簡易檢索 / 詳目顯示

研究生: 趙子緯
Zhao, Zi-Wei
論文名稱: 運動透過活化下視丘室旁核中的催產素神經元來增強靜息副交感神經活性
Exercise enhances the resting parasympathetic nervous system activity through the activation of oxytocinergic neurons in the hypothalamic paraventricular nucleus
指導教授: 郭余民
Kuo, Yu-Min
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 91
中文關鍵詞: 運動副交感神經系統催產素旁室核
外文關鍵詞: exercise, parasympathetic nervous system, oxytocin, hypothalamic paraventricular nucleus
ORCID: 0000-0003-2332-0392
相關次數: 點閱:26下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據美國心臟協會的資料,一般人的靜息心率每分鐘約跳60到100下,而長跑運動員可低至每分鐘40下。然而,長期運動訓練是如何降低靜息心率的機制仍不清楚,目前的證據顯示與靜息時自主神經系統中之副交感神經活性增加有關。副交感神經系統在大腦的調節中心位於下視丘旁室核 (hypothalamic paraventricular nucleus)。已知,旁室核中的催產素神經元會投射到背側迷走神經複合體 (dorsal vagal complex),此一副交感神經路徑可透過迷走神經纖維調控心臟、肺臟和胃腸道的收縮。據此,我假設長期運動可透過調控旁室核中的催產素神經元,進而影響迷走神經的活性,導致靜息心率降低。為了檢驗這一假設,我們以小鼠為研究模型,分析運動訓練對小鼠的靜息心率和心率變異性(heart rate variability)的影響,作為評估自主神經系統活性的指標。我們讓八週齡的雄性小鼠進行為期六週或八週的自主滾輪跑步運動,或是不同強度(輕度或中度)的跑步機運動訓練。結果發現,只有中等強度跑步機運動訓練八週後的小鼠,在運動結束2天後才會顯現較低的靜息心率;同時,其副交感神經活性亦顯著增強。免疫螢光染色顯示,這些小鼠旁室核尾部區域的催產素細胞數目、共表達c-Fos的催產素細胞數目,以及背側迷走神經複合體中之背側迷走運動核 (dorsal vagal motor nucleus) 和孤束核 (nucleus tractus solitarius)的催產素纖維訊號量都有增加。把逆行追蹤劑FluoroGold注射入背側迷走運動核7天後,可在旁室核尾部區域內的細胞發現FluoroGold訊號,但是在旁室核頭部區域則無。在這些FluoroGold細胞中,我發現共表達催產素的數目,以及共表達c-Fos與催產素的數目會因八週中等強度跑步機運動訓練而增加。這些結果顯示長期中等強度跑步運動可增強旁室核尾部區域內的催產素神經元活性,進而增強副交感神經的活性。為了確立旁室核中催產素神經元與運動活化副交感神經活性的因果關係,我使用體內嗎啉基寡核苷 (Vivo-Morpholinos) 抑制旁室核中催產素蛋白質的轉譯,或是在以hM4Di-DREADDs (designer receptor exclusively activated by designer drugs)的方法在Oxytocin Ires Cre小鼠中抑制旁室核催產素神經元的活性。結果顯示,此二方法均能逆轉運動訓練所引起的靜息心率下降和副交感神經活性增強的反應。總結來說,本研究表明,長期中等強度跑步運動可增加旁室核尾部區域中催產素神經元的數目和活性,進而通過激活副交感神經活性,降低靜息心率。

    According to the American Heart Association, the resting heart rate (RHR) of an average person typically ranges from 60 to 100 beats per minute, while long-distance runners may have a RHR as low as 40 beats per minute. However, the mechanism underlying long-term exercise-induced reductions in RHR remains unclear. Current evidence suggests it may involve increased parasympathetic nervous system (PNS) activity in the resting state. The regulatory center of the PNS is located in the hypothalamic paraventricular nucleus (PVN). It has been shown that oxytocin neurons in the PVN project to the dorsal vagal complex, an efferent component of the PNS that regulates the heart, lungs, and gastrointestinal functions via the vagus nerve. Accordingly, I hypothesized that long-term exercise affects PVN oxytocin neuron activity, which in turn mediates vagus nerve activity, leading to reductions in RHR. To test this hypothesis, I used mice as an animal model to analyze the effects of long-term exercise on their RHR and heart rate variability, indicators of autonomic nervous system activity. Eight-week-old male mice were subjected to either six or eight weeks of voluntary wheel running exercise or treadmill exercise at two different intensities (mild or moderate). The results showed that only mice subjected to moderate-intensity treadmill exercise for eight weeks exhibited a lower RHR two days after the exercise, along with enhanced PNS activity. In these mice, immunofluorescence staining revealed an increased number of oxytocin cells in the caudal PVN, as well as a higher number of oxytocin cells co-expressing c-Fos in the same region. Additionally, oxytocin fiber signals were elevated in the dorsal vagal complex, specifically in the dorsal motor nucleus (DMV) and nucleus tractus solitarius. After injecting retrograde tracer FluoroGold into the DMV for 7 days, FluoroGold signals were detected in the cells of the caudal PVN, but not in the rostral PVN. Among these FluoroGold-positive cells, the number of cells co-expressing oxytocin, as well as those co-expressing both c-Fos and oxytocin, increased following eight-week moderate-intensity treadmill exercise. These results suggest that long-term moderate-intensity treadmill exercise enhanced the activity of oxytocin neurons in the caudal PVN, thereby increasing PNS activity. To verify the causal relationship between PVN oxytocin neurons and exercise-induced activation of PNS activity, I employed Vivo-Morpholinos to inhibit oxytocin protein translation in the PVN and used hM4Di-DREADDs (designer receptor exclusively activated by designer drugs) approach to inhibit the activity of PVN oxytocin neurons in Oxytocin-Ires-Cre mice. The results showed that both methods reversed the long-term exercise-induced reductions in RHR and enhanced PNS activity. In conclusion, this study demonstrates that long-term moderate-intensity treadmill running can increase the number and activity of oxytocin neurons in the caudal PVN, leading to enhanced PNS activity and consequently reducing RHR.

    摘要 II Abstract IV 誌謝 VI Table of Contents VII Lists of Figures X Abbreviations XII Chapter 1: Introduction 1 1.1. Autonomic Nervous System and Cardiovascular Control 1 1.2. Neural circuit of autonomic nervous system 2 1.3. Role of Oxytocin in Autonomic Modulation 3 1.4. Physical exercise physiology 4 1.5. Impact of Exercise on Cardiovascular Health 5 Chapter 2: Objective and Specific aims 7 Chapter 3: Materials and methods 8 3.1. Animals 8 3.2. Protocol of treadmill running exercise 8 3.3. Protocol of wheel running exercise 9 3.4. Blood collection and lactate measurements 9 3.5. Measurement of the autonomic parameter 10 3.6. Methacholine and atropine treatment 10 3.7. Blood collection and serum oxytocin measurement 11 3.8. Fluoro-Gold retrograde tracing 11 3.9. Knockdown of oxytocin in the PVN 11 3.10. Inhibition of oxytocin+ neuron transmission in the PVN 12 3.11. Brain preparation 12 3.12. Immunohistochemistry stain 12 3.13. Morphological analysis 13 3.14. Remodeling two-dimensional image into three-dimensional image 14 3.15. Statistical analysis 15 Chapter 4: Results 16 4.1. Assessment of cardiac autonomic responses and chronic exercise regimens in Mice 16 4.2. Eight-week moderate-intensity exercise would elevate parasympathetic nervous activity in the resting state 16 4.3. Exercise elevated oxytocin numbers in the cPVN and terminals the dorsal vagal complex in the medulla oblongata 18 4.4. Exercise elevated oxytocin neuronal activation in the cPVN 20 4.5. Exercise enhanced oxytocinergic circuit from the cPVN to DMV 21 4.6. The Vivo-Morpholinos disrupted the expression of oxytocin in both the PVN and DMV and effectively blocked exercise-induced autonomic responses 22 4.7. The CNO-driven oxytocin neuronal activity inhibition of hM4Di-DREADD approach disrupted the activity of oxytocin in cPVN and effectively blocked exercise-induced autonomic responses 24 Chapter 5: Discussion 27 Chapter 6: Conclusion 35 Chapter 7: References 36 Chapter 8: Figures 48 Chapter 9: Publications 76

    1. Gibbons, C.H., Basics of autonomic nervous system function. Handb Clin Neurol, 2019. 160: p. 407-418.
    2. Jansen, A.S., et al., Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science, 1995. 270(5236): p. 644-646.
    3. Low, P.A., Autonomic nervous system function. J Clin Neurophysiol, 1993. 10(1): p. 14-27.
    4. Gordan, R., J.K. Gwathmey, and L.H. Xie, Autonomic and endocrine control of cardiovascular function. World J Cardiol, 2015. 7(4): p. 204-214.
    5. Berntson, G.G., et al., Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology, 1997. 34(6): p. 623-648.
    6. Sztajzel, J., Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Med Wkly, 2004. 134(35-36): p. 514-522.
    7. Thayer, J.F., et al., A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev, 2012. 36(2): p. 747-756.
    8. Vanderlei, L.C., et al., Basic notions of heart rate variability and its clinical applicability. Rev Bras Cir Cardiovasc, 2009. 24(2): p. 205-217.
    9. Ernst, G., Heart-Rate Variability-More than Heart Beats? Front Public Health, 2017. 5: p. 240.
    10. Sgoifo, A., et al., Autonomic dysfunction and heart rate variability in depression. Stress, 2015. 18(3): p. 343-352.
    11. Llewellyn-Smith, I.J., et al., Spinally projecting preproglucagon axons preferentially innervate sympathetic preganglionic neurons. Neuroscience, 2015. 284: p. 872-887.
    12. Islami, H., et al., In vitro examination of ontogenesis of developing neuronal cells in vagal nuclei in medulla oblongata in newborns. Bosn J Basic Med Sci, 2008. 8(4): p. 381-385.
    13. Martin, D.S. and J.R. Haywood, Sympathetic nervous system activation by glutamate injections into the paraventricular nucleus. Brain Res, 1992. 577(2): p. 261-267.
    14. van-Hover, C. and C. Li, Stress-activated afferent inputs into the anterior parvicellular part of the paraventricular nucleus of the hypothalamus: Insights into urocortin 3 neuron activation. Brain Res, 2015. 1611: p. 29-43.
    15. Ruyle, B.C., et al., Hypoxia activates a neuropeptidergic pathway from the paraventricular nucleus of the hypothalamus to the nucleus tractus solitarii. Am J Physiol Regul Integr Comp Physiol, 2018. 315(6): p. R1167-R1182.
    16. Fukushima, A., N. Kataoka, and K. Nakamura, An oxytocinergic neural pathway that stimulates thermogenic and cardiac sympathetic outflow. Cell Rep, 2022. 40(12): p. 111380.
    17. Ferguson, A.V., K.J. Latchford, and W.K. Samson, The paraventricular nucleus of the hypothalamus - a potential target for integrative treatment of autonomic dysfunction. Expert Opin Ther Targets, 2008. 12(6): p. 717-727.
    18. Pyner, S. and J.H. Coote, Identification of branching paraventricular neurons of the hypothalamus that project to the rostroventrolateral medulla and spinal cord. Neuroscience, 2000. 100(3): p. 549-556.
    19. Affleck, V.S., J.H. Coote, and S. Pyner, The projection and synaptic organisation of NTS afferent connections with presympathetic neurons, GABA and nNOS neurons in the paraventricular nucleus of the hypothalamus. Neuroscience, 2012. 219(1-2): p. 48-61.
    20. Bentzen, B.H. and M. Grunnet, Central and Peripheral GABA(A) Receptor Regulation of the Heart Rate Depends on the Conscious State of the Animal. Adv Pharmacol Sci, 2011. 2011: p. 578273.
    21. Park, J.B., et al., Regulation of tonic GABA inhibitory function, presympathetic neuronal activity and sympathetic outflow from the paraventricular nucleus by astroglial GABA transporters. J Physiol, 2009. 587(Pt 19): p. 4645-4660.
    22. Kc, P. and T.E. Dick, Modulation of cardiorespiratory function mediated by the paraventricular nucleus. Respir Physiol Neurobiol, 2010. 174(1-2): p. 55-64.
    23. Dupont, A.G. and L. Legat, GABA is a mediator of brain AT(1) and AT(2) receptor-mediated blood pressure responses. Hypertens Res, 2020. 43(10): p. 995-1005.
    24. Brooks, V.L., R.A. Dampney, and C.M. Heesch, Pregnancy and the endocrine regulation of the baroreceptor reflex. Am J Physiol Regul Integr Comp Physiol, 2010. 299(2): p. R439-R451.
    25. Pyner, S., The paraventricular nucleus and heart failure. Exp Physiol, 2014. 99(2): p. 332-339.
    26. Rigney, N., et al., Oxytocin, Vasopressin, and Social Behavior: From Neural Circuits to Clinical Opportunities. Endocrinology, 2022. 163(9): p. bqac111.
    27. Chen, S., et al., Morpho-Electric Properties and Diversity of Oxytocin Neurons in Paraventricular Nucleus of Hypothalamus in Female and Male Mice. J Neurosci, 2022. 42(14): p. 2885-2904.
    28. Love, T.M., Oxytocin, motivation and the role of dopamine. Pharmacol Biochem Behav, 2014. 119: p. 49-60.
    29. Marsh, N., et al., Oxytocin and the Neurobiology of Prosocial Behavior. Neuroscientist, 2021. 27(6): p. 604-619.
    30. Higa, K.T., et al., Baroreflex control of heart rate by oxytocin in the solitary-vagal complex. Am J Physiol Regul Integr Comp Physiol, 2002. 282(2): p. R537-R545.
    31. Dyavanapalli, J., et al., Activation of Oxytocin Neurons Improves Cardiac Function in a Pressure-Overload Model of Heart Failure. JACC Basic Transl Sci, 2020. 5(5): p. 484-497.
    32. Jameson, H., et al., Oxytocin neuron activation prevents hypertension that occurs with chronic intermittent hypoxia/hypercapnia in rats. Am J Physiol Heart Circ Physiol, 2016. 310(11): p. H1549-H1557.
    33. Norman, G.J., et al., Oxytocin increases autonomic cardiac control: moderation by loneliness. Biol Psychol, 2011. 86(3): p. 174-180.
    34. Papazoglou, I., et al., A distinct hypothalamus-to-beta cell circuit modulates insulin secretion. Cell Metab, 2022. 34(2): p. 285-298 e7.
    35. Yang, Z., D. Han, and J.H. Coote, Cardiac sympatho-excitatory action of PVN-spinal oxytocin neurones. Auton Neurosci, 2009. 147(1-2): p. 80-85.
    36. Yee, J.R., et al., Oxytocin promotes functional coupling between paraventricular nucleus and both sympathetic and parasympathetic cardioregulatory nuclei. Horm Behav, 2016. 80: p. 82-91.
    37. Pinol, R.A., et al., Visualization of oxytocin release that mediates paired pulse facilitation in hypothalamic pathways to brainstem autonomic neurons. PLoS One, 2014. 9(11): p. e112138.
    38. Dyavanapalli, J., Novel approaches to restore parasympathetic activity to the heart in cardiorespiratory diseases. Am J Physiol Heart Circ Physiol, 2020. 319(6): p. H1153-H1161.
    39. Gilbey, M.P., et al., The influence of the paraventriculo-spinal pathway, and oxytocin and vasopressin on sympathetic preganglionic neurones. Brain Res, 1982. 251(2): p. 283-290.
    40. Ribeiro, M.M., A. Andrade, and I. Nunes, Physical exercise in pregnancy: benefits, risks and prescription. J Perinat Med, 2022. 50(1): p. 4-17.
    41. Govindaraj, R., et al., Yoga and physical exercise - a review and comparison. Int Rev Psychiatry, 2016. 28(3): p. 242-253.
    42. Kirk-Sanchez, N.J. and E.L. McGough, Physical exercise and cognitive performance in the elderly: current perspectives. Clin Interv Aging, 2014. 9: p. 51-62.
    43. Han, A., et al., Effectiveness of exercise intervention on improving fundamental movement skills and motor coordination in overweight/obese children and adolescents: A systematic review. J Sci Med Sport, 2018. 21(1): p. 89-102.
    44. Cassilhas, R.C., S. Tufik, and M.T. de Mello, Physical exercise, neuroplasticity, spatial learning and memory. Cell Mol Life Sci, 2016. 73(5): p. 975-983.
    45. Valenzuela, P.L., et al., Exercise benefits on Alzheimer's disease: State-of-the-science. Ageing Res Rev, 2020. 62: p. 101108.
    46. Xu, X., Z. Fu, and W. Le, Exercise and Parkinson's disease. Int Rev Neurobiol, 2019. 147: p. 45-74.
    47. White, D.W. and P.B. Raven, Autonomic neural control of heart rate during dynamic exercise: revisited. J Physiol, 2014. 592(12): p. 2491-2500.
    48. Fu, Q. and B.D. Levine, Exercise and the autonomic nervous system. Handb Clin Neurol, 2013. 117: p. 147-160.
    49. Brandao, M.U., et al., Left ventricular function during dynamic exercise in untrained and moderately trained subjects. J Appl Physiol (1985), 1993. 75(5): p. 1989-1995.
    50. D'Andrea, A., et al., Effects of different training protocols on left ventricular myocardial function in competitive athletes: a Doppler tissue imaging study. Ital Heart J, 2002. 3(1): p. 34-40.
    51. Huang, G., et al., Resting heart rate changes after endurance training in older adults: a meta-analysis. Med Sci Sports Exerc, 2005. 37(8): p. 1381-1386.
    52. Tanna, M.S., F.H. Messerli, and S. Bangalore, Stable coronary artery disease: are there therapeutic benefits of heart rate lowering? J Hypertens, 2019. 37(6): p. 1112-1118.
    53. Hjalmarson, A., Significance of reduction in heart rate in cardiovascular disease. Clin Cardiol, 1998. 21(12 Suppl 2): p. II3-II7.
    54. Fox, K., et al., Resting heart rate in cardiovascular disease. Journal of the American College of Cardiology, 2007. 50(9): p. 823-830.
    55. Iwasaki, K., et al., Dose-response relationship of the cardiovascular adaptation to endurance training in healthy adults: how much training for what benefit? J Appl Physiol (1985), 2003. 95(4): p. 1575-1583.
    56. O'Keefe, J.H., et al., Potential adverse cardiovascular effects from excessive endurance exercise. Mayo Clin Proc, 2012. 87(6): p. 587-595.
    57. Okazaki, K., et al., Dose-response relationship of endurance training for autonomic circulatory control in healthy seniors. J Appl Physiol (1985), 2005. 99(3): p. 1041-1049.
    58. Galbreath, M.M., et al., Effects of exercise training on arterial-cardiac baroreflex function in POTS. Clin Auton Res, 2011. 21(2): p. 73-80.
    59. Joyner, M.J. and D.J. Green, Exercise protects the cardiovascular system: effects beyond traditional risk factors. J Physiol, 2009. 587(Pt 23): p. 5551-5558.
    60. Hsu, Y.C., et al., Long-term moderate exercise accelerates the recovery of stress-evoked cardiovascular responses. Stress, 2016. 19(1): p. 125-132.
    61. Mee-Inta, O., Z.W. Zhao, and Y.M. Kuo, Physical Exercise Inhibits Inflammation and Microglial Activation. Cells, 2019. 8(7): p. 691.
    62. Abreu, P., et al., Anaerobic threshold employed on exercise training prescription and performance assessment for laboratory rodents: A short review. Life Sci, 2016. 151: p. 1-6.
    63. Speerschneider, T. and M.B. Thomsen, Physiology and analysis of the electrocardiographic T wave in mice. Acta Physiol (Oxf), 2013. 209(4): p. 262-271.
    64. Kober, F., et al., Cine-MRI assessment of cardiac function in mice anesthetized with ketamine/xylazine and isoflurane. MAGMA, 2004. 17(3-6): p. 157-161.
    65. Thireau, J., et al., Heart rate variability in mice: a theoretical and practical guide. Exp Physiol, 2008. 93(1): p. 83-94.
    66. Tarvainen, M.P., et al., Kubios HRV--heart rate variability analysis software. Comput Methods Programs Biomed, 2014. 113(1): p. 210-220.
    67. Aschar-Sobbi, R., et al., Increased atrial arrhythmia susceptibility induced by intense endurance exercise in mice requires TNFalpha. Nat Commun, 2015. 6: p. 6018.
    68. Wu, S.Y., et al., Running exercise protects the substantia nigra dopaminergic neurons against inflammation-induced degeneration via the activation of BDNF signaling pathway. Brain Behav Immun, 2011. 25(1): p. 135-146.
    69. Lin, T.W., S.F. Tsai, and Y.M. Kuo, Physical Exercise Enhances Neuroplasticity and Delays Alzheimer's Disease. Brain Plast, 2018. 4(1): p. 95-110.
    70. Tsai, S.F., et al., Long-Term Moderate Exercise Rescues Age-Related Decline in Hippocampal Neuronal Complexity and Memory. Gerontology, 2018. 64(6): p. 551-561.
    71. Stornetta, R.L., et al., Cholinergic neurons in the mouse rostral ventrolateral medulla target sensory afferent areas. Brain Struct Funct, 2013. 218(2): p. 455-75.
    72. Liwang, J.K., et al., Protocol for using serial two-photon tomography to map cell types and cerebrovasculature at single-cell resolution in the whole adult mouse brain. STAR Protoc, 2023. 4(1): p. 102048.
    73. Iwasaki, M., et al., An analgesic pathway from parvocellular oxytocin neurons to the periaqueductal gray in rats. Nat Commun, 2023. 14(1): p. 1066.
    74. Zhang, B., et al., Reconstruction of the Hypothalamo-Neurohypophysial System and Functional Dissection of Magnocellular Oxytocin Neurons in the Brain. Neuron, 2021. 109(2): p. 331-346 e7.
    75. Li, M.M., et al., The Paraventricular Hypothalamus Regulates Satiety and Prevents Obesity via Two Genetically Distinct Circuits. Neuron, 2019. 102(3): p. 653-667 e6.
    76. Strain, M.M., et al., Dorsal motor vagal neurons can elicit bradycardia and reduce anxiety-like behavior. iScience, 2024. 27(3): p. 109137.
    77. Michelini, L.C., Oxytocin in the NTS. A new modulator of cardiovascular control during exercise. Ann N Y Acad Sci, 2001. 940: p. 206-220.
    78. Just, A., J. Faulhaber, and H. Ehmke, Autonomic cardiovascular control in conscious mice. Am J Physiol Regul Integr Comp Physiol, 2000. 279(6): p. R2214-R2221.
    79. Houle, M.S. and G.E. Billman, Low-frequency component of the heart rate variability spectrum: a poor marker of sympathetic activity. Am J Physiol, 1999. 276(1): p. H215-H223.
    80. Goldstein, D.S., et al., Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Exp Physiol, 2011. 96(12): p. 1255-261.
    81. Despres, G., I. Veissier, and A. Boissy, Effect of autonomic blockers on heart period variability in calves: evaluation of the sympathovagal balance. Physiol Res, 2002. 51(4): p. 347-353.
    82. Duschek, S., et al., Modulations of autonomic cardiovascular control following acute alpha-adrenergic treatment in chronic hypotension. Hypertens Res, 2009. 32(11): p. 938-943.
    83. Montano, N., et al., Central vagotonic effects of atropine modulate spectral oscillations of sympathetic nerve activity. Circulation, 1998. 98(14): p. 1394-1399.
    84. Salatini, R., et al., Cardiac autonomic modulation in children with severe liver disease, before and after liver transplantation. Transl Pediatr, 2022. 11(4): p. 438-447.
    85. Billman, G.E., et al., Exercise training-induced bradycardia: evidence for enhanced parasympathetic regulation without changes in intrinsic sinoatrial node function. J Appl Physiol (1985), 2015. 118(11): p. 1344-1355.
    86. Marin, J.M.S., et al., Influence of the exercise frequency, intensity, time and type according to different training modalities on the cardiac rehabilitation programs. European Journal of Human Movement, 2018(41): p. 49-72.
    87. Yan, Z., et al., Cardiac Effects of Treadmill Running at Different Intensities in a Rat Model. Front Physiol, 2021. 12: p. 774681.
    88. Alberi, S., J.J. Dreifuss, and M. Raggenbass, The oxytocin-induced inward current in vagal neurons of the rat is mediated by G protein activation but not by an increase in the intracellular calcium concentration. Eur J Neurosci, 1997. 9(12): p. 2605-2612.
    89. Son, S., et al., Whole-Brain Wiring Diagram of Oxytocin System in Adult Mice. J Neurosci, 2022. 42(25): p. 5021-5033.
    90. Jankowski, M., T.L. Broderick, and J. Gutkowska, The Role of Oxytocin in Cardiovascular Protection. Front Psychol, 2020. 11: p. 2139.
    91. Mack, S.O., et al., Paraventricular oxytocin neurons are involved in neural modulation of breathing. J Appl Physiol (1985), 2002. 92(2): p. 826-834.
    92. Lee, H.W., et al., Effects of exercise on BDNF-TrkB signaling in the paraventricular nucleus and rostral ventrolateral medulla in rats post myocardial infarction. Neuropeptides, 2020. 82: p. 102058.
    93. Massari, V.J., T.A. Johnson, and P.J. Gatti, Cardiotopic organization of the nucleus ambiguus? An anatomical and physiological analysis of neurons regulating atrioventricular conduction. Brain Res, 1995. 679(2): p. 227-240.
    94. Standish, A., L.W. Enquist, and J.S. Schwaber, Innervation of the heart and its central medullary origin defined by viral tracing. Science, 1994. 263(5144): p. 232-234.
    95. Ter Horst, G.J., et al., Neuroanatomy of cardiac activity-regulating circuitry: a transneuronal retrograde viral labelling study in the rat. Eur J Neurosci, 1996. 8(10): p. 2029-2041.
    96. Nosaka, S., K. Yasunaga, and S. Tamai, Vagal cardiac preganglionic neurons: distribution, cell types, and reflex discharges. Am J Physiol, 1982. 243(1): p. R92-98.
    97. Farmer, D.G., et al., Brainstem sources of cardiac vagal tone and respiratory sinus arrhythmia. J Physiol, 2016. 594(24): p. 7249-7265.
    98. McAllen, R.M. and K.M. Spyer, Two types of vagal preganglionic motoneurones projecting to the heart and lungs. J Physiol, 1978. 282: p. 353-364.
    99. Hornung, E., et al., Neuromodulatory co-expression in cardiac vagal motor neurons of the Dorsal Motor Nucleus of the Vagus. iScience, 2024.
    100. Hrabovszky, E., et al., Glutamatergic innervation of the hypothalamic median eminence and posterior pituitary of the rat. Neuroscience, 2007. 144(4): p. 1383-1392.
    101. Vanhatalo, S. and S. Soinila, Pituitary gland receives both central and peripheral neuropeptide Y innervation. Brain Res, 1996. 740(1-2): p. 253-260.
    102. Tsai, S.F., et al., High-fat diet induces depression-like phenotype via astrocyte-mediated hyperactivation of ventral hippocampal glutamatergic afferents to the nucleus accumbens. Mol Psychiatry, 2022. 27(11): p. 4372-4384.
    103. Leuner, B., J.M. Caponiti, and E. Gould, Oxytocin stimulates adult neurogenesis even under conditions of stress and elevated glucocorticoids. Hippocampus, 2012. 22(4): p. 861-868.
    104. Madrigal, M.P. and S. Jurado, Specification of oxytocinergic and vasopressinergic circuits in the developing mouse brain. Commun Biol, 2021. 4(1): p. 586.
    105. Barez-Lopez, S., et al., Transcriptional and Post-Transcriptional Regulation of Oxytocin and Vasopressin Gene Expression by CREB3L1 and CAPRIN2. Neuroendocrinology, 2022. 112(11): p. 1058-77.
    106. Santos, C.R., et al., Exercise training abrogates age-dependent loss of hypothalamic oxytocinergic circuitry and maintains high parasympathetic activity. J Neuroendocrinol, 2018: p. e12601.
    107. Ordenes, P., et al., Lactate activates hypothalamic POMC neurons by intercellular signaling. Sci Rep, 2021. 11(1): p. 21644.
    108. de Castro Abrantes, H., et al., The Lactate Receptor HCAR1 Modulates Neuronal Network Activity through the Activation of G(alpha) and G(betagamma) Subunits. J Neurosci, 2019. 39(23): p. 4422-4433.
    109. Bealer, S.L. and W.R. Crowley, Histaminergic control of oxytocin release in the paraventricular nucleus during lactation in rats. Exp Neurol, 2001. 171(2): p. 317-322.

    無法下載圖示 校內:2029-08-06公開
    校外:2029-08-06公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE