver with laparoscopy and electro-coagulation. Selective hepatography (author's transl)]. Radiologe, 1975. 15(9): p. 431-4.
36. von Fraunhofer, J.A., Adhesion and cohesion. Int J Dent, 2012. 2012: p. 951324.
37. Simon, C.J., D.E. Dupuy, D.A. Iannitti, D.S. Lu, N.C. Yu, B.I. Aswad, R.W. Busuttil, and C. Lassman, Intraoperative triple antenna hepatic microwave ablation. AJR Am J Roentgenol, 2006. 187(4): p. W333-40.
38. Lee, J.M., J.K. Han, H.C. Kim, Y.H. Choi, S.H. Kim, J.Y. Choi, and B.I. Choi, Switching monopolar radiofrequency ablation technique using multiple, internally cooled electrodes and a multichannel generator: ex vivo and in vivo pilot study. Invest Radiol, 2007. 42(3): p. 163-71.
39. Lee, J.M., J.K. Han, H.C. Kim, S.H. Kim, K.W. Kim, S.M. Joo, and B.I. Choi, Multiple-electrode radiofrequency ablation of in vivo porcine liver: comparative studies of consecutive monopolar, switching monopolar versus multipolar modes. Invest Radiol, 2007. 42(10): p. 676-83.
40. Lee, J.M., J.K. Han, S.H. Kim, K.R. Son, H.C. Kim, S.J. Kim, and B.I. Choi, In vivo efficiency of multipolar radiofrequency ablation with two bipolar electrodes: a comparative experimental study in pig kidney. J Vasc Interv Radiol, 2007. 18(12): p. 1553-60.
41. Lee, J.M., J.K. Han, J.Y. Lee, S.H. Kim, J.Y. Choi, M.W. Lee, S.H. Choi, H. Eo, and B.I. Choi, Hepatic radiofrequency ablation using multiple probes: ex vivo and in vivo comparative studies of monopolar versus multipolar modes. Korean J Radiol, 2006. 7(2): p. 106-17.
42. Stoffner, R., C. Kremser, P. Schullian, M. Haidu, G. Widmann, and R.J. Bale, Multipolar radiofrequency ablation using 4-6 applicators simultaneously: A study in the ex vivo bovine liver. Eur J Radiol, 2012. 81(10): p. 2568-75.
43. Snoeren, N. and R. van Hillegersberg, Radiofrequency ablation for liver tumors: going multipolar? Expert Rev Med Devices, 2011. 8(1): p. 1-2.
44. Clasen, S., D. Schmidt, A. Boss, K. Dietz, S.M. Krober, C.D. Claussen, and P.L. Pereira, Multipolar radiofrequency ablation with internally cooled electrodes: experimental study in ex vivo bovine liver with mathematic modeling. Radiology, 2006. 238(3): p. 881-90.
45. Li, X., L. Zhang, W. Fan, M. Zhao, L. Wang, T. Tang, H. Jiang, J. Zhang, and Y. Liu, Comparison of microwave ablation and multipolar radiofrequency ablation, both using a pair of internally cooled interstitial applicators: results in ex vivo porcine livers. Int J Hyperthermia, 2011. 27(3): p. 240-8.
46. Ko, R., A.H. Tan, B.H. Chew, P.E. Rowe, and H. Razvi, Comparison of the thermal and histopathological effects of bipolar and monopolar electrosurgical resection of the prostate in a canine model. BJU Int, 2010. 105(9): p. 1314-7.
47. Frizzell, L.A., C.A. Linke, E.L. Carstensen, and C.W. Fridd, Thresholds for focal ultrasonic lesions in rabbit kidney, liver, and testicle. IEEE Trans Biomed Eng, 1977. 24(4): p. 393-6.
48. Wallwiener, C.W., T.K. Rajab, B. Kramer, K.B. Isaacson, S. Brucker, and M. Wallwiener, Quantifying electrosurgery-induced thermal effects and damage to human tissue: an exploratory study with the fallopian tube as a novel in-vivo in-situ model. J Minim Invasive Gynecol, 2010. 17(1): p. 70-7.
49. Ahmed, M., C.L. Brace, F.T. Lee, Jr., and S.N. Goldberg, Principles of and advances in percutaneous ablation. Radiology, 2011. 258(2): p. 351-69.
50. Xiong, J., K. Altaf, W. Huang, M.A. Javed, R. Mukherjee, G. Mai, W. Hu, R. Sutton, and X. Liu, A Meta-analysis of Randomized Clinical Trials That Compared Ultrasonic Energy and Monopolar Electrosurgical Energy in Laparoscopic Cholecystectomy. J Laparoendosc Adv Surg Tech A, 2012.