簡易檢索 / 詳目顯示

研究生: 黃祥紋
Huang, Shiang-Wen
論文名稱: PVDF水下聽音器之製作與特性量測
Fabrication and Characterization of PVDF Hydrophone
指導教授: 李永春
Lee, Yung-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 127
中文關鍵詞: 靈敏度水下聽音器平面式超音波換能器
外文關鍵詞: sensitivity, ultrasonic transducer, hydrophone, PVDF
相關次數: 點閱:67下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   PVDF高分子壓電薄膜具有與水的聲學阻抗接近、良好的橈性與可變形性、高機械韌性、材料之多樣性與取得容易、加工容易等優點,因此適用於水下聽音器之製作。
      在本論文中,使用準分子雷射加工機加工PVDF壓電薄膜,將表面電極刻除成設計之圖樣,以製作針尖式及薄膜式兩種型式之水下聽音器;並設計製作平面式超音波換能器,以期能在水下聽音器的感測區上產生均勻的聲壓,使得水下聽音器的校正與實驗量測能更準確、可靠度更高。水下聽音器的基本重要規格:靈敏度特性為研究的重要對象,討論壓電薄膜厚度、感測面積、背層材料與頻率等參數對靈敏度的影響。
      本論文之目的為建立一套水下聽音器校正量測系統,研究對象為PVDF高分子壓電材料,研究載具為PVDF水下聽音器,研究探討在頻率1~20MHz的範圍裡,各種不同的參數對靈敏度的影響。經由水下聽音器的理論分析、程式模擬、設計分析、製作技術、實體測試、標準校正、系統整合與實際應用測試,以瞭解其靈敏度特性、應用潛力與可能發生的困難與問題。

      PVDF films are frequently used piezoelectric materials as sensing materials for fabricating hydrophones. They have a number of advantages such as lower acoustic impedance, flexibility in shaping, high mechanical strength, and commercial availability in a variety of film thickness, surface electrode coating, protection coating layers, etc. In this work, we use an excimer laser micro-machining system to fabricate PVDF hydrophones and hydrophone arrays. The metal electrodes deposited on both sides of the polarized PVDF have been patterned by an excimer laser with a direct writing and scanning method. Both needle type and membrane type PVDF hydrophones or hydrophone arrays are then conveniently constructed. We also fabricate several ultrasonic transducers for producing a uniform sound pressure field on the sensing element of hydrophones. The characteristics of the fabricated hydrophones, especially the sensitivity, have been determined at frequency ranging from 1 MHz up to 20 MHz. These data are correlated to several important parameters, such as the PVDF film thickness, area size of sensing element, and backing material properties.
      To characterize the fabricated PVDF hydrophones, an ultrasound detect system under water for the hydrophones are set up. The investigations include theoretical analysis and modeling, computer software simulation, hydrophone design and fabrication, experiment testing, standard calibration, and system integration. A number of phenomena of the fabricated PVDF hydrophones and hydrophone arrays are observed.

    摘要………………………………………………I Abstract…………………………………………II 致謝………………………………………………III 目錄………………………………………………IV 表目錄……………………………………………VII 圖目錄……………………………………………VIII 符號………………………………………………XIII 第一章 導論……………………………………1 1-1 研究背景及目的……………………………1 1-2 文獻回顧……………………………………2 1-3 本文架構……………………………………5 第二章 理論基礎………………………………7 2-1 壓電材料……………………………………7 2-1-1 壓電材料的壓電性………………………9 2-1-2 壓電材料的重要參數……………………10 2-1-3 PVDF壓電薄膜的材料規格與特性………12 2-1-4 PVDF水下聽音器的特性與應用…………12 2-2 平面式超音波換能器………………………15 2-2-1 壓電片共振頻率…………………………16 2-2-2 平面式超音波換能器的發射聲場………18 2-3 PVDF水聽器的模擬分析……………………23 2-3-1 壓電材料之類比模型……………………23 2-3-2 水下聽音器的模擬及分析………………28 2-4 信號放大器對感測系統之影響……………38 第三章 設計與製程……………………………40 3-1 水下聽音器之設計與製程…………………40 3-1-1 儀器設備…………………………………40 3-1-2 鼓膜式水聽器……………………………42 3-1-3 針尖式水聽器……………………………45 3-2 信號放大電路與濾波電路之設計與製作…48 3-2-1 信號放大電路……………………………48 3-2-2 濾波電路…………………………………51 3-3 平面式超音波換能器之設計與製程………54 第四章 實驗量測………………………………58 4-1 量測系統與硬體設備………………………58 4-1-1 換能器特性量測系統……………………58 4-1-2 水下聲場掃描系統………………………60 4-1-3 硬體設備…………………………………67 4-2 實驗量測與結果……………………………73 4-2-1 平面式超音波換能器的特性與聲場……73 4-2-2 PVDF水聽器的靈敏度……………………83 4-2-3 濾波電路的濾波效果……………………100 4-3 一維陣列感測器掃描聲場…………………103 第五章 結論與未來展望………………………108 5-1 結論…………………………………………108 5-2 未來展望……………………………………110 參考文獻…………………………………………111

    [1] E. Fukada, “History and Recent Progress in Piezoelectric Polymers,” IEEE Trans. UFFC, vol. 47, no. 6, pp. 1277-1290, 2000.

    [2] Y.C. Lee, J.M. Yu and S.W. Huang, “Fabrication and Characterization of a PVDF Hydrophone Array Transducer,” Key Engendering Materials, vol. 270-273, pp. 1406-1413, 2004.

    [3] G.R. Harris, “Hydrophone Measurements in Diagnostic Ultrasound Fields,” IEEE Trans. UFFC, vol. 35, no. 2, pp. 87-101, 1988.

    [4] M.D. Sherar and F.S. Foster, “The Design and Fabrication of High Frequency Poly(vinylidene Fluoride) Transducers,” Ultrasound Imaging, vol. 11, pp. 75-94, 1989.

    [5] H. Kawai, “The Piezoelectricity of Poly(vinylidene Fluoride),” Jpn. J. Appl. Phys., vol. 8, pp. 975-976, 1969.

    [6] F. Bauer, “PVDF Shock Sensors: Applications to Polar Materials and High Explosives,” IEEE Trans. UFFC, vol. 47, no. 6, pp. 1448-1454, 2000.

    [7] Y. Yuan, B. Shi and Z. Liu, “A New Multilayer Planar PVDF Standard Hydrophone and its Applications,” IEEE Trans. UFFC, vol. 42, no. 5, pp. 958-964, 1995.

    [8] A. Hurrell and F. Duck, “A Two-Dimensional Hydrophone Array Using Piezo-Electric PVDF,” IEEE Trans. UFFC, vol. 47, no. 6, pp. 1345-1353, 2000.

    [9] M.C. Ziskin and P.A. Lewin, Ultrasonic Exposimetry, CRC Press, Boca Ration, pp. 185-215, 1993.

    [10] P.A. Lewin and R.C. Chivers, “Two Miniature Ceramic Ultrasonic Probes,” J. Phys. E: Sci. Instrum., vol. 14, pp. 1420-1424, 1981.

    [11] P.A. Lewin, “Miniature Piezoelectric Polymer Ultrasonic Hydrophone Probes,” Ultrasonics, vol. 19, pp. 213-216, 1981.

    [12] M. Platte, “A Polyvinylidene Fluoride Needle Hydrophone for Ultrasonic Applications,” Ultrasonics, vol. 23, pp. 113-118, 1985.

    [13] K.C. Shotton, D.R. Bacon and R.M. Quilliam, “A PVDF Membrane Hydrophone for Operation in the Range 0.5 MHz to 15 MHz,” Ultrasonics, vol. 18, no. 3, pp. 123-126, 1980.

    [14] D.R. Bacon, “Characteristics of a PVDF Membrane Hydrophone for Use in the Range 1-100 MHz,” IEEE Trans. Son. Ultrason., SU-29, no. 1, pp. 18-25, 1982.

    [15] G.R. Harris, “Sensitivity Considerations for PVDF Hydrophones Using the Spot-Poled Membrane Design,” IEEE Trans. Son. Ultrason., SU-29, no. 6, pp. 370-377, 1982.

    [16] R.C. Preston et al., “PVDF Membrane Hydrophone Performance Properties and Their Relevance to the Measurement of the Acoustic Output of Medical Ultrasonic Equipment,” J. Phys. E: Sci. Instrum., vol. 16, pp. 786-796, 1983.

    [17] B. Fay et al., “Frequency Response of PVDF Needle-Type Hydrophones,” Ultrasound in Med. & Biol., vol. 20, no. 4, pp. 361-366, 1994.

    [18] W.P. Mason, Electromechanical Transducer and Wave Filter, D. Van Nostrand Co., New York, 1948.

    [19] J.F. Rosenbaum, Bulk Acoustic Wave Theory and Devices, Artech House, Boston, 1988.

    [20] R. Krimholtz, D.A. Leedom and G.L. Matthaei, “New Equivalent Circuit for Elementary Piezoelectric Transducer,” Electron. Lett., vol. 6, no. 13, pp. 398-399, 1970.

    [21] T.T. Wang, J.M. Herbert and A.M. Glass, The Applications of Ferroelectric Polymers, Blackie, New York, 1988.

    [22] H. Ohigashi et al., “Analysis of Frequency Response Characteristics of Polymer Ultrasonic Transducers,” Jpa. J. Appl. Phys., vol. 27, no. 3, pp. 354-360, 1988.

    [23] L.F. Brown and J.L. Mason, “Disposable PVDF Ultrasonic Transducers for Nondestructive Testing Applications,” IEEE Trans. UFFC, vol. 43, no. 4, pp. 560-568, 1996.

    [24] R.C. Preston et al., “Interlaboratory Comparison of Hydrophone Calibrations.” IEEE Trans. UFFC, vol. 35, no. 2, pp. 206-213, 1988.

    [25] G. Ludwig and K. Brendel, “Calibration of Hydrophones Based on Reciprocity and Time Delay Spectrometry,” IEEE Trans. UFFC, vol. 35, no. 2, pp. 168-174, 1988.

    [26] P.C. Pedersen, P.A. Lewin and L. Bjorno, “Application of Time-Delay Spectrometry for Calibration of Ultrasonic Transducers,” IEEE Trans. UFFC, vol. 35, no. 2, pp. 185-205, 1988.

    [27] D.R. Bacon, “Primary Calibration of Ultrasonic Hydrophones Using Optical Interferometry,” IEEE Trans. UFFC, vol. 35, no. 2, pp. 152-161, 1988.

    [28] C. Koch and W. Mollcenstruck, “Primary Calibration of Hydrophones with Extended Frequency Range 1 to 70 MHz Using Optical Interferometry,” IEEE Trans. UFFC, vol. 46, no. 5, pp. 1303-1314, 1999.

    [29] 花聰傑, 微小型PVDF壓力感測器之聲學特性研究, 國立成功大學機械工程研究所碩士論文, 民國92年.

    [30] B.A. Auld, Acoustic Fields and Wave in Solids, John Wiley & Sons, New York, vol. 1, pp. 101-103, 1973.

    [31] 張建信, 高分子壓電薄膜的PSpice模擬應用於超聲波換能器, 國立成功大學機械工程研究所碩士論文, 民國89年.

    [32] P. Ueberschlag, ”PVDF Piezoelectric Polymer," Sensor Review, vol. 21, no. 2, pp. 118-125, 2001.

    [33] Goodfellow Catalogue, Goodfellow Co., PA, Berwyn, USA, 1998.

    [34] D.G. Shombert, S.W. Smith and G.R. Harris, “Angular Response of Miniature Ultrasonic Hydrophone,” Med. Phys., vol. 9, no. 4, pp. 484-492, 1982.

    [35] J. Krautkramer and H. Krautkramer, Ultrasonic Testing of Materials, Spring-Verlag, Berlin, 1977.

    [36] L.E. Kinsler et al., Fundamentals of Acoustics, Wiley, New York, 1982.

    [37] “IEEE Standard on Piezoelectricity,” ANSI/IEEE Std 176, 1987.

    [38] J. A. Hossack, P. Mauchamp and L.Ratsimandresy, “A High Bandwidth Transducer Optimized for Harmonic Imaging,” Proc. IEEE Ultrasonics Symposium, pp. 1021-1024, 2000.

    [39] Piezo Film Sensors Technical Manual – Internet Version, Measurement Specialties, Inc., part. 8, pp. 2-3, 1999.

    [40] Piezo Film Sensors Technical Manual – Internet Version, Measurement Specialties, Inc., Part. 3, pp. 4-13, 1999.

    [41] OPA657 Datasheet, Texas Instruments Inc., 2004.

    [42] 森 榮二, LC濾波器的設計與製作, 建興文化事業有限公司, 台北, 2003.

    下載圖示 校內:立即公開
    校外:2005-07-29公開
    QR CODE