| 研究生: |
黃偉誠 Huang, Wei-Cheng |
|---|---|
| 論文名稱: |
使用交替投影法估計出特定結構下的最近矩陣 Alternating projection methods for calculating the nearest structured matrix |
| 指導教授: |
林敏雄
Lin, Matthew M. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 25 |
| 中文關鍵詞: | 交替投影法 、相關矩陣 、半正定矩陣 |
| 外文關鍵詞: | Alternating projection method, correlation matrix, positive semi-definite matrix |
| 相關次數: | 點閱:96 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在財務金融的領域當中,尋找最接近的相關矩陣是一種觀察股票形式以及此相關矩陣跟初始環境下形成的對稱矩陣之間的關聯性的學問。而在我們這篇論文當中,則是依此問題加上特定條件來建構出兩種最接近的矩陣,第一種是和初始矩陣相同對角線元素的半正定矩陣,第二種是找出幾個含有與原本對稱矩陣相同的非對角線的固定元素的相關矩陣。
In some finance industry problems, we usually compute the nearest correlation matrix to a given symmetric matrix due to the relationship between the correlation matrix and the behaviors of the stock. Corresponding to the given symmetric matrix, we focus, in this paper, on finding the nearest correlation matrix with two constraints. The first is controlling the matrix with some elements being the same as the given matrix. The second constraint is restricting the matrix in a form with all diagonal elements equaling to the given matrix. Our work is based on alternating projection methods trying to find out the global optimal solution.
[1] James P. Boyle and Richard L. Dykstra. “A Method for Finding Projectionsonto the Intersection of Convex Sets in Hilbert Spaces”. In:Advances in OrderRestricted Statistical Inference. Ed. by Richard Dykstra, Tim Robertson, andFarroll T. Wright. New York, NY: Springer New York, 1986, pp. 28–47.
[2] Philip I. Davies and Nicholas J. Higham. “Numerically stable generation ofcorrelation matrices and their factors”. In:BIT40.4 (2000), pp. 640–651.
[3] Richard L. Dykstra. “An algorithm for restricted least squares regression”.In:J. Amer. Statist. Assoc.78.384 (1983), pp. 837–842.
[4] W. Glunt et al. “An alternating projection algorithm for computing the near-est Euclidean distance matrix”. In:SIAM J. Matrix Anal. Appl.11.4 (1990),pp. 589–600.
[5] Shih-Ping Han. “A successive projection method”. In:Mathematical Program-ming40.1 (Jan. 1988), pp. 1–14.
[6] Nicholas J. Higham. “Computing the nearest correlation matrix—a problemfrom finance”. In:IMA J. Numer. Anal.22.3 (2002), pp. 329–343.
[7] P. E. Jupp and K. V. Mardia. “A general correlation coefficient for directionaldata and related regression problems”. In:Biometrika67.1 (1980), pp. 163–173.
[8] David G. Luenberger.Optimization by vector space methods. John Wiley &Sons, Inc., New York-London-Sydney, 1969, pp. xvii+326.
[9] John von Neumann.Functional Operators. II. The Geometry of OrthogonalSpaces. Annals of Mathematics Studies, no. 22. Princeton University Press,Princeton, N. J., 1950, pp. iii+107.
[10] R. Tyrrell Rockafellar.Convex analysis. Princeton Mathematical Series, No.28. Princeton University Press, Princeton, N.J., 1970, pp. xviii+451.
校內:2025-07-01公開