簡易檢索 / 詳目顯示

研究生: 張御琦
Chang, Yu-Chi
論文名稱: 溶液式材料於記憶體元件之應用
Solution Processed Materials Applied in Memory Devices
指導教授: 王永和
Wang, Yeong-Her
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 191
中文關鍵詞: 溶膠凝膠電晶體鈣鈦礦記憶體吉利丁
外文關鍵詞: sol-gel, transistor, perovskite, memory, gelatin
相關次數: 點閱:108下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇論文主要利用溶液式手法製備鈣鈦礦材料及生物性材料,並應用於非揮發性記憶體以及有機薄膜電晶體中。因此,論文主要分為兩部分,第一部分為鈣鈦礦材料應用於記憶體及電晶體之研究;第二部分為生物性材料應用於記憶體之研究。
    首先,利用多次旋塗的多層溶膠凝膠鈦酸鋇薄膜應用於電阻式記憶體,在不用摻雜其他元素的情況下,改善元件特性。與單層鈦酸鋇電阻式記憶體相比,利用雙層鈦酸鋇薄膜堆疊,可使元件的阻值比由104提升至106,且滯留時間(retention time)在85度仍能維持105 s。
    若將氧化石墨烯做為插入層應用於鈦酸鋇記憶體元件,可觀察到寫一次讀多次的特性。且將此結構作堆疊,可發現在堆疊後,阻值比為106,低阻態和高阻態的電流值可被大幅降低。
    除了鈦酸鋇薄膜,也利用相同的溶膠凝膠手法製備出鈦酸鎂等薄膜。鈦酸鎂應用於電阻式記憶體的阻值比可達到104。為了進一步改善元件特性,新溶膠凝膠手法提出不需藉由摻雜和高溫烘烤等步驟,製備出四元化合物薄膜,鈦鎳酸鎂。將此薄膜應用於電阻式記憶體及有機薄膜電晶體中,發現元件特性有大幅提升的效果,如: 鈦鎳酸鎂電阻式記憶體的阻值比可提升至108。且由於此種手法所添加的乙酰丙酮鎳具有兩對雙牙基,除了可以使薄膜更平坦外,更能與鈦和鋯離子鉗合,使記憶體元件在大氣中放置多天後,仍能觀察到以下電性,如: 鈦鎳酸鎂電阻式記憶體的高阻態電流均勻性在放置28天後,仍可維持在30%。
    論文的第二部分,藉由溶液式方式製備吉利丁(gelatin)薄膜,並應用於電阻式記憶體,此部分分為三個段落。(1)吉利丁電阻式記憶體:吉利丁電阻式記憶體的阻值比可達到106。並藉由EDX mapping的觀察,可發現在元件量測後,有碳燈絲形成,以及吉利丁與上電極鋁離子有鉗合作用發生;(2)鋁鉗合吉利丁(ACG)電阻式記憶體:利用鋁離子會和吉利丁鉗合,將吉利丁與鋁鹽作混合,製作出鋁鉗合吉利丁薄膜,應用於全透明的電阻式記憶體元件。發現若未能與鋁離子發生鉗合,ITO/gelatin/ITO結構幾乎無電阻轉換特性。但在ITO/ACG/ITO結構的阻值比可達到106。此結果主要原因為鉗合作用可幫助氧化還原的現象發生;(3)吉利丁於軟性電阻式記憶體之應用:可撓吉利丁電阻式記憶體之阻值比可達到105,低寫入電壓(<0.12 V),和retention為105 s。由於吉利丁有很好的延展性,在多次基板撓曲後,電流值仍很穩定。且在高低阻態的電流均勻性上分別為57.8%和3.3%。

    In this dissertation, the perovskite oxides and biomaterial were prepared by solution process and applied to the nonvolatile memory and organic thin film transistor applications. Hence, the dissertation is divided into two parts, one is the investigation of sol-gel perovskite oxide-based devices, and the other is the investigation of solution biomaterial-based devices.
    The multi-spin casting multilayered barium titanate (BTO) thin films on RRAMs without doping other elements were adopted to improve the memory performance. Compared with single BTO layered RRAM, the ON/OFF ratio of the two-layered BTO RRAM can be improved from 104 to 106. In addition, the retention time of over 105 s without fluctuation at 85 °C. Utilizing graphene oxide (GO) sandwiched between BTO layers, the memory devices exhibit a non-volatile WORM memory behavior. The HRS resistance, LRS resistance, and the ON/OFF ratio can be enhanced by stacking multi-BGB layer.
    In addition to the BTO thin film, the MTO thin films were also fabricated by the similar sol-gel method. The ON/OFF ratios of Al/MTO/ITO structure was 104. To improve the performance of these devices, adding Ni in preparation of quaternary compound by sol-gel method without high annealing temperature process and doping impurities is proposed. For example, the ON/OFF ratio of 108 can be achieved for the MTN memory devices. Besides, Ni (II) acetylacetone possessing two pairs of BL can not only provide an extremely low polymerization rate for smooth surfaces, but contribute to the moisture resistivity. Thus, due to the strong bonding between Ti metal ion and BL enables the chelate effect to the stability, the memory devices have good memory properties after many days under an atmospheric environment. For instance, the current CVs of the MTN memory device are less than 30% after 28 d.
    In the second part of this dissertation, the solution biomaterial, gelatin, was used to fabricate RRAM devices. This part divided into three sections. (1)Gelatin-based RRAM: The memory devices exhibited a high ON/OFF ratio of over 106 and a long retention time of over 105 s. From the EDX analysis results, the chelate effect and the simultaneous presence of carbon and oxygen elements in the rupture of filament paths can be observed. (2)Al chelated gelatin-based RRAM: the transparent gelatin thin film (transmittance~86%) is suitable for application in the transparent electrical and optical devices. However, the transparent ITO/gelatin/ITO structure cannot present the memory switching behavior. Due to the chelate effect can be developed to change the gelatin properties, that the ITO electrodes can be applied. The ITO/ACG/ITO structure shows high ON/OFF current ratio (>105), low operation voltage, good uniformity, and retention characteristics at room temperature and 85 °C. The enhancement of the resistive switching properties can be attributed to the chelate effect of Al ions with gelatin Al ions, further enhanced the redox reaction that occurred in the gelatin. (3)Flexible gelatin-based RRAM: the flexible gelatin-based RRAM shows good memory properties, including high ON/OFF ratio of more than 105, needless of a forming process, the low set voltage (<0.2 V), and the retention characteristics without noticeable change over a period of 105 s. Due to the good ductility of gelatin, there was no significant variation observed in the current levels upon severe bending. The memory devices also exhibited outstanding uniformity, ION with a CV of 3.3% and IOFF with a CV of 57.8%.

    Abstract (in Chinese) I Abstract (in English) III Acknowledgements VI Contents VII Table Captions XII Figure Captions XIV CHAPTER 1. Introduction 1.1 Memories 1 1.1.1 Volatile Memory 2 1.1.2 Non-volatile Memory 2 1.1.3 Resistive Random Access Memory (RRAM) 4 1.1.3.1 The Basic Operational Principle of Resistive Switching 5 1.1.3.2 Resistive Switching Mechanisms 6 1.1.4 Write Once Read Many Times Memory (WORM) 8 1.2 Solution Process 8 1.2.1 Solution Coating Technology 8 1.2.1.1 Dip-Coating 10 1.2.1.2 Inkjet-Printing 12 1.2.1.3 Spin-Coating 12 1.2.2 Potential Candidate Materials 14 1.2.2.1 Sol-Gel Metal Oxide Materials 14 1.2.2.2 Solution Processed Biomaterials 20 1.3 Thesis Organization 24 References 27 CHAPTER 2. Experiment Details 2.1 Solution Preparation 33 2.1.1 Sol-Gel Precursor 33 2.1.2 Gelatin Solution 36 2.2 RRAM Device Fabrication 37 2.2.1 Substrate Cleaning 37 2.2.2 Synthesis of Thin Film 37 2.2.3 Top Electrode Deposition 37 2.3 Measurements and Analysis 39 2.3.1 X-Ray Diffraction (XRD) 39 2.3.2 Scanning Electron Microscope (SEM) 40 2.3.3 Atomic Force Microscopy (AFM) 40 2.3.4 Transmission Electron Microscopy (TEM) 44 2.3.5 Electron Spectroscopy for Chemical Analysis (ESCA) 45 2.3.6 RF Sputtering 45 2.3.7 Differential Scanning Calorimetry (DSC) 46 2.3.8 Thermomechanical analysis (TMA) 46 2.3.9 Thermal gravimetric analysis (TGA) 47 2.3.10 Device Measurement Setup 48 CHAPTER 3. Resistive Switching Behaviors in Multilayered Barium Titanate Thin Films 3.1 Introduction 49 3.2 Device Structure and Fabrication 50 3.3 Results and Discussion 52 3.3.1 The Effect of Top Electrodes 52 3.3.2 The Effect of Sintering Temperature 53 3.3.3 The Physical Analysis of Thin Films 54 3.3.4 The Electrical Properties of Memory Devices 62 3.3.5 The Switching Mechanism of Memory Devices 65 3.3.6 The Stability of Memory Device 66 3.4 Conclusions 70 References 71 CHAPTER 4. Write-Once-Read-Many-Times Memory Devices Based On Graphene Oxide Sandwiched Between Barium Titanate Oxide Layers 4.1 Introduction 75 4.2 Device Structure and Fabrication 77 4.3 Results and Discussion 79 4.3.1 The Physical Properties of Thin Films 79 4.3.2 The Electrical Properties of Memory Devices 79 4.3.3 The Stability of Memory Device 85 4.4 Conclusions 86 References 87 CHAPTER 5. Resistive Switching Characteristics of Ilmenite-Structure MgTiOx and MgTiNiOx Thin Films 5.1 Introduction 92 5.2 Device Structure and Fabrication 94 5.3 Results and Discussion 94 5.3.1 The Physical Properties of Thin Films 94 5.3.2 The Electrical Properties of Memory Devices 101 5.3.3 The Stability of Memory Device 109 5.4 Conclusions 113 References 114 CHAPTER 6. Resistive Switching Behavior in Biomaterial Thin Films 6.1 Introduction 119 6.2 Device Structure and Fabrication 121 6.2.1 Materials and Methods 121 6.2.2 Characterization 122 6.3 Results and Discussion 122 6.3.1 The Physical Properties of Thin Films 122 6.3.2 The Electrical Properties of Memory Devices 128 6.3.3 The Stability of Memory Device 145 6.4 Conclusions 150 References 151 CHAPTER 7. Resistive Switching Properties in Al-Chelated Gelatin for Highly Transparent Non-Volatile Memory Applications 7.1 Introduction 155 7.2 Device Structure and Fabrication 157 7.3 Results and Discussion 157 7.3.1 The Physical Properties of Thin Film 157 7.3.2 The Electrical Properties of Memory Devices 161 7.3.3 The Stability of Memory Device 165 7.4 Conclusions 168 References 170 CHAPTER 8. Resistive Switching Behaviors and Recovery Phenomenon in Gelatin-based Flexible Memory Devices 8.1 Introduction 174 8.2 Device Structure and Fabrication 175 8.3 Results and Discussion 175 8.3.1 The Electrical Properties of Memory Device 175 8.3.2 The Stability of Memory Device 179 8.4 Conclusions 182 References 184 CHAPTER 9. Conclusions and Future Prospects 9.1 Conclusions 185 9.2 Future prospects 187 Publication List of Yu-Chi Chang 189

    REFERENCES (Chapter 1)
    [1] J. S. Kilby, “Turning Potential into Realities: The invention of the integrated circuit,” Chem. Phys. Chem., vol. 2, pp. 482-489, 2001.
    [2] M. D. Ventra, and Y. V. Pershin, “Biologically-inspired electronics with memory circuit elements,” Mater. Today, vol. 4, pp. 15-36, 2011.
    [3] W. Reohr, H. Hoenigschmid, R. Robertazzi, D. Gogl, F. Pesavento, S. Lammers, K. Lewis, C. Arndt, Y. Lu, H. Viehmann, R. Scheuerlein, L.-K. Wang, P. Trouilloud, S. Parkin, W. Gallagher, and G. Mueller, “Memories of tomorrow,” IEEE Circuits and Devices Magazine, vol. 18, pp. 17-27, 2002.
    [4] C. Chappert, A. Fert, F. N. V. Dau, “The emergence of spin electronics in data storage,” Nature Materials, vol. 6, pp. 813-23, 2007.
    [5] M. Dawber, L. J. Sinnamon, J. F. Scott, and J. M. Gregg, “Electrode field penetration: A new interpretation of tunneling currents in barium strontium titanate thin films,” Ferroelectrics, vol. 268, pp. 35-40, 2002.
    [6] M. Wuttig, and N. Yamada, “Phase change materials for rewriteable data storage,” Nature Materials, vol. 6, pp. 824-32, 2007.
    [7] J. J. Yang, F. Miao, M. Pickett, D. Ohlberg, D. Steward, C. Lau, and R. S. Williams, “The mechanism of electroforming of metal oxide memristive switches,” Nanotechnology, vol. 20, p. 215201, 2009.
    [8] H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen, and M. J. Tsai, “Metal oxide RRAM,” Proceedings of the IEEE, vol. 100, pp. 1951-1970, 2012.
    [9] T. Fujii, M. Arita, K. Hamada, H. Kondo, H. Kaji, Y. Takahashi, M. Moniwa, I. Fujiwara, T. Yamaguchi, M. Aoki, Y. Maeno, T. Kobayashi, and M. Yoshimaru, “I-V measurement of NiO nanoregion during observation by transmission electron microscopy,” J. Appl. Phys., vol. 109, p. 053702, 2011.
    [10] D. C. Kim, S. Seo, S. E. Ahn, D. S. Suh, M. J. Lee, B. H. Park, I. K. Yoo, I. G. Baek, H. J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U.-In. Chung, J. T. Moon, and B. I. Ryu, “Electrical observations of filamentary conductions for the resistive memory switching in NiO films,” Appl. Phys. Lett., vol. 88, pp. 202102, 2006.
    [11] I. K. Yoo, B. S. Kang, S. E. Ahn, C. B. Lee, M. J. Lee, G. S. Park and X. S. Li, “Fractal dimension of conducting paths in nickel oxide thin films during resistance switching”, IEEE Trans. Nanotechnology, vol. 9, p. 131, 2010.
    [12] D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. S. Li, G. S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, “Atomic structure of conducting nano-filaments in TiO2 resistive switching memory,” Nat. Nanotechnol., vol. 5, p. 148, 2010.
    [13] J. P. Stratchan, M. D. Pickett, J. J. Yang, S. Aloni, A. L. D. Kilcoyne, G. M. Ribeiro, R. Stanle Williams, “Direct identification of the conducting channels in a functioning memristive device,” Adv. Mater., vol. 22, pp. 3573-3577, 2010.
    [14] M. Uenuma, B. Zheng, K. Kawano, M. Horita, Y. Ishikawa, I. Yamashita, and Y. Uraoka, “Guided filament formation in NiO-resistive random access memory by embedding gold nanoparticles,” Appl. Phys. Lett., vol. 100, p. 083105, 2012.
    [15] R. Arinero, W. Hourani, A. D. Touboul, B. Gautier, M. Ramonda, D. Albertini, L. Militaru, Y. Gonzalez-Velo, C. Guasch, and F. Saigne, “Toward a better understanding of the nanoscale degradation mechanisms of ultra-thin SiO2/Si films: Investigation of the best experimental conditions with a conductive atomic force microscope,” J. Appl. Phys., vol. 110, p. 014304, 2011.
    [16] A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, “Interface resistance switching at a few nanometer thick perovskite manganite active layers,” Appl. Phys. Lett., vol. 88, pp. 232112, 2006.
    [17] L. E. Scriven, “Physics and applications of dip coating and spin coating,” MRS Proceedings, vol. 121, pp. 717–729, 1988.
    [18] D. A. H. Hanaor, G. Triani, C. C. Sorrell, “Morphology and photocatalytic activity of highly oriented mixed phase titanium dioxide thin films,” Surface and Coatings Technology, vol. 205, pp. 3658–3664, 2011.
    [19] V. Kannan, V. Senthilkumar, and J. K. Rhee, “Multi-level conduction in NiO resistive memory device prepared by solution route,” J. Phys. D: Appl. Phys., vol. 46, p. 095301, 2013.
    [20] K. Au, X. S. Gao, J. Wang, Z. Y. Bao, J. M. Liu, and J. Y. Dai, “Enhanced resistive switching effect in Ag nanoparticle embedded BaTiO3 thin films,” J. Appl. Phys., vol. 114, p. 027019, 2013.
    [21] S. Song, J. Jang, Y. Ji, S. Park, T. W. Kim, Y. Song, M. H. Yoon, H. C. Ko, G. Y. Jung, T. Lee, “Twistable nonvolatile organic resistive memory devices,” O. E., vol. 14, pp. 2087–2092, 2013.
    [22] Solid green state processing, Enschede, 1996.
    [23] G. Yi, and M. Sayer, “Sol-gel processing of complex oxide films,” American Ceramic Society Bulletin, vol. 70, pp. 1173-1179, 1991.
    [24] D. E. Partlow and B. E. Yoldas, “Colloidal versus polymer gels and monolithic transformation in glass-forming systems,” Journal of Non-Crystalline Solids, vol. 46, pp. 153-161, 1981
    [25] J. Wu, Z. Wen, D. Wu, H. Zhai, and A. Li, “Current–voltage characteristics of sol–gel derived SrZrO3 thin films for resistive memory applications,” J. Alloys Compounds, vol. 509, pp.2050-2053, 2011.
    [26] M. Li, F. Zhuge, X. Zhu, K. Yin, J. Wang, Y. Liu, C. He, B. Chen, and R. W. Li, “Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches,” Nanotechnology, vol. 21, p. 425202, 2010.
    [27] Y. S. Shen, B. S. Chiou, and C. C. Ho, “Effects of annealing temperature on the resistance switching behavior of CaCu3Ti4O12 films,” Thin Solid Films, vol. 517, pp. 1209–1213, 2008.
    [28] D. Choi, D. Lee, H. Sim, M. Chang, and H. Hwang, “Reversible resistive switching of SrTiOx thin films for nonvolatile memory applications,” Appl. Phys. Lett., vol. 88, p. 082904, 2006.
    [29] C. H. Jung, S. I. Woo, Y. S. Kim, and K. S. No, “Reproducible resistance switching for BaTiO3 thin films fabricated by RF-magnetron sputtering,” Thin Solid Films, vol. 519, pp. 3291–3294, 2011.
    [30] C. L. Huang, S. Y. Wang, Y. B. Chen, B. J. Li, Y. H. Lin, “Investigation of the electrical properties of metal-oxide-metal structures formed from RF magnetron sputtering deposited MgTiO3 films,” Current Appl. Phys., vol. 12, pp. 935-939, 2012.
    [31] H. Sibum, V. Güther, O. Roidl, F. Habashi, H. U. Wolf, “Titanium, titanium alloys, and titanium compounds,” Ullmann's Encyclopedia of Industrial Chemistry, 2000.
    [32] C. L. Huang, C. M. Tsai, A. Yang, and A. Hsu, “Compact 5.8-GHz bandpass filter using stepped-impedance dielectric resonators for ISM band wireless communication,” Microwave Opt. Lett., vol. 44, pp. 421–423, 2005.
    [33] J. Bernard, D. Houivet, J. El Fallah, J.M. Haussonne, “MgTiO3 for Cu base metal multilayer ceramic capacitors,” J. Eur. Ceram. Soc., vol. 24, pp. 1877–1881, 2004.
    [34] C. Y. Liu, C. C. Chuang, J. S. Chen, A. Wang, W. Y. Jang, J. C. Young, K. Y. Chiu, T. Y. Tsen, “Memory effect of sol–gel derived V-doped SrZrO3 thin films,” Thin Solid Films, vol. 494, pp. 287–290, 2006.
    [35] K. P. Surendran, A. Wu, P. M. Vilarinho, and V. M. Ferreira, “Ni and Zn doped MgTiO3 thin films: Structure, microstructure, and dielectric characteristics,” J. Appl. Phys., vol. 107, p. 114112, 2010.
    [36] Y. C. Chang, C. Y. Wei, Y. Y. Chang, T. Y. Yang, and Y. H. Wang, Member, IEEE, “High-mobility pentacene-based thin-film transistors with synthesized strontium zirconate nickelate gate insulators,” IEEE Trans. Electr. Dev., vol. 60, pp. 4234-4239, 2013.
    [37] W. A. Herrmann, N. W. Huber, and O. Runte, “Volatile metal alkoxides according to the concept of donor functionalization,” Angew Chem. Int. Ed. Engl., vol. 34, pp. 2187-2206, 1995.
    [38] M. Janousch, G. I. Meijer, U. Staub, B. Delley, S. F. Karg, and B. P. Andreasson, “Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory,” Adv. Mater., vol. 19, pp. 2232–2235, 2007.
    [39] A. N. Fraga, and R. J. J. Williams, “Thermal properties of gelatin films,” Polymer, vol. 26, pp. 113-118, 1985.
    [40] H. W. Kang, Y. Tabata, and Y. Ikada, “Fabrication of porous gelatin scaffolds for tissue engineering,” Biomaterials, vol. 20, pp. 1339–1344, 1999.
    [41] A. P. M. Guigan, and M. V. Sefton, “Modular tissue engineering: fabrication of a gelatin-based construct,” J. Tissue Eng. Regen. Med., vol. 1, pp. 136–145, 2007.
    [42] G. A. Digenis, T. B. Gold, and V. P. Shah, “Cross-linking of gelatin capsules and its relevance to their in vitro-in vivo performance,” J. Pharm. Sci., vol. 83, pp. 915–921, 1994.
    [43] S. Kasapis, I. T. Norton, and J. B. Ubbink, Modern Biopolymer Science: bridging the divide between fundamental treatise and industrial application, Elsevier, 2009.
    [44] M. A. Vandelli, M. Romagnoli, A. Monti, M. Gozzi, P. Guerra, F. Rivasi, F. Forni, “Microwave-treated gelatin microspheres as drug delivery system,” J. Control Release, vol. 96, pp. 67-84, 2004.
    [45] T. Coviello, P. Matricardi, C. Marianecci, F. Alhaique, “Polysaccharide hydrogels for modified release formulations,” J. Control Release, vol. 119, pp. 5-24, 2007.
    [46] A. Khademhosseini, R. Langer, “Microengineered hydrogels for tissue engineering,” Biomaterials, vol. 28, pp. 5087- 5092, 2007.
    [47] A. Barakat, R. Shegokar, M. Dittgen, R. H. Müller, “Coenzyme Q10 oral bioavailability: effect of formulation type,” Journal of Pharmaceutical Investigation, vol. 43, pp. 431-451, 2013.

    REFERENCES (Chapter 3)
    [1] D. J. Seong et al., “Resistive-switching characteristics of Al/Pr0.7Ca0.3MnO3 for nonvolatile memory applications,” IEEE Electron Device Lett., vol. 30, pp. 919–921, 2009.
    [2] K. Zheng et al., “An indium-free transparent resistive switching random access memory,” IEEE Electron Device Lett., vol. 32, pp. 797–799, 2011.
    [3] M. Janousch, G. I. Meijer, U. Staub, B. Delley, S. F. Karg, and B. P. Andreasson, “Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory,” Adv. Mater., vol. 19, pp. 2232–2235, 2007.
    [4] M.-H. Lin, M.-C. Wu, C.-H. Lin, and T.-Y. Tseng, “Effects of vanadium doping on resistive switching characteristics and mechanisms of SrZrO3-based memory films,” IEEE Trans. Electron Devices, vol. 57, pp. 1801–1807, 2010.
    [5] U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, “Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices,” IEEE Trans. Electron Devices, vol. 56, pp. 186–192, 2009.
    [6] C.-Y. Wei et al., “High-performance pentacene-based thin-film transistors and inverters with solution-processed barium titanate insulators,” IEEE Trans. Electron Devices, vol. 59, pp. 477–483, 2012.
    [7] H. B. Sharma, H. N. K. Sarma, and A. Mansingh, “Ferroelectric and dielectric properties of sol-gel processed barium titanate ceramics and thin films,” J. Mater. Sci., vol. 34, pp. 1385–1390, 1999.
    [8] A. Visinoiu, R. Scholz, M. Alexe, and D. Hesse, “Morphology dependence of the dielectric properties of epitaxial BaTiO3 films and epitaxial BaTiO3/SrTiO3 multilayers,” Appl. Phys. A, vol. 80, pp. 229–235, 2005.
    [9] C. H. Jung, S. I. Woo, Y. S. Kim, and K. S. No, “Reproducible resistance switching for BaTiO3 thin films fabricated by RF-magnetron sputtering,” Thin Solid Films, vol. 519, pp. 3291–3294, 2011.
    [10] R. K. Pan, T. J. Zhang, J. Y. Wang, J. Z. Wang, D. F. Wang, and M. G. Duan, “Mechanisms of current conduction in Pt/BaTiO3/Pt resistive switching cell,” Thin Solid Films, vol. 520, pp. 4016–4020, 2012.
    [11] Z. Yan, Y. Guo, G. Zhang, and J.-M. Liu, “High-performance programmable memory devices based on Co-doped BaTiO3,” Adv. Mater., vol. 23, pp. 1351–1355, 2011.
    [12] K. Au, X. S. Gao, J. Wang, Z. Y. Bao, J. M. Liu, and J. Y. Dai, “Enhanced resistive switching effect in Ag nanoparticle embedded BaTiO3 thin films,” J. Appl. Phys., vol. 114, pp. 027019-1–027019-4, 2013.
    [13] S. Li, H. Z. Zeng, S. Y. Zhang, and X. H. Wei, “Bipolar resistive switching behavior with high ON/OFF ratio of Co:BaTiO3 films by acceptor doping,” Appl. Phys. Lett., vol. 102, p. 153506, 2013.
    [14] M. C. Nielsen, J.-Y. Kim, E. J. Rymaszewski, T.-M. Lu, A. Kumar, and H. Bakhru, “Composite and multilayered TaOx–TiOy high dielectric constant thin films,” IEEE Trans. Compon., Packag., Manuf. Technol., B, Adv. Packag., vol. 21, pp. 274–280, 1998.
    [15] C.-Y. Wei, S.-H. Kuo, Y.-M. Hung, W.-C. Huang, F. Adriyanto, and Y.-H. Wang, “High-mobility pentacene-based thin-film transistors with a solution-processed barium titanate insulator,” IEEE Electron Device Lett., vol. 32, pp. 90–92, 2011.
    [16] C.-Y. Lin et al., “Effect of top electrode material on resistive switching properties of ZrO2 film memory devices,” IEEE Electron Device Lett., vol. 28, pp. 366–368, 2007.
    [17] K.-K. Chiang, J.-S. Chen, and J.-J. Wu, “Aluminum electrode modulated bipolar resistive switching of Al/fuel-assisted NiOx/ITO memory devices modeled with a dual-oxygen-reservoir structure,” ACS Appl. Mater. Interf., vol. 4, pp. 4237–4245, 2012.
    [18] D. K. Owens and R. C. Wendt, “Estimation of the surface free energy of polymers,” J. Appl. Polym. Sci., vol. 13, pp. 1741–1747, 1969.
    [19] A. Kim, K. Song, Y. Kim, and J. Moon, “All solution-processed, fully transparent resistive memory devices,” ACS Appl. Mater. Interf., vol. 3, pp. 4525–4530, 2011.
    [20] H.-W. Huang, C.-F. Kang, F.-I. Lai, J.-H. He, S.-J. Lin, and Y.-L. Chueh, “Stability scheme of ZnO-thin film resistive switching memory: Influence of defects by controllable oxygen pressure ratio,” Nanoscale Res. Lett., vol. 8, p. 483, 2013.
    [21] W.-Y. Chang, Y.-T. Ho, T.-C. Hsu, F. Chen, M.-J. Tsai, and T.-B. Wu, “Influence of crystalline constituent on resistive switching properties of TiO2 memory films,” Electrochem. Solid-State Lett., vol. 12, pp. H135–H137, 2009.
    [22] M. Li et al., “Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches,” Nanotechnology, vol. 21, p. 425202, 2010.
    [23] A. Ramadoss, K. Krishnamoorthy, and S. J. Kim, “Resistive switching behaviors of HfO2 thin films by sol–gel spin coating for nonvolatile memory applications,” Appl. Phys. Exp., vol. 5, no. 8, p. 085803, 2012.
    [24] X. Chen, G. Wu, and D. Bao, “Resistive switching behavior of Pt/Mg0.2Zn0.8O/Pt devices for nonvolatile memory applications,” Appl. Phys. Lett., vol. 93, no. 9, pp. 093501-1–093501-3, Sep. 2008.
    [25] M. A. Lampert, “Simplified theory of space-charge-limited currents in an insulator with traps,” Phys. Rev., vol. 103, p. 1648, Sep. 1956.
    [26] Z. S. Wang, F. Zeng, J. Yang, C. Chen, Y. C. Yang, and F. Pan, “Reproducible and controllable organic resistive memory based on Al/poly(3, 4-ethylene-dioxythiophene):poly(styrenesulfonate)/Al structure,” Appl. Phys. Lett., vol. 97, no. 25, p. 253301, 2010.
    [27] F. Zhuge et al., “Nonvolatile resistive switching memory based on amorphous carbon,” Appl. Phys. Lett., vol. 96, no. 16, p. 163505, 2010.
    [28] Z. Wang, P. B. Griffin, J. M. Vittie, S. Wong, P. C. McIntyre, and Y. Nishi, “Resistive switching mechanism in ZnxCd1−xS nonvolatile memory devices,” IEEE Electron Device Lett., vol. 28, no. 1, pp. 14–16, Jan. 2007.

    REFERENCES (Chapter 4)
    [1] D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature, vol. 448, pp. 457-460, 2007.
    [2] W. Gao, L. B. Alemany, L. J. Ci, and P. M. Ajayan, “New insights into the structure and reduction of graphite oxide,” Nat. Chem., vol. 1, pp. 403-408, 2009.
    [3] G. Eda and M. Chhowall, “Chemically derived graphene oxide: towards large‐area thin‐film electronics and optoelectronics” Adv. Mater., vol. 22, pp. 2392-2415, 2010.
    [4] F. Zhuge, X. F. Zhou, M. Li, G. C. Zhou, Y. W. Liu, J. Z. Wang, B. Chen, W. J. Su, Z. P. Liu, Y. H. Wu, P. Cui, R. W. Li, “Nonvolatile resistive switching in graphene oxide thin films,” Appl. Phys. Lett., vol. 95, pp. 232101-232103, 2009.
    [5] S. K. Hong, J. E. Kim, S. O. Kim, S.-Y. Choi, and B. J. Cho, “Flexible resistive switching memory device based on graphene oxide,” IEEE Electron Dev. Lett., vol. 31, pp. 1005-1007, 2010.
    [6] S. K. Hong, J. E. Kim, S. O. Kim, and B. J. Cho, “Non-volatile memory using graphene oxide for flexible electronics,” IEEE Conference on Nanotechnology, vol. 31, pp. 604-606, 2010.
    [7] J. Q. Liu, Z. Q. Lin, T. J. Liu, Z. Y. Yin, X. Z. Zhou, S. F. Chen, L. H. Xie, F. Boey, H. Zhang, and W. Huang, “Multilayer stacked low-temperature-reduced graphene oxide films: preparation, characterization, and application in polymer memory devices,” Small, vol. 6, pp. 1536–1542, 2010.
    [8] M. Yi, L. Zhao, Q. Fan, X. Xia, W. Ai, L. Xie, X. Liu, N. Shi, W. Wang, Y. Wang, and W. Huang, “Electrical characteristics and carrier transport mechanisms of write-once-read-many-times memory elements based on graphene oxide diodes,” J. Appl. Phys., vol. 110, p. 063709, 2011.
    [9] M. A. Mamo, W. S. Machado, W. A. L. van Otterlo, N. J. Coville, and I. A. Hu¨mmelgen, “Simple write-once-read-many-times memory device based on a carbon sphere-poly(vinylphenol) composite,” O. E., vol. 11, pp. 1858-1863, 2010.
    [10] J. Lin, and D. G. Ma, “The morphology control of pentacene for write-once-read-many-times memory devices,” J. Appl. Phys., vol. 103, p. 024507, 2008.
    [11] P. Liu, T. P. Chen, X. D. Li, Z. Liu, J. I. Wong, Y. Liu, and K. C. Leong, “Realization of write-once-read-many-times memory device with O2 plasma-treated indium gallium zinc oxide thin film,” Appl. Phys. Lett., vol. 104, p. 033505, 2014.
    [12] J. Wang, F. Gao, and N. C. Greenham, “Low-power write-once-read-many-times memory devices,” Appl. Phys. Lett., vol. 97, p. 053301, 2010.
    [13] S. Moller, C. Perlov, W. Jackson, C. Taussing, S. R. Forrest, “A polymer/semiconductor write-once read-many-times memory,” Nature, vol. 426, pp. 166-169, 2003.
    [14] K. K. Park, J. H. Jung, and T. W. Kim, “Memory effects and carrier transport mechanisms of write-once- read-many-times memory devices fabricated using poly (3-hexylthiophene) molecules embedded in a polymethylmethacrylate layer on a flexible substrate,” Appl. Phys. Lett., vol. 98, p. 193301, 2011.
    [15] C. Wu, F. Li, T. Guo, and T. W. Kim, “Controlling memory effects of three-layer structured hybrid bistable devices based on graphene sheets sandwiched between two laminated polymer layers,” O. E., vol. 13, pp. 178–183, 2012.
    [16] W. Zhu, T. P. Chen, Y. Liu, M. Yang, S. Zhang, W. L. Zhang, and S. Fung, “Charging-induced changes in reverse current–voltage characteristics of Al/Al-Rich Al2O3/p-Si diodes,” IEEE Trans. Electron Devices, vol. 56, pp. 2060-2064, 2009.
    [17] W. Zhu, T. P. Chen, Y. Liu, M. Yang, and S. Fung, “Two-terminal write-once-read-many-times memory device based on charging-controlled current modulation in Al/Al-rich Al2O3/p-Si diode,” IEEE Trans. Electron Devices, vol. 58, pp. 960, 2011.
    [18] Q. Yu, Y. Liu, T. P. Chen, Z. Liu, Y. F. Yu, H. W. Lei, J. Zhu, and S. Fung, “Flexible write-once–read-many-times memory device based on a nickel oxide thin film,” IEEE Trans. Electron Devices, vol. 59, pp. 858-862, 2012.
    [19] M. Li, F. Zhuge, X. Zhu, K. Yin, J. Wang, Yi. Liu, C. He, B. Chen, and R. W. Li, “Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches,” Nanotechnology, vol. 21, p. 425202, 2010.
    [20] D. Guo, C. Wang, Q. Shen, L. Zhang, M. Li, and J. Liu, “Effect of measuring factors on ferroelectric properties of Bi3.15Nd0.85Ti3O12 thin films prepared by sol–gel method for non-volatile memory,” Appl. Phys. A, vol. 97, pp. 877–881, 2009.
    [21] X. Chen, G. Wu, and D. Bao, “Resistive switching behavior of Pt/Mg0.2Zn0.8O/Pt devices for nonvolatile memory applications,” Appl. Phys. Lett., vol. 93, p. 093501, 2008.
    [22] M. C. Nielsen, J. Y. Kim, E. J. Rymaszewski, T. M. Lu, A. Kumar, and H. Bakhru, “Composite and multilayered TaOx–TiOy high dielectric constant thin films,” IEEE Trans. Compon. Pack. Man. B, vol. 21, pp. 274-280, 1998.
    [23] X. Zhuang, Y. Chen, G. Liu, P. Li, C. Zhu, E. Kang, K. Noeh, B. Zhang, J. Zhu, Y. Li, “Conjugated-polymer-functionalized graphene oxide: Synthesis and nonvolatile rewritable memory effect,” Adv. Mater., vol. 22, pp. , (2010) 1731.
    [24] A. Kim, K. Song, Y. Kim, and J. Moon, “All solution-processed, fully transparent resistive memory devices,” ACS Appl. Mater. Interfaces, vol. 3, pp. 4525-4530, 2011.
    [25] X. Sun, B. Sun, L. Liu, N. Xu, X. Liu, R. Han, J. Kang, G. Xiong, and T. P. Ma, “Resistive switching in CeOx films for nonvolatile memory application,,” IEEE Electron Device Lett., vol. 30, pp. 334–336, 2009.
    [26] S. Kim, H. Moon, D. Gupta, S. Yoo, and Y.-K. Choi, “Resistive, switching characteristics of sol-gel zinc oxide films for flexible memory applications,” IEEE Trans. Electron Devices, vol. 56, pp. 696–699, 2009.
    [27] X. Sun, B. Sun, L. Liu, N. Xu, X. Liu, R. Han, J. Kang, G. Xiong, and T. P. Ma, “Structure effects on resistive switching of Al/TiOx/Al devices for RRAM applications,” IEEE Electron Device Lett., vol. 29, pp. 331–333, 2008.
    [28] M. K. Yang, J. W. Park, T. K. Ko, and J. K. Lee, “Bipolar resistive switching behavior in Ti/MnO2/Pt structure for nonvolatile memory devices,” Appl. Phys. Lett., vol. 95, p. 042105, 2009.
    [29] S. Wu, X. Chen, L. Ren, W. Hu, F. Yu, K. Yang, M. Yang, Y. Wang, M. Meng, W. Zhou, D. Bao, and S. Li, “Write-once-read-many-times characteristics of Pt/Al2O3/ITO memory devices,” J. Appl. Phys., vol. 116, p. 074515, 2014.
    [30] P. Liu, T. P. Chen, X. D. Li, Z. Liu, J. I. Wong, Y. Liu, and K. C. Leong, “Realization of write-once-read-many-times memory device with O2 plasma-treated indium gallium zinc oxide thin film,” Appl. Phys. Lett., vol. 104, p. 033505, 2014.
    [31] Q. Yu, Y. Liu, T. P. Chen, Z. Liu, Y. F. Yu, H. W. Lei, J. Zhu, and S. Fung, “Flexible write-once–read-many-times memory device based on a nickel oxide thin film,” IEEE Trans. Electron Devices, vol. 59, pp. 858-862, 2012.
    [32] K. K. Park, J. H. Jung, and T. W. Kim, “Memory effects and carrier transport mechanisms of write-once- read-many-times memory devices fabricated using poly (3-hexylthiophene) molecules embedded in a polymethylmethacrylate layer on a flexible substrate,” Appl. Phys. Lett., vol. 98, p. 193301, 2011.
    [33] M. Yi, L. Zhao, Q. Fan, X. Xia, W. Ai, L. Xie, X. Liu, N. Shi, W. Wang, Y. Wang, and W. Huang, “Electrical characteristics and carrier transport mechanisms of write-once-read-many-times memory elements based on graphene oxide diodes,” J. Appl. Phys., vol. 110, p. 063709, 2011.

    REFERENCES (Chapter 5)
    [1] C. L. Huang, C. M. Tsai, A. Yang, and A. Hsu, “Compact 5.8-GHz bandpass filter using stepped-impedance dielectric resonators for ISM band wireless communication,” Microwave Opt. Lett., vol. 44, pp. 421–423, 2005.
    [2] J. Bernard, D. Houivet, J. E. Fallah, J. M. Haussonne, “MgTiO3 for Cu base metal multilayer ceramic capacitors,” J. Eur. Ceram. Soc., vol. 24, pp. 1877–1881, 2004.
    [3] C. L. Huang, S. Y. Wang, Y. B. Chen, B. J. Li, Y. H. Lin, “Investigation of the electrical properties of metal-oxide-metal structures formed from RF magnetron sputtering deposited MgTiO3 films,” Current Appl. Phys., vol. 12, pp. 935-939, 2012.
    [4] V. M. Ferreira, J. L. Baptista, S. Kamba, and J. Petzelt, “Dielectric spectroscopy of MgTiO3-based ceramics in the 109--1014 Hz region,” J. Mater. Sci., vol. 28, p. 5894, 1993.
    [5] C. Y. Liu, C. C. Chuang, J. S. Chen, A. Wang, W. Y. Jang, J. C. Young, K. Y. Chiu, and T. Y. Tsen, “Memory effect of sol–gel derived V-doped SrZrO3 thin films,” Thin Solid Films, vol. 494, pp. 287–290, 2006.
    [6] Y. C. Chang, C. Y. Wei, Y. Y. Chang, T. Y. Yang, and Y. H. Wang, “High mobility pentacene based thin film transistors with synthesized strontium zirconate nickelate gate insulators,” IEEE Trans. Electr. Dev., vol. 60, pp. 4234-4239, 2013.
    [7] W. A. Herrmann, N. W. Huber, and O. Runte, “Volatile metal alkoxides according to the concept of donor functionalization,” Angew Chem. Int. Ed. Engl., vol. 34, pp. 2187-2206, 1995.
    [8] M. Janousch, G. I. Meijer, U. Staub, B. Delley, S. F. Karg, and B. P. Andreasson, “Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory,” Adv. Mater., vol. 19, pp. 2232–2235, 2007.
    [9] W. S. Choi, B. S. Jang, Y. Roh, J. Yi, B. Hong, “The effect of deposition temperature on the electrical and physical properties of the Ba(Zr, Ti)O3 thin films,” J. Non-Cryst. Solids, vol. 303, pp. 190-193, 2002.
    [10] A. Kim, K. Song, Y. Kim, and J. Moon, “All solution-processed, fully transparent resistive memory devices,” ACS Appl. Mater. Interfaces, vol. 3, pp. 4525-4530, 2011.
    [11] H. B. Lv, M. Yin, Y. L. Song, X. F. Fu, L. Tang, P. Zhou, C. H. Zhao, T. A. Tang, B. A. Chen, and Y. Y. Lin, “Forming process investigation of CuxO memory films,” IEEE Electron Device Lett., vol. 29, pp. 47-49, 2008.
    [12] M. A. Lampert, “Simplified theory of space-charge-limited currents in an insulator with traps,” Phys. Rev., vol. 103, p. 1648, Sep. 1956.
    [13] Z. S. Wang, F. Zeng, J. Yang, C. Chen, Y. C. Yang, and F. Pan, “Reproducible and controllable organic resistive memory based on Al/poly(3, 4-ethylene-dioxythiophene):poly(styrenesulfonate)/Al structure,” Appl. Phys. Lett., vol. 97, no. 25, p. 253301, 2010.
    [14] A. V. Shaposhnikov, T. V. Perevalov, V. A. Gritsenko, C. H. Cheng, and A. Chin, “Mechanism of GeO2 resistive switching based on the multi-phonon assisted tunneling between traps” Appl. Phys. Lett., vol. 100, p. 243506, 2012.
    [15] S. Yu, X. Guan, and H. S. P. Wong, “Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted tunneling model,” Appl. Phys. Lett., vol. 99, p. 063507, 2011.
    [16] Z. S. Wang, F. Zeng, J. Yang, C. Chen, Y. C. Yang, and F. Pan, “Reproducible and controllable organic resistive memory based on Al/ poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate)/Al structure,” Appl. Phys. Lett., vol. 97, p. 253301, 2010.
    [17] F. Nardi, S. Larentis, S. Balatti, D. C. Gilmer, and D. Ielmini, “Resistive switching by voltage-driven ion migration in bipolar RRAM—Part I: experimental study,” IEEE Trans. Electr. Dev., vol. 59, pp. 2461-2467, 2012.
    [18] D. Ielmini, S. Spiga, F. Nardi, C. Cagli, A. Lamperti, E. Cianci, and M. Fanciulli, “Scaling analysis of submicrometer nickel-oxide-based resistive switching memory devices,” J. Appl. Phys., vol. 109, p. 034506, 2011.
    [19] N. Xu, L. F. Liu, X. Sun, C. Chen, Y. Wang, D. D. Han, X. Y. Liu, R. Q. Han, J. F. Kang, and B. Yu, “Bipolar switching behavior in TiN/ZnO/Pt resistive nonvolatile memory with fast switching and long retention,” Semicond. Sci. Technol., vol. 23, p. 075019, 2008.
    [20] B. Singh, B. R. Mehta, D. Varandani, A. V. Savu, and J. Brugger, “CAFM investigations of filamentary conduction in Cu2O ReRAM devices fabricated using stencil lithography technique,” Nanotechnology, vol. 23, p. 495707, 2012.
    [21] H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen, and M. J. Tsai, “Metal–oxide RRAM,” Proceedings of the IEEE, vol. 100, pp. 1951–1970, 2012.
    [22] S. Kim, H. Moon, D. Gupta, S. Yoo, and Y.-K. Choi, “Resistive, switching characteristics of sol-gel zinc oxide films for flexible memory applications,” IEEE Trans. Electron Devices, vol. 56, pp. 696–699, 2009.
    [23] X. Sun, B. Sun, L. Liu, N. Xu, X. Liu, R. Han, J. Kang, G. Xiong, and T. P. Ma, “Resistive switching in CeOx films for nonvolatile memory application,,” IEEE Electron Device Lett., vol. 30, pp. 334–336, 2009.
    [24] L. E. Yu, S. Kim, M. K. Ryu, S. Y. Choi, and Y. K. Choi, “Structure Effects on Resistive Switching of Al/TiOx/Al Devices for RRAM Applications,” IEEE Electron Device Lett., vol. 29, pp. 331–333, 2008.
    [25] M. K. Yang, J. W. Park, T. K. Ko, and J. K. Lee, “Bipolar resistive switching behavior in Ti/MnO2/Pt structure for nonvolatile memory devices,” Appl. Phys. Lett., vol. 95, p. 042105, 2009.
    [26] R. Meyer, L. Schloss, J. Brewer, R. Lambertson,W. Kinney, J. Sanchez, and D. Rinerson, “Oxide dual-layer memory element for scalable non-volatile cross-point memory technology,” Proc. NVMTS, pp. 1–5, 2008.
    [27] X. B. Yan, Y. D. Xia, H. N. Xu, X. Gao, H. T. Li, R. Li, J. Yin, and Z. G. Liu, “Effects of the electroforming polarity on bipolar resistive switching characteristics of SrTiO3 films,” Appl. Phys. Lett., vol. 97, p. 112101, 2010.
    [28] F. Zhuge, W. Dai, C. L. He, A. Y. Wang, Y. W. Liu, M. Li, Y. H. Wu, P. Cui, and R.-W. Li, “Nonvolatile resistive switching memory based on amorphous carbon,” Appl. Phys. Lett., vol. 96, p. 163505, 2010.
    [29] H. Lv, M. Wang, H. Wan, Y. Song, W. Luo, P. Zhou, T. Tang, Y. Lin, R. Huang, S. Song, J. G. Wu, H. M. Wu, and M. H. Chi, “Endurance enhancement of Cu-oxide based resistive switching memory with Al top electrode,” Appl. Phys. Lett., vol. 95, p. 162105, 2009.
    [30] T. Zhang, X. Ou, W. Zhang, J. Yin, Y. Xia, and Z. Liu, “High-k -rare-earth-oxide Eu2O3 films for transparent resistive random access memory devices,” J. Phys. D: Appl. Phys., vol. 47, p. 065302, 2014.
    [31] C. H. Huang, J. S. Huang, C. C. Lai, H. W. Huang, S. J. Lin, and Y. L. Chueh, “Manipulated transformation of filamentary and homogeneous resistive switching on ZnO thin film memristor with controllable multistate,” ACS Appl. Mater. Interfaces, vol. 5, pp. 6017−6023, 2013.
    [32] R. K. Pan, T. J. Zhang, J. Y. Wang, J. Z. Wang, D. F. Wang, M. G. Duan, “Mechanisms of current conduction in Pt/BaTiO3/Pt resistive switching cell,” Thin Solid Films, vol. 520, pp. 4016–4020, 2012.
    [33] C. Y. Lin, M. H. Lin, M. C. Wu, C. H. Lin, and T. Y. Tseng, “Improvement of resistive switching characteristics in SrZrO3 thin films with embedded Cr layer,” IEEE Electron Device Lett., vol. 29, no. 10, pp.1108-1111, 2008.
    [34] J. M. Luo, S. P. Lin, Yue Zheng, and B. Wang, “Nonpolar resistive switching in Mn-doped BiFeO3 thin films by chemical solution deposition,” Appl. Phys. Lett., vol. 101, p. 062902, 2012.

    REFERENCES (Chapter 6)
    [1] D. Ma, M. Aguiar, J. A. Freire, I. A. Huemmelgen, “Organic reversible switching devices for memory applications,” Adv. Mater., vol. 12, pp. 1063−1066, 2000.
    [2] S. Moller, C. Perlov, W. Jackson, C. Taussig, S. R. Forrest, “A polymer/semiconductor write-once read-many-times memory,” Nature, vol. 426, pp. 166−169, 2003.
    [3] Q. Ling, Y. Song, S. J. Ding, C. Zhu, D. S. H. Chan, D. L. Kwong, E. T. Kang, K. G. Neoh, “Non-volatile polymer memory device based on a novel copolymer of n-vinylcarbazole and eu-complexed vinylbenzoate,” Adv. Mater., vol. 17, pp. 455−459, 2005.
    [4] T. Sekitani, T. Someya, “Stretchable, large-area organic electronics,” Adv. Mater., vol. 22, pp. 2228−2246, 2010.
    [5] C. W. Chu, J. Ouyang, J. H. Tseng, Y. Yang, “Organic donor−acceptor system exhibiting electrical bistability for use in memory devices,” Adv. Mater., vol. 17, pp. 1440−1443, 2005.
    [6] X. D. Zhuang, Y. Chen, G. Liu, B. Zhang, K. G. Neoh, E. T. Kang, C. X. Zhu, Y. X. Li, L. J. Niu, “Preparation and memory performance of a nano-aggregated dispersed red 1-functionalized poly (n-vinylcarbazole) film via solution-phase self-assembly,” Adv. Funct. Mater., vol. 20, pp. 2916−2922, 2010.
    [7] E. Y. H. Teo, Q. D. Ling, Y. Song, Y. P. Tan, W. Wang, E. T. Kang, D. S. H. Chan, C. Zhu, “Non-volatile WORM memory device based on an acrylate polymer with electron donating carbazole pendant groups,” Org. Electron., vol. 7, pp. 173−180, 2006.
    [8] T. Kondo, S. M. Lee, M. Malicki, B. Domercq, S. R. Marder, B. Kippelen, “A nonvolatile organic memory device using ITO surfaces modified by Ag-nanodots,” Adv. Funct. Mater., vol. 18, pp. 1112−1118, 2008.
    [9] H. Baek, C. Lee, K. Lim, J. Cho, “Resistive switching memory properties of layer-by-layer assembled enzyme multilayers,” Nanotechnology, vol. 23, pp. 155604−9, 2012.
    [10] H. Baek, C. Lee, K. Lim, J. Park,; Y. Kim, B. Koo, H. Shin, D. Wang, J. Cho, “Layer-by-layer assembled enzyme multilayers with adjustable memory performance and low power consumption via molecular-level control,” J. Mater. Chem., vol. 22, pp. 4645−4651, 2012.
    [11] Y. Ko, Y. Kim, H. Baek, J. Cho, “Electrically bistable properties of layer-by-layer assembled multilayers based on protein nanoparticles,” ACS Nano, vol. 5, pp. 9918−9926, 2011.
    [12] M. Ambrico, A. Cardone, T. Ligonzo, V. Augelli, P. F. Ambrico, S. Cicco, G. M. Farinola, M. Filannino, G. Perna, V. Capozzi, “Hysteresis-type current−voltage characteristics in Au/eumelanin/ITO/glass structure: towards melanin based memory devices,” Org. Electron., vol. 11, pp. 1809−1814, 2010.
    [13] N. Schmitz, “Haltbarkeit photographischer schichten,” Berichte Der Internationaler Kongress Fuer Reprographie, Germany, pp. 74−76, 1963.
    [14] T. Tungkavet, D. Pattavarakorn, A. Sirivat, “Bio-compatible gelatins (ala-gly-pro-arg-gly-glu-4hyp- gly-pro-) and electromechanical properties: effects of temperature and electric field,” J. Polym. Res., vol. 19, pp. 9759−9, 2012.
    [15] W. J. Joo, T. L. Choi, J. Lee, S. K. Lee, M. S. Jung, N. J. Kim, M. Kim, “Metal filament growth in electrically conductive polymers for nonvolatile memory application,” J. Phys. Chem. B, vol. 110, pp. 23812−23816, 2006.
    [16] M. S. Hoque, S. Benjakul, T. Prodpran, “Properties of film from cuttlefish (sepia pharaonis) skin gelatin incorporated with cinnamon, clove and star anise extracts,” Food Hydrocolloids, vol. 25, pp. 1085−1097, 2011.
    [17] P. Tongnuanchan, S. Benjakul, T. J. Prodpran, “Physico-chemical properties, morphology and antioxidant activity of film from fish skin gelatin incorporated with root essential oils,” Food Eng., vol. 117, pp. 350−360, 2013.
    [18] F. Verbakel, C. J. Meskers, R. A. J. Janssen, H. L. Gomes, M. Cölle, M. Büchel, D. M. Leeuw, “Reproducible resistive switching in nonvolatile organic memories,” Appl. Phys. Lett., vol. 91, pp. 192103−3, 2007.
    [19] W. J. Joo, T. L. Choi, J. Lee, S. K. Lee, M. S. Jung, N. Kim, J. M. Kim, “Metal filament growth in electrically conductive polymers for nonvolatile memory application,” J. Phys. Chem. B, vol. 110, pp. 23812−23816, 2006.
    [20] J. H. Choi, Y. W. Ryu, J. H. Seo, “Biotechnological production and applications of coenzyme Q10,” Appl. Microbiol. Biotechnol., vol. 68, pp. 9-15, 2005.
    [21] Q. D. Ling, D. J. Liaw, C. Zhu, D. S. H. Chan, E. T. Kang, K. G. Neoh, “Polymer electronic memories: materials, devices and mechanisms,” Prog. Polym. Sci., vol. 33, pp. 917−978, 2008.
    [22] Y. Ji, M. Choe, B. Cho, S. Song, J. Yoon, H. C. Ko, T. Lee, “Organic nonvolatile memory devices with charge trapping multilayer graphene film,” Nanotechnology, vol. 23, pp. 105202−6, 2012.
    [23] Y. Segui, B. Ai, H. Carchano, “Switching in polystyrene films: transition from on to off state,” J. Appl. Phys., vol. 47, pp. 140−143, 1976.
    [24] W. Hwang, K. C. Kao, “On the theory of filamentary double injection and electroluminescence in molecular crystals,” J. Chem. Phys., vol. 60, pp. 3845−11, 1974.
    [25] Y. C. Ju, S. Kim, T. G. Seong, S. Nahm, H. Chung, K. Hong, W. Kim, “Resistance random access memory based on a thin film of CdS nanocrystals prepared via colloidal synthesis,” Small, vol. 8, pp. 2849−2855, 2012.
    [26] J. K. Oh, D. I. Lee, J. M. Park, “Biopolymer-based microgels/nanogels for drug delivery applications,” Prog. Polym. Sci., vol. 34, pp. 1261−1282, 2009.
    [27] R. Mezzenga, P. Fischer, “The self-assembly, aggregation and phase transitions of food protein systems in one, two and three dimensions,” Rep. Prog. Phys., vol. 76, pp. 046601−43, 2013.
    [28] S. Lippard, J. J. M. Berg, “Principles of bioinorganic chemistry,” University Science Books, Mill Valley, CA, 1994.
    [29] Y. Kim, C. Lee, I. Shim, D. Wang, J. Cho, “Nucleophilic substitution reaction based layer-by-layer growth of super paramagnetic nano-composite films with high nonvolatile memory performance,” Adv. Mater., vol. 22, pp. 5140−5144, 2010.
    [30] Y. C. Yang, F. Pan, Q. Liu, M. Liu, F. Zeng, “Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application,” Nano Lett., vol. 9, pp. 1636−1643, 2009.

    REFERENCES (Chapter 7)
    [1] A. Kim, K. Song, Y. Kim, and J. Moon, “All solution-processed, fully transparent resistive memory devices,” ACS Appl. Mat. Interfaces, vol. 3, pp. 4525–4530, 2011.
    [2] Z. Q. Wang, H. Y. Xu, X. H. Li, X. T. Zhang, Y. X. Liu, and Y. C. Liu, “Flexible resistive switching memory device based on amorphous InGaZnO film with excellent mechanical endurance,” IEEE Electron Device Lett., vol. 32, pp. 1442–1444, 2011.
    [3] H. D. Kim, H. M. An, Y. Seo, and T. G. Kim, “Transparent resistive switching memory using ITO/AlN/ITO capacitors,” IEEE Electron Device Lett., vol. 32, pp. 1125–1127, 2011.
    [4] M. Ambrico, A. Cardone, T. Ligonzo, V. Augelli, P. F. Ambrico, S. Cicco, G. M. Farinola, M. Filannino, G. Perna, and V. Capozzi, “Hysteresis-type current–voltage characteristics in Au/eumelanin/ITO/glass structure: towards melanin based memory devices,” O. E., vol. 11, pp. 1809–1814, 2010.
    [5] Y. Ko, Y. Kim, H. Baek, and J. Cho, “Electrically bistable properties of layer-by-layer assembled multilayers based on protein nanoparticles,” ACS Nano., vol. 32, pp. 9918–9926, 2011.
    [6] M. K. Hota, M. K. Bera, B. Kundu, S. C. Kundu, and C. K. Maiti, “A natural silk fibroin protein-based transparent bio-memristor,” Adv. Funct. Mater., vol. 22, pp. 4493–4499, 2012.
    [7] N. Schmitz, “Haltbarkeit photographischer Schichten (Permanence of Photographic Layers),” International Congress on Reprography, pp. 74−76, Cologne, 1963.
    [8] Y. C. Chang and Y. H. Wang, “Resistive switching behavior in gelatin thin films for nonvolatile memory application,” ACS Appl. Mater. Interfaces, vol. 6, pp. 5413–5421, 2014.
    [9] S. Lippard, and J. J. M. Berg, Principles of bioinorganic chemistry, University Science Books, Mill Valley, CA, USA, 1994.
    [10] N. Hazeri, H. Tavanai, and A. R. Moradi, “Production and properties of electrosprayed sericin nanopowder,” Sci. Technol. Adv. Mater., vol. 13, p. 035010, 2012.
    [11] Sudesh, N. Kumar, S. Das, C. Bernhard, and G. D. Varma, “Effect of graphene oxide doping on superconducting properties of bulk MgB2,” Supercond. Sci. Technol., vol. 26, p. 095008, 2013.
    [12] G. Matrajt, J. Borg, P. I. Raynal, Z. Djouadi, L. Hendecourt, G. Flynn, and D. Deboffle, A & A, vol. 416, pp. 983–990, 2004.
    [13] M. A. Lampert, “Simplified theory of space-charge-limited currents in an insulator with traps,” Phys. Rev., vol. 103, p. 1648, 1956.
    [14] Z. S. Wang, F. Zeng, J. Yang, C. Chen, Y. C. Yang, and F. Pan, “Reproducible and controllable organic resistive memory based on Al/ poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate)/Al structure,” Appl. Phys. Lett., vol. 97, p. 253301, 2010.
    [15] X. Cao, X. Li, X. Gao, X. Liu, C. Yan, R. Yang, and P. Jin, “All-ZnO-based transparent resistance random access memory device fully fabricated at room temperature,” J. Phys. D: Appl. Phys., vol. 44, p. 255104, 2011.
    [16] M. Yang, Z. P. Jian, L. Z. Yu, L. Z. Liang, P. X. Yu, L. X. Jin, Z. H. Wu, and C. D. Min, “Enhanced resistance switching stability of transparent ITO/TiO2/ITO sandwiches,” Chin. Phys. B, vol. 19, p. 037304, 2010.
    [17] K. C. Liu, W. H. Tzeng, K. M. Chang, Y. C. Chan, C. C. Kuo, “Bipolar resistive switching effect in Gd2O3 films for transparent memory application,” Microelectronic Eng., vol. 88, pp. 1586-1589, 2011.
    [18] M. C. Chen, T. C. Chang, S. Y. Huang, S. C. Chen, C. W. Hu, C. T. Tsai, and S. M. Szec, “Bipolar resistive switching characteristics of transparent indium gallium zinc oxide resistive random access memory,” Electrochemical and Solid-State Letters, vol. 13, pp. H191-H193, 2010.
    [19] P. Misra, A. K Das, and L. M. Kukreja, “Switching characteristics of ZnO based transparent resistive random access memory devices grown by pulsed laser deposition,” Phys. Status Solidi C, vol. 7, pp. 1718-1720, 2010.

    REFERENCES (Chapter 8)
    [1] B. Chen, J. F. Kang, B. Gao, Y. X. Deng, L. F. Liu, X. Y. Liu, Z. Fang, H. Y. Yu, X. P. Wang, G. Q. Lo, and D. L. Kwong, “Endurance degradation in metal oxide-based resistive memory induced by oxygen ion loss effect,” IEEE Electron Device Lett., vol. 34, pp. 1292-1294, 2013.
    [2] S. H. Liu, W. L. Yang, C. C. Wu, T. S. Chao, M. R. Ye, Y. Y. Su, P. Y. Wang, and M. J. Tsai, “High-performance polyimide-based ReRAM for nonvolatile memory application,” IEEE Electron Device Lett., vol. 34, pp. 123-125, 2013.
    [3] N. Schmitz, Haltbarkeit photographischer Schichten, Germany: Berichte Der Internationaler Kongress Fuer Reprographie, pp. 74-76, 1963.
    [4] J. C. W. Chien and E. P. Chang, “Dynamic mechanical and rheo-optical studies of collagen and gelatin,” Biopolymers, vol. 11, pp. 2015-2031, 1972.
    [5] Y. C. Chang, and Y. H. Wang, “Resistive switching behavior in gelatin thin films for nonvolatile memory application,” ACS Appl. Mater. Interfaces, vol. 6, pp. 5413−5421, 2014.
    [6] Yu-Chi Chang and Yeong-Her Wang, “Resistive switching behavior in gelatin thin films for nonvolatile memory application,” ACS Appl. Mater. Interfaces, vol. 6, pp. 5413−5421, 2014.
    [7] A. Kim, K. Song, Y. Kim, and J. Moon, “All solution-processed, fully transparent resistive memory devices,” ACS Appl. Mater. Interf., vol. 3, pp. 4525–4530, 2011.
    [8] A. Tanioka, K. Miyasaka, and K. Ishikawa, “Reconstitution of collagen-fold structure with stretching of gelatin film,” Biopolymers, vol. 15, pp. 1505-1511, 1976.
    [9] M. H. Tang, Z. Q. Zeng, J. C. Li, Z. P. Wang, X. L. Xu, G. Y. Wang, L. B. Zhang, S. B. Yang, Y. G. Xiao, and B. Jiang, “Resistive switching behavior of La-doped ZnO films for nonvolatile memory applications,” Solid-State Electron, vol. 63, pp.100-104, 2011.
    [10] M. Ambrico, A. Cardone, T. Ligonzo, V. Augelli, P. F. Ambrico, S. Cicco, G. M. Farinola, M. Filannino, G. Perna, and V. Capozzi, “Hysteresis-type current–voltage characteristics in Au/eumelanin/ITO/glass structure: Towards melanin based memory devices,” Org. Electron., vol. 11, pp. 1809−1814, 2010.
    [11] C. H. Cheng, F. S. Yeh, and A. Chin, “Very high performance non-volatile memory on flexible substrate with low switching power and excellent endurance,” Adv. Mater., vol. 23, pp. 902–905, 2010.
    [12] S. Kim, H. Moon, D. Gupta, S. Yoo, and Y. K. Choi, “Resistive switching characteristics of sol-gel zinc oxide films for flexible memory application,” IEEE Trans. Electron Devices, vol. 56, pp. 696–699, 2009.
    [13] Z. Q. Wang, H. Y. Xu, X. H. Li, X. T. Zhang, Y. X. Liu, and Y. C. Liu, “Flexible resistive switching memory device based on amorphous InGaZnO film with excellent mechanical endurance,” IEEE Electron Device Lett., vol. 32, pp. 1442–1444, 2011.

    下載圖示 校內:2020-08-26公開
    校外:2020-08-26公開
    QR CODE