簡易檢索 / 詳目顯示

研究生: 林家慧
Lin, Chia-Hui
論文名稱: 利用羅望子木糖葡萄聚糖防治小鼠潰瘍性結腸炎之研究
Protective effects of tamarind-xyloglucan against ulcerative colitis in mice
指導教授: 劉明毅
Liu, Ming-Yie
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 72
中文關鍵詞: 葡聚糖硫酸鈉發炎黏液素羅望子木糖葡萄聚糖潰瘍性結腸炎
外文關鍵詞: dextran sulfate sodium, inflammation, mucin, tamarind-xyloglucan, ulcerative colitis
相關次數: 點閱:60下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 潰瘍性結腸炎是一種發生在結腸黏膜下層的非特異性發炎疾病,此疾病的成因至今仍不明瞭,基因遺傳、環境因素和飲食習慣皆可能與潰瘍性結腸炎的發生相關。羅望子木糖葡萄聚糖是從羅望子樹的種籽中所分離出來的多醣類,具有抗氧化的功能,被用來治療腹瀉和胃腸道疾病。然而,羅望子木糖葡萄聚糖對於潰瘍性結腸炎是否具有保護作用仍未被探討。因此,本研究的目標為探討羅望子木糖葡萄聚糖對於小鼠的潰瘍性結腸炎之保護作用及其可能的機制。羅望子木糖葡萄聚糖由羅望子樹 (Tamarindus indica) 的種籽中所萃取。以葡聚糖硫酸鈉添加於小鼠飲用水中,連續七日以誘發急性腸炎,同時,利用管餵的方式連續七日給予小鼠羅望子木糖葡萄聚糖 (150或300毫克/公斤體重),實驗期間每天進行結腸炎疾病活性指標的評估,於第8天時將小鼠犧牲,取其結腸組織進行後續的病理分析。結果顯示,潰瘍性結腸炎小鼠餵食羅望子木糖葡萄聚糖:(1)可提升小鼠飲食攝取量及結腸長度;(2)降低小鼠結腸炎疾病活性指標、脾臟重量,改善腹瀉及血便的情形;(3)降低黏膜潰爛水腫、細胞浸潤和隱窩膿腫;(4)降低黏液素1,黏液素2和整體黏液素的表現量;(5)減少腫瘤壞死因子-α、介白質-1β和介白質-6的產生,提升介白質-10的表現;(6)降低NADPH氧化酶的表現,減少丙二醛、超氧陰離子的產生;(7)抑制TLR4、MyD88、p-IкB、NF-кB、COX-2的表現。綜合以上結果,羅望子木糖葡萄聚糖可能經由干擾TLR4/NF-кB的訊號傳遞,來降低結腸黏膜細胞之氧化壓力與發炎反應,達到防治小鼠潰瘍性結腸炎之效果。

    Ulcerative colitis (UC) is a form of inflammatory bowel disease (IBD) with nonspecific inflammatory disorder of the bowel. Although the precise etiology of UC remains unknown, the disease appears to be related with genetic and environmental factors. Tamarind-xyloglucan (TXG) is a galactoxyloglucan isolated from seed kernel of Tamarindus indica which possesses anti-oxidative property and has been used for treatment of diarrhea and gastrointestinal disorder. However, the protective effect of TXG against UC has never been studied. Therefore, the aim of this study was to investigate the protective effect and possible mechanism of TXG against UC in mice. TXG was extracted from seeds of Tamarindus indica. Dextran sulfate sodium (DSS) was administered in drinking water for 7 days to induce colitis. Simultaneously, TXG (150 or 300 mg/kg, p.o.) was given for 7 days. TXG (i) increased feed intake and colon length; (ii) decreased DAI, spleen weight, diarrhea and fecal blood; (iii) attenuated submucosal ulceration, edema, inflammatory cell infiltrations and crypt abscesses; (iv) decreased muc1, muc2 and whole mucin expression; (v) decreased TNF-α, IL-1β and IL-6, but increased IL-10; (vi) decreased NOX expression, MDA level and superoxide anion; and (vii) decreased TLR4, MyD88, p-IкB, NF-кB and COX-2 expression in DSS-treated mice. In conclusion, TXG attenuates inflammation and oxidative stress in colon mucosa by interfering TLR4/NF-κB signaling pathway, thereby it protects against ulcerative colitis in mice.

    Abstract in Chinese I Abstract II Acknowledgments in Chinese III Contents IV Figure list V Abbreviation VII 1. Introduction 1 2. Objective 9 3. Materials and Methods 10 4. Results 25 5. Discussion 31 6. Conclusion 36 7. References 37 Table 46 Figures 48 Appendix 69

    Allen A and Flemström G. Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. American journal of physiology. 2005; 288: C1-C19.

    Al-Sadi R, Ye D, Dokladny K and Ma TY. Mechanism of IL-1β-induced increase in intestinal epithelial tight junction permeability. The journal of immunology. 2008; 180: 5653-5661.

    Andresen L, Jørgensen VL, Perner A, Hansen A, Eugen-Olsen J and Rask-Madsen J. Activation of nuclear factor κB in colonic mucosa from patients with collagenous and ulcerative colitis. Gut. 2005; 5: 503-509.

    Anuradha Mishra and Annu Vij Malhotra. Tamarind xyloglucan: a polysaccharide with versatile application potential. Journal of materials chemistry. 2009; 19: 8528-8536.

    Arrieta MC, Bistritz L and Meddings JB. Alterations in intestinal permeability. Gut. 2006; 55: 1512-1520.

    Araki Y, Andoh A, Fujiyama Y and Bamba T. Development of dextran sulphate sodium-induced experimental colitis is suppressed in genetically mast cell-deficient Ws/Ws rats. Clinical and experimental immunology. 2000; 119: 264-269.

    Atuma C, Strugala V, Allen A and Holm L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. American journal of physiology. 2001; 280: G922-G929.

    Audie JP, Janin A, Porchet N, Copin MC, Gosselin B and Aubert JP. Expression of human mucin genes in respiratory, digestive, and reproductive tracts ascertained by in situ hybridization. Journal of histochemistry and cytochemistry. 1993; 41: 1479-1485.

    Avachat AM, Dash RR and Shrotriya SN. Recent investigations of plant based natural gums, mucilages and resins in novel drug delivery systems. Indian journal of pharmaceutical education and research. 2011; 45: 86-99.

    Babbs CF. Oxygen radicals in ulcerative colitis. Free radical biology and medicine. 1992; 13: 169-181.

    Baldwin AS. The NF-кB and IкB proteins: new discoveries and insights. Annual review of immunology. 1996; 14: 649-683.

    Basnet P and Skalko-Basnet N. Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules. 2011; 16: 4567-4598.

    Baumgart DC and Sandborn WJ. Inflammatory bowel disease: clinical aspects and established and evolving therapies. The lancet. 2007; 369: 1641-1657.

    Bartsch H and Nair J. Potential role of lipid peroxidation derived DNA damage in human colon carcinogenesis: studies on exocyclic base adducts as stable oxidative stress markers. Cancer detection and prevention. 2002; 26: 308-312.

    Barnes PJ and Karin M. Nuclear factor кB: a pivotal transcription factor in chronic inflammatory diseases. New England journal of medicine. 1997; 336: 1066-1071.

    Beatty PL, Plevy SE, Sepulveda AR and Finn OJ. Cutting edge: transgenic expression of human MUC1 in IL-10. The journal of immunology. 2007; 179: 735-739.

    Bedard K and Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiological reviews. 2007; 87: 245-313.

    Bhadoriya SS, Ganeshpurkar A, Narwaria J, Rai G and Jain AP. Tamarindus indica: Extent of explored potential. Pharmacognosy reviews. 2011; 5: 73-81.

    Blikslager AT, Moeser AJ, Gookin JL, Jones SL and Odle J. Restoration of barrier function in injured intestinal mucosa. Physiological reviews. 2007; 87: 545-564.

    Blackburn AC, Doe WF and Buffinton GD. Colonic antioxidant status in dextran sulfate-induced colitis in mice. Inflammatory bowel disease. 1997; 3: 198-203.

    Boone DL and Ma A. Connecting the dots from Toll-like receptors to innate immune cell and inflammatory bowel disease. Journal of clinical investigation. 2003; 111: 1284-1286.

    Cario E. Toll‐like receptors in inflammatory bowel diseases: a decade later. Inflammatory bowel diseases. 2010; 16: 1583-1597.

    Carpenter HA and Talley NJ. The importance of clinicopathological correlation in the diagnosis of inflammatory conditions of the colon: histological patterns with clinical implications. The American journal of gastroenterology. 2000; 95: 878-896.

    Carrier J, Aghdassi E, Platt I, Cullen J and Allard JP. Effect of oral iron supplementation on oxidative stress and colonic inflammation in rats with induced colitis. Alimentary pharmacology and therapeutics. 2001; 15: 1989-1999.

    Clapper ML, Cooper HS and Chang WCL. Dextran sulfate sodium-induced colitis-associated neoplasia: a promising model for the development of chemopreventive interventions. Acta pharmacologica sinica. 2007; 28: 1450-1459.

    Clark RA, Epperson TK and Valente AJ. Mechanisms of activation of NADPH oxidases. Circulation. 2004; 108: 1440-1445.

    Crofford LJ, Tan B, McCarthy CJ and Hla T. Involvement of nuclear factor κB in the regulation of cyclooxygenase-2 expression by interleukin-1 in rheumatoid synoviocytes. Arthritis and rheumatism. 1997; 40: 226-236.

    Cooper HS, Murthy SN, Shah RS and Sedergran DJ. Clinicopathologic study of dextran sulphates sodium experimental murine colitis. Laboratory investigation. 1993; 69: 238-249.

    Dincer Y, Erzin Y and Himmetoglu S. Oxidative DNA damage and antioxidant activity in patients with inflammatory bowel disease. Digestive diseases and sciences. 2007; 52: 1636-1641.

    Egger B, Bajaj EM, MacDonald TT, Inglin R, Eysselein VE and Buchler MW. Characterisation of acute murine dextran sodium sulphate colitis: cytokine profile and dose dependency. Digestion. 2000; 62: 240-248.

    Feagan BG, Rutgeerts P, Sands BE, Hanauer S, Colombel JF, Sandborn WJ, Assche GV, Jeffrey A, Kim HJ, Danese S, Fox I, Milch C, Sankoh S, Wyant T, Xu J and Parikh A. Vedolizumab as induction and maintenance therapy for ulcerative colitis. New England journal of medicine. 2013; 369: 699-710.

    Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS, Brady G and O'Neill LA. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature. 2001; 413: 78-83.

    Franchimont D, Vermeire S, El Housni H, Pierik M, Van Steen K, Gustot T and Rutgeerts P. Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut. 2004; 53: 987-992.

    Fukata M, Chen A, Klepper A, Krishnareddy S, Vamadevan AS, Thomas LS, Xu R, Inoue H, Arditi M, Dannenberg AJ and Abreu MT. Cox-2 Is Regulated by Toll-Like Receptor-4 (TLR4) Signaling: Role in Proliferation and Apoptosis in the Intestine. Gastroenterology. 2006; 131: 862-877.

    Gaudio E, Taddei G, Vetuschi A, Sferra R, Frieri G, Ricciardi G and Caprilli R. Dextran sulfate sodium (DSS) colitis in rats: clinical, structural, and ultrastructural aspects. Digestive diseases and sciences. 1999; 44: 1458-1475.

    Gonzalez-Rey E, Chorny A and Delgado M. Therapeutic action of ghrelin in a mouse model of colitis. Gastroenterology. 2006; 130: 1707-1720.

    Hanauer SB. Inflammatory bowel disease: Epidemiology, pathogenesis, and therapeutic opportunities. Inflammatory bowel diseases. 2006; 12: S3-S9.

    Han X, Fink MP and Delude RL. Proinflammatory cytokines cause NO·-dependent and -independent changes in expression and localization of tight junction proteins in intestinal epithelial cells. Shock. 2003; 19: 229-237.

    Hendrickson BA, Gokhale R and Cho JH. Clinical aspects and pathophysiology of inflammatory bowel disease. Clinical microbiology reviews. 2002; 15: 79-94.

    Herfarth HH, Mohanty SP, Rath HC, Tonkonogy S and Sartor RB. Interleukin-10 suppresses chronic granulomatous inflammation induced by bacterial cell wall polymers in a rat model. Gut. 1996; 39: 836-845.

    Hofstetter C, Kleen M, Habler O, Allmeling AM and Krombach F. Recombinant human interleukin-10 attenuates TNF-α production by porcine monocytes. European journal of medical research. 1998; 3: 299-303.

    Hoebler C, Gaudier E, Coppet P, Rival M and Cherbut C. MUC genes are differently expressed during onset and maintenance of inflammation in dextran sodium sulfate- treated mice. Digestive diseases and sciences. 2006; 51: 381-389.

    Huang TC, Tsai SS, Liu LF, Liu YL, Liu HJ and Chuang KP. Effect of Arctium lappa L. in the dextran sulfate sodium colitis mouse model. World journal of gastroenterology. 2010; 16: 4193-4199.

    Karin M. Nuclear factor-κB in cancer development and progression. Nature. 2006; 441: 431-436.

    Kawai T and Akira S. TLR signaling. Cell death and differentiation. 2006; 13: 816-825.

    Kathleen AH and Julie SJ. Inflammatory bowel disease Part I: Ulcerative colitis-pathophysiology and conventional and alternative treatment options. Alternative medicine review. 2003; 8: 247-283.

    Kennedy RJ, Hoper M, Deodhar K, Erwin PJ, Kirk SJ and Gardiner KR. Interleukin 10-deficient colitis: new similarities to human inflammatory bowel disease. British journal of surgery. 2000; 87: 1346-1351.

    Khullar P, Khar RK and Agarwal SP. Evaluation of guar gum in the preparation of sustained-release matrix tablets. Drug development and industrial pharmacy. 1998; 24: 1095-1099.

    Krieglstein CF, Cerwinka WH, Laroux FS, Salter JW, Russell JM, Schuermann G and Granger DN. Regulation of murine intestinal inflammation by reactive metabolites of oxygen and nitrogen divergent roles of superoxide and nitric oxide. The journal of experimental medicine. 2001; 194: 1207-1218.

    Kober OI, Ahl D, Pin C, Holm L, Carding SR and Juge N. γδ T-cell-deficient mice show alterations in mucin expression, glycosylation, and goblet cells but maintain an intact mucus layer. American journal of physiology. 2014; 306: G582-G593.

    Kojouharoff G, Hans W, Obermeier F, Mannel DN, Andus T, Scholmerich J, Gross V and Falk W. Neutralization of tumour necrosis factor (TNF) but not of IL-1 reduces inflammation in chronic dextran sulphate sodium-induced colitis in mice. Clinical and experimental immunology. 1997; 107: 353-358.

    Kong J, Zhang Z, Musch MW, Ning G, Sun J, Hart J and Li YC. Novel role of the vitimin D receptor in maintaining the integrity of the intestinal mucosal barrier. American journal of physiology. 2008; 294: G208-G216.

    Krieglstein CF, Cerwinka WH, Laroux FS, Salter JW, Russell JM, Schuermann G and Granger DN. Regulation of murine intestinal inflammation by reactive metabolites of oxygen and nitrogen divergent roles of superoxide and nitric oxide. The journal of experimental medicine. 2001; 194: 1207-1218.

    Kullmann F, Messmann H, Alt M, Gross V, Bocker T, Scholmerich J and Ruschoff J. Clinical and histopathological features of dextran sulfate sodium induced acute and chronic colitis associated with dysplasia in rats. International journal of colorectal disease. 2001; 16: 238-246.

    Larrosa M, Yañéz-Gascón MJ, Selma MV, González-Sarrías A, Toti S, Cerón JJ and Espín JC. Effect of a low dose of dietary resveratrol on colon microbiota, inflammation and tissue damage in a DSS-induced colitis rat model. Journal of agricultural and food chemistry. 2009; 57: 2211-2220.

    Matsuda K, Masaki T, Watanabe T, Kitayama J, Nagawa H, Muto T and Ajioka Y. Clinical significance of MUC1 and MUC2 mucin and p53 protein expression in colorectal carcinoma. Japanese journal of clinical oncology. 2000; 30: 89-94.

    Ma TY, Iwamoto GK, Hoa NT, Akotia V, Pedram A, Boivin MA and Said HM. TNF-α-induced increase in intestinal epithelial tight junction permeability requires NF-κB activation. American journal of physiology. 2004; 286: G367-G376.

    Mannucci LL, Fregona I and Di Gennaro A. Use of a new lachrymal substitute (TS Polysaccharide) in Contactology. Journal of medical contactology and low vision. 2000; 1: 6-9.

    Melgar S, Karlsson A, Michaëlsson E. Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation. American journal of physiology. 2005; 288: 1328-1338.

    Montagne L, Piel C and Lalles JP. Effect of diet on mucin kinetics and composition: nutrition and health implications. Nutrition reviews. 2004; 62: 105-114.

    Mullen L, Adams G, Layward L, Vessillier S, Annenkov A, Mittal G and Chernajovsky Y. Latent cytokines for targeted therapy of inflammatory disorders. Expert opinion on drug delivery. 2014; 11: 101-110.

    Naito Y, Takagi T and Yoshikawa T. Molecular fingerprints of neutrophil-dependent oxidative stress in inflammatory bowel disease. Journal of gastroenterology. 2007; 42: 787-798.

    Ng SC, Kamm MA. Therapeutic strategies for the management of ulcerative colitis. Inflammatory bowel disease. 2009; 15: 935-950.

    Niemann, Carpita NC and Whistler RL. Arabinose containing oligosaccharides from tamarind xyloglucan. Starch staerke. 1997; 49: 154-159.

    Ohkawara T, Takeda H, Miyashita K, Nishiwaki M, Nakayama T, Taniguchi M and Nishihira J. Regulation of Toll-like receptor 4 expression in mouse colon by macrophage migration inhibitory factor. Histochemistry and cell biology. 2006; 125: 575-582.

    Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990; 98: 694-702.

    Pavlick KP, Laroux FS, Fuseler J, Wolf RE, Gray L, Hoffman J and Grisham MB. Role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease 1, 2. Free radical biology and medicine. 2002; 33: 311-322.

    Pang B, Zhou X, Yu H, Dong M, Taghizadeh K, Wishnok JS and Dedon PC. Lipid peroxidation dominates the chemistry of DNA adduct formation in a mouse model of inflammation. Carcinogenesis. 2007; 28: 1807-1813.

    Pålsson-McDermott EM and O'Neill LA. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor 4. Immunology. 2004; 113: 153-162.

    Picout DR, Ross-Murphy SB, Errington N and Harding SE. Pressure cell assisted solubilization of xyloglucans: Tamarind seed polysaccharide and detarium gum. Biomacromolecules. 2003; 4: 799-807.

    Pongsawatmanit R, Temsiripong T, Ikeda S and Nishinari K. Influence of tamarind seed xyloglucan on rheological properties and thermal stability of tapioca starch. Journal of food engineering. 2006; 77: 41-50.

    Podolsky DK. Inflammatory bowel disease. New England journal of medicine. 2002; 347: 417-429.

    Rao AS, Camilleri M, Eckert DJ, Busciglio I, Burton DD, Ryks M and Zinsmeister AR. Urine sugars for in vivo gut permeability: validation and comparisons in irritable bowel syndrome-diarrhea and controls. American journal of physiology. 2011; 301: G919-G928.

    Rolando M and Valente C. Establishing the tolerability and performance of tamarind seed polysaccharide (TSP) in treating dry eye syndrome: results of a clinical study. BioMed central ophthalmology. 2007; 7: 5-9.

    Rogler G and Andus T. Cytokines in inflammatory bowel disease. World journal of surgery. 1998; 22: 382-389.

    Rezaie A, Parker RD and Abdollahi M. Oxidative stress and pathogenesis of inflammatory bowel disease: an epiphenomenon or the cause. Digestive diseases and sciences. 2007; 52: 2015-2021.

    Sands BE. From symptom to diagnosis: Clinical distinctions among various forms of intestinal inflammation. Gastroenterology. 2004; 126: 1518-1532.

    Sadik CD, Kim ND and Luster D. Neutrophils cascading their way to inflammation. Trend in immunology. 2011; 32: 452-460.
    Sano M, Miyata E, Tamano S, Hagiwara A, Ito N and Shirai T. Lack of carcinogenicity of tamarind seed polysaccharide in B6C3F1 mice. Food and chemical toxicology. 1996; 34: 463-467.

    Schreiber S, Nikolaus S and Hampe J. Activation of nuclear factor кB in inflammatory bowel disease. Gut. 1998; 42: 477-484.

    Seguí J, Gironella M, Sans M, Granell S, Gil F, Gimeno M and Panés J. Superoxide dismutase ameliorates TNBS-induced colitis by reducing oxidative stress, adhesion molecule expression, and leukocyte recruitment into the inflamed intestine. Journal of leukocyte biology. 2004; 76: 537-544.

    Sharan RN, Odyuo MM and Purkayastha S. Oxygen free radicals and their biomedical implications: A mini review. Mini-reviews in organic chemistry. 2011; 8: 372-376.

    Silva LC, Ortigosa LC and Benard G. Anti-TNF-α agents in the treatment of immune-mediated inflammatory diseases: mechanisms of action and pitfalls. Immunotherapy. 2010; 2: 817-833.

    Stange EF, Travis SPL, Vermeire S, Reinisch W, Geboes K, Barakauskiene A, Feakins R, Fléjou JF, Herfarth H, Hommes DW, Kupcinskas L, Lakatos PL, Mantzaris GJ, Schreiber S, Villanacci V and Warren BF. European evidence-based Consensus on the diagnosis and management of ulcerative colitis: Definitions and diagnosis. Journal of Crohn's and colitis. 2008; 2: 1-23.

    Strober W, Fuss IJ and Ehrhardt RO. Mucosal immunoregulation and inflammatory bowel disease: new insights from murine models of inflammation. Scandinavian journal of immunology. 1998; 48: 453-458.

    Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, Fiers W and Remaut E. Treatment of murine colitis by lactococcus lactis secreting interleukin-10. Science. 2000; 289: 1352-1355.

    Stidham RW, Lee TCH, Higgins PDR, Deshpande AR, Sussman DA, Singal AG and Waljee AK. Systematic review with network meta-analysis: the efficacy of anti-tumour necrosis factor-alpha agents for the treatment of ulcerative colitis. Alimentary pharmacology and therapeutics. 2014; 39: 660-671.

    Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology. 2008; 134: 577-594.

    Shen L, Su L and Turner JR. Mechanisms and functional implications of intestinal barrier defects. Digestive diseases. 2009; 27: 443-449.

    Solomon L, Mansor S, Mallon P, Donnelly E, Hoper M, Loughrey M, Kirk S and Gardiner K. The dextran sulphate sodium (DSS) model of colitis: an overview. Comparative clinical pathology. 2010; 19: 235-239.

    Szanto I, Rubbia-Brandt L, Kiss P, Steger K, Banfi B, Kovari E and Krause KH. Expression of NOX1, a superoxide‐generating NADPH oxidase, in colon cancer and inflammatory bowel disease. The journal of pathology. 2005; 207: 164-176.

    Thoreson R and Cullen JJ. Pathophysiology of inflammatory bowel disease: an overview. Surgical clinics of north America. 2007; 87: 575-585.

    Travis SPL and Jewel DP. Salicylates for ulcerative colitis-their mode of action. Pharmacology and therapeutics. 1994; 63: 135-161.

    Wirtz S, Neufert C, Weigmann B and Neurath MF. Chemically induced mouse models of intestinal inflammation. Nature protocols. 2007; 2: 541-546.

    Woodland P, Batista-Lima F, Lee C, Preston SL, Dettmar P, Sifrim D and Daniel SMD. Topical protection of human esophageal mucosal integrity. American journal of physiology. 2015; 308: G975-G980.

    Yan Y, Kolachala V, Dalmasso G, Nguyen H and Laroui H. Temporaland spatial analysis of clinical and molecular parameters in dextran sodium sulfate induced colitis. PLoS one. 2009; 4: e6073.

    下載圖示 校內:2021-01-25公開
    校外:2021-01-25公開
    QR CODE