| 研究生: |
陳彥傑 Chen, Yen-Chieh |
|---|---|
| 論文名稱: |
台灣山脈的構造地形指標特性
--以面積高度積分、地形碎形參數與
河流坡降指標為依據 Morphotectonic Features of Taiwan Mountain Belt Based on Hypsometric Integral, Topographic Fractals and SL Index |
| 指導教授: |
宋國城
Sung, Quo-Chen 簡錦樹 Jean, Jiin-Shuh |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 河流坡降指標 、碎形參數 、面積高度積分 、河流縱剖面擬合 、河流水力侵蝕模型 、均衡山脈 |
| 外文關鍵詞: | hypsometric integral, fractal parameter, stream-power erosion model, fitting of river longitudinal profile, stream length-gradient index, steady-state range |
| 相關次數: | 點閱:157 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蓬萊運動的弧陸斜碰撞使得台灣造山帶的山脈呈現崩塌(北部)、均衡(中部)、成長(南部)等三個不同演育階段的地形。河流水力侵蝕模型與基岩河道的河流縱剖面擬合分析的結果顯示,台灣均衡山脈的範圍北界約在蘭陽溪(東部)與大安溪(西部)附近,南界約在樂樂溪(東部)與老濃溪(西部)附近,其S-A關係圖呈現直線關係,河流縱剖面的擬合主要以指數函數為主,而位於均衡山脈以北與以南的山脈地區,其S-A關係圖則分別呈現下凹與上凸關係,河流縱剖面的擬合則以對數函數為主。
面積高度積分值(HI)的分佈與台灣地體生成的時序相關,除了最晚生成的平原區是因其沖積平原的性質而造成HI值的升高外,整體趨勢是中央山脈地質區相對於其兩側的海岸山脈與西部麓山帶早生成,其HI值相對較高,而西部麓山帶北段的HI值又比南段的高,暗示西部麓山帶的北段比南段早生成。此外,HI值在台灣西部海岸平原的分佈形態顯示,北港高區的影響不僅造成台灣西部前陸褶皺逆衝帶的發展,也造成近期台灣西部海岸平原沉積物的變形。
集水盆地的面積高度曲線型態與高程頻率分佈圖可反應該集水盆地的演育期與其內所殘留的土地體積分佈狀態。台灣的平原地形區中,單純的沖積平原其面積高度曲線呈現S形,高程頻率分佈集中在中高程部分,而構造陷落盆地或平原則呈現凹形,高程頻率分佈集中在低高程部分;西部麓山帶的面積高度曲線大致呈現凹形,高程頻率分佈集中在低高程部分。由於持續受到抬升作用的影響,西部麓山帶未來面積高度積分會逐漸增加,曲線朝S形發展,高程頻率往中高程集中。而於近期內抬升量較大的地區如林口、后里、湖口、台南台地等,其曲線呈現凸形,符合Strahler的幼年期;中央山脈地區的高程頻率分佈為常態分佈,曲線呈現S形且離散程度小,顯示此區的抬升作用與剝蝕作用達到平衡;海岸山脈的面積高度積分值偏低,曲線呈現凹形,高程頻率分佈主要在低高程的部分,與西部麓山帶的丘陵區型態類似。此外,一些尺度較小且近期內才形成的局部背斜或向斜構造,亦會造成局部面積高度積分值偏高或偏低的現象,顯示面積高度積分可用來偵測局部的構造變化。
以變異曲線法計測地形面的碎形參數時,可得到碎形維度值(D)、縱座標軸截距值(γ)與地表面任兩點間距離為40m時的坡度期望值等三個重要的地形碎形參數。發育較久的台灣山地地形特徵為起伏度大(γ大),地表粗糙度小(D小),最大坡度期望值大,而較近期發育的平原地形特徵則為起伏度小(γ小),地表粗糙度大(D大),最大坡度期望值小。由於地形特徵乃地形在形成過程中侵蝕的粗糙化作用、堆積的大尺度平滑化作用和擴散的小尺度平滑化作用間均衡的結果,而擴散作用的程度和時間成正比,因此地表粗糙度與最大坡度期望值亦反應了地形的發育期。
台灣中、北部地區構造線附近的標準化河流坡降指標(SL/k)值相對於嘉南至南部地區而言較高且Hack剖面呈現上凸形態的結果顯示,中、北部地區的構造活動傾向將應變潛能持續累積在地層中,而嘉南至南部地區則傾向將應變潛能以較高再現頻率的中、小規模地震釋放出來。其中位於北港高區以北斜壓帶的中部地區,具有高抬升累積與低水平縮短的地殼變形特徵,而位於北港高區以南斜張帶的嘉南地區,則具有低抬升累積與高水平縮短的地殼變形特徵。此外,台灣各活動斷層附近的SL/k值分佈亦暗示了來自菲律賓海板塊的推擠應力是由東向西以及由北向南傳遞分配的趨勢。
在分析台灣山脈於各均衡狀態時的一維地形特性上,由於河流縱剖面擬合分析比河流坡降指標與Hack剖面形態分析更為適用,因此綜合面積高度積分、地形碎形參數與河流縱剖面擬合的結果,雪山山脈、脊樑山脈、阿里山脈等均衡山脈地形區,其具有發展到最高的S形平均面積高度曲線、最高的平均面積高度積分值、最大的坡度期望值、最低的地表碎形維度值以及河流縱剖面的擬合呈現指數函數等構造地形指標特性;大武山脈與恆春半島等成長山脈地形區,其具有最低的S形平均面積高度曲線、最低的平均面積高度積分值、最低的最大坡度期望值、最高的地表碎形維度值以及河流縱剖面的擬合呈現對數函數等構造地形指標特性;而屬於崩塌山脈地形的雪山北部,其構造地形指標特性則介於以上兩者之間。
由以上分析可知,S-A關係圖可直接反應山脈地形的均衡、成長或崩塌狀態,而河流縱剖面的擬合則只能反應山脈地形是否均衡的一維性質。同時綜合次集水盆地的面積高度積分值、面積高度曲線與高程頻率分佈等參數可反應山脈地形在各均衡狀態時的三維性質,而同時綜合D值、γ值與最大坡度期望值等三個地表碎形參數則能反應山脈地形在各均衡狀態時的二維性質。
Oblique arc-continent collision in the period of Penglai orogeny made the Taiwan mountain belt develop landscape of three evolution stages of post-steady-state (north Taiwan, collapsing range), steady-state (central Taiwan) and pre-steady-state (south Taiwan, growing range). Analysis of stream-power erosion model shows linear form in the S-A plot and fittings of bedrock profiles are mainly the exponential functions in the steady-state range. The north boundaries of the steady-state range are near the Lanyang river (east Taiwan) and Taan river (west Taiwan), and the south boundaries are near the Lele river (east Taiwan) and Laonung river (west Taiwan). Moreover, the S-A plots in the ranges of north and south Taiwan show concave and convex forms, respectively, and fittings of bedrock profiles are both logarithmic.
Distribution of hypsometric integral (HI) in Taiwan reflects the uplift sequence of the Taiwan orogenic belt. The Central Range with higher HI uplifted earlier than the Eastern Coastal Range and the Western Foothills. In the Western Foothills, higher HI in the north district once implies that the north district uplifted earlier than the south district. Due to aggradation process, the plain areas that uplifted most presently have high HI contrarily. Pattern of HI in the Western Coastal Plain also shows that the passive indentation of the Peikang High has exerted crustal deformation not only to the oblique propagating fold-and-thrust units in the Western Foothills but also to the recent sediments in the Coastal Plains.
The hypsometric curve and the altitude frequency distribution reflect the landscape evolution stages and the residual mass distribution of drainage basin, respectively. In the plain areas, the hypsometric curves of the alluvial plains are S-shaped and the altitude frequency distribution concentrate in median altitude, but the hypsometric curves of the structural subsidence basins or plains are concave and the altitude frequency distribution concentrate in low altitude. In the western foothills, the hypsometric curves are concave and the altitude frequency distribution concentrate in low altitude. Due to continuous uplift process, the HI of the western foothills will increase, the hypsometric curves will gradually develop to S-shaped, and the altitude frequency distribution will finally concentrate in median altitude. Moreover, hypsometric curves of some high uplift rate areas, such as Linkou, Houli, Huko and Tainan tablelands, are convex and quite similar to the young age of the Strahler model. In the central range, due to the balance of uplifting and erosion, the hypsometric curves are all S-shaped and the altitude frequency show normal distribution. In the eastern coastal range, the hypsometric curves are concave and the altitude frequency distribution concentrate in low altitude, and are very similar to the hill areas in the western foothills. Beside, increasing or decreasing of HI caused by some local but young anticline or syncline shows that HI could be a good tool for detecting local variations of subsurface structures.
The variogram method is adopted to estimate the fractal dimension (D), the ordinate-intercept (γ) and the maximum expected slope from data subsets of the DEM using a moving-window operation. The mountainous terrain is characterized by high relief (high γ), low roughness (low D) and high maximum expected slope in contrast to the plain areas where low relief (low γ), high roughness (high D) and low maximum expected slope are found. The landscape may involve the balance between erosional roughening at all scales and diffusive smoothing at short wavelengths plus depositional smoothing at long wavelengths. Because the diffusive process has a negative correlation with roughness, the roughness and the maximum expected slope can also reflect the evolution stages of landscape.
According to the higher SL/k and convex Hack profile in the north to central Taiwan than in the chianan to south Taiwan, structures in the north to central Taiwan tend to easier “lock” strain energy caused by tectonic activities but to the contrary, strain energy in the chianan to south Taiwan tend to be “released” by median to small magnitude earthquakes with higher reoccurrence frequency. Moreover, a high uplift but low shortening rate typifies the crustal deformation style in the transpressional regime north of the Peikang Basement High in central Taiwan. On the contrary, a low uplift but high shortening rate characterizes the crustal deformation style in the transtensional regime south of the Peikang Basement High in southwestern Taiwan. Distribution of SL/k near the active faults in Taiwan implies that collision stress caused by the Philippine Sea plate spreads not only form east to west but also from north to south.
Fitting of river longitudinal profile is a more suitable tool than the SL index and Hack profile when analyzing one-dimensional landform characteristics of Taiwan ranges. Thus, summarizing the results of hypsometric integral, fractal parameters and fitting of river longitudinal profile, we fould that the steady-state ranges, such as Hsueshan range, Back-bone range and Ali range, have the highest S-shaped hypsometric curves, the highest HI, the highest maximum expected slope, the lowest surface fractal dimension and the exponential fitting function. The growing ranges, such as Tawu range and Hengchun Peninsula, have the lowest S-shaped hypsometric curves, the lowest HI, the maximum expected slope, the highest surface fractal dimension and the logarithmic fitting function. And then the morphotectonic index features of the collapsing North-Hsueshan range are between the two types of ranges mentioned above.
Concluding all the results above, the S-A plot can directionly show us the evolution stages of ranges, and the fitting of river longitudinal profile can also tell us that if ranges reach steady-state or not. Summarizing the results of hypsometric curve, HI, and altitude frequency distribution can reflect the three-dimensional landform characteristics of the Taiwan ranges in all evolution stages. And summarizing the results of D, γ and the maximum expected slope can reflect the two-dimensional landform characteristics.
1.中文部分:
王明志,石慶得,張瑞津 (1993)。地形分類及其圖示研究,地圖,第4期,第55-64頁。
王執明,鄭穎敏,王源 (1978)。台北盆地之地質及沉積物研究,臺灣礦業,第30卷,第4期,第305-380頁。
台南地質圖幅 (1986)。中國石油股份公司台灣油礦探勘總處編印。
石再添,張瑞津,鄧國雄,黃朝恩 (1996)。重修台灣省通志卷二土地志地形篇,台灣省文獻委員會,共958頁。
阮維周 (1954)。台灣新誌地形篇,台北市,中華文化出版委員會。
何春蓀 (1986)。台灣地質概論,台灣地質圖說明書,經濟部中央地質調查所,共164頁。
李錫堤 (1986)。大地應力分析與弧陸碰撞對於台灣北部古應力場變遷之影響,國立臺灣大學博士論文,共370頁。
李錫堤 (1997)。地形影像3D套合軟體Topoviewer使用手冊,康訊科技股份有限公司,共108頁。
李錦發,蘇泰維 (1984)。台北盆地構造成因之初步研究,「台灣第四紀」研討會暨「台北盆地地下地質與工程環境綜合調查研究」成果發表會論文集,第136-142頁。
林朝綮 (1957)。台灣地形,台灣省文獻委員會出版,共424頁。
洪日豪 (2000)。台灣西部麓山帶之構造,「20世紀台灣地區地球科學研究之回顧與展望」系列研討會(三):台灣的地質構造,第151-186頁。
徐鐵良 (1955)。台灣之地形,臺灣銀行季刊,第7卷,第2期,第8-25頁。
張韻嫻 (2003)。台灣地區流域面積高度積分之研究,國立高雄師範大學地理學系碩士論文,共139頁。
陳文山,楊志成,楊小青,吳樂群,張徽正 (2003)。從構造地形特徵探討嘉南地區的活動構造,中國地質學會九十二年年會暨學術研討會論文集,第213頁。
陳正祥 (1956)。台灣之地理區域,臺灣銀行季刊,第8卷,第1期,第1-5頁。
陳彥傑,宋國城 (1999)。以碎形為基礎的台灣地形分區,環境與世界,第3期,1-15頁。
陳彥傑,宋國城,張韻嫻,鄭光佑,楊雄興 (2003)。台灣地形分區之地體構造意義-以面積高度積分與地形碎形分析為依據,中國地理學會會刊,第32期,第39-66頁。
陳培源 (1999)。臺灣地形區劃分新議,「20世紀台灣地區地球科學研究之回顧與展望」系列研討會(一):臺灣的大地構造,第208-214頁。
黃金維,蕭宇伸,林廷融 (2003)。台灣數值高程模型之建立及精度分析,中華民國地籍測量學會會刊,審查中。
黃朝恩 (1980)。臺灣島諸流域特徵及其相關性的研究,私立中國文化大學地學研究所博士論文,共136頁。
楊志成,陳文山 (2003)。嘉南地區曲流地形特徵與構造地形分區,中國地質學會九十二年年會暨學術研討會論文集,第209-212頁。
詹仕堅,孫志鴻 (2000)。網格式數值高程模型擷取河系集流閾值之探討,國立台灣大學地理學報,第28期,第27-45頁。
嘉義地質圖幅 (1986)。中國石油股份公司台灣油礦探勘總處編印。
劉平妹,竹內章 (1987)。林口台地之熱螢光(TL)與電子自旋共振法(ESR)定年之初步探討,中國地質學會七十六年度年會手冊,第53頁。
劉政雄,賴逸少,吳瑞賢 (1993)。自動化河川網路萃取系統之建立,第十二屆測量學術及應用研討會論文集,第639-651頁。
鄭光佑 (2002)。台灣西部麓山帶前緣流域面積高度積分之構造意義研究,國立高雄師範大學地理學系碩士論文,共102頁。
鄧國雄 (1979)。台灣西北部紅壤礫石台地地形之計量研究,中國文化學院博士論文,共118頁。
盧佳遇 (2002)。基盤型態對逆衝構造的影響,中國地質學會九十一年年會暨學術研討會論文集,第182-183頁。
賴慈華,謝孟龍 (2003)。台灣各沖積平原兩萬年來地塊垂直運動速率,台灣地質學會九十二年年會暨學術研討會,第119頁。
2.日文部分:
三浦唯宣 (1933a)。台灣地誌の研究,地學研究,第1-21頁。
三浦唯宣 (1933b)。台灣地誌の研究,地學研究,第5-10頁。
本田武夫 (1939)。台灣の地學的研究,地理學評論,第15卷,第1期。
花井重次 (1934)。地形區(台灣地方)岩波講座。
3.英文部分:
Adams, J. (1980) Contemporary uplift and erosion of the Southern Alps, Zealand, Geological Society of America Bulletin, v.91, p.1-114.
Agterberg, F.P. (1982) Recent developments in geomathematics, Geoprocessing, v.2, p.1-32.
Ahnert, F. (1970) Functional relationships between denudation, relief, andin large mid-latitude drainage basins, American Journal of Science, v.268, p.243–263.
Anderson, R.S. (1994) The growth and decay of the Santa Cruz Mountains, Journal of Geophysical Research, v.99, p.20161-20180.
Angelier, J., Barrier, E. and Chu, H.T. (1986) Plate collision and paleostress trajectories in a fold-thrust belt: the Foothills of Taiwan, Tectonophysics, v.125, p.161-178.
Baker, V.R. (1986) Introduction: Regional Landform Analysis, In N.M. Short Sr. and R. Blair Jr. (eds.), Geomorphology from Space, A Global Overview of Regional Landforms, National Aeronautics and Space Administration, NASA SP-486, Washington, D.C.
Biq, C.C. (1990) Another Coastal range on Taiwan, Ti-Chi, v.12, p.1-14.
Bloom, A.L. (1991) Geomorphology: Asystematic Analysis of Late Cenozoic Landforms, 2nd Ed., Englewood Cliffs, N.J., Prentice-Hall.
Bonilla, M.G. (1970) Surface faulting and related effects, In Earthquake Engineerng, Weigel, R.L. (eds), New Jersey, Prentic-Hill Inc., p.47-74.
Bonilla, M.G. (1975) A review of recently active faults in Taiwan, U. S. Geological Survey Open-File Report, no.75-41, 58pp.
Bonilla, M.G. (1977) Summary of Quatenary faulting and elevation change in Taiwan, Memoir of the Geological Society of China, v.2, p.43-56.
Brandon, M.T., Roden-Tice, M.K., and Garver, J.I. (1998) Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, NW Washington State, Geological Society of America Bulletin, v.110, p.985-1009.
Brookfield, M.E. (1998) The evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision: rivers draining southwards, Geomorphology, v.22, p.285-312.
Burnett, A.W., and Schumm, S. A. (1983) Alluvial-river response to neotectonic deformation in Louisiana and Mississippi. Science, v.222, p.49-50.
Burrough, P.A. (1981) Fractal dimensions of landscape and other environment data, Nature, v.294, p.240-242.
Burrough, P.A. and R.A. McDonell (1998) Principles of Geographical Information Systems, New York, Oxford University Press.
Carr, J.R. (1997) Statistical self-affinity, fractal dimension, and geologic interpretation, Engineering Geology, v.48, p.269-282.
Chang, Y.L., Lee, C.I., Lin, C.U., Hsu, C.H. and Mao, E.W. (1996) Inversion tectonics in the fold-thrust belt of the foothills of Chiayi-Tainan area, southwestern Taiwan, Petrol. Geol. Taiwan, v.30, p.163-167.
Chase, C.G. (1992) Fluvial landsculpting and the fractal dimension of topography, Geomorphology, v.5, p.39-57.
Chen, J.F. (1999) Geomorphic indices of active structures in the Chiayi-Tainan area, Master thesis, Tainan, Institute of Earth Sciences, National Cheng Kung University.
Chen, Y.C., Sung, Q.C. and Cheng, K.Y. (2003a) Along-Strike Variations of Morphotectonic Features in the Western Foothills of Taiwan : Tectonic Implications Based on Stream-Gradient and Hypsometric Analysis, Geomorphology, v.56, p.109-137.
Chen, Y.C., Sung, Q.C., Yu, T.T. and Sun, R.J. (2003b) Earthquake Time Series Analysis by Cantor Set Model in Taiwan, Terrestrial, Atmospheric and Oceanic Sciences, V.14, No.1, p.85-98.
Cheng, Y.C., Lee, P.J. and Lee, T.Y. (1999) Self-similarity dimensions of the Taiwan Island landscape, Computer & Geosciences, v.25, p.1043-1050.
Chorley, R.J., Schumm, S.A. and Sugden, D.E. (1984) Geomorphology, New York, Methuen & Co, 605pp.
Dadson S.J., Hovius N., Chen H., Dade B., Hsieh M.L., Willett S.D., Hu J.C., Horng M.J., Chen M.C., Stark C.P., Lague D. and Lin J.C. (2003) Links between erosion, runoff variability and seismicity in the Taiwan orogen, Nature, v. 426, p.648-651.
Deffontaines, B., Lacombe, O., Angelier, J., Chu, H.T., Mouthereau, F., Lee, C.T., Deramond, J., Lee, J.F., Yu, M.S., Liew, P.M. (1997) Quaternary transfer faulting in the Taiwan Foothills: evidence from a multisource approach, Tectonophysics, v.274, p.61-82.
Delcaillau, B. (2001) Geomorphic response to growing fault-related folds: example from the foothills of central Taiwan, Geodinamica Acta, v.14, p.265-287.
Delcaillau, B., Deffontaines, B., Floissac, L., Angelier, J., Deramond, J., Souquet, P., Chu, H.T., Lee, J.F. (1998) Morphotectonic evidence from lateral propagation of an active frontal fold; Pakuashan anticline, foothills of Taiwan, Geomorphology, v.24, p.263-290.
Feder, J. (1988) Fractal, New York, Plenum Press.
Flint, J.J. (1974) Stream gradient as a function of order, magnitude, and discharge, Water Resources Research, v.10, p.969-973.
Gilbert, G.K. (1877) Report on the Geology of the Henry Mountains, U.S. Geographical and Geological Survey of the Rocky Mts. Region, U.S. Government Printing Office, Washington, DC.
Hack, J.T. (1973) Stream-profile analysis and stream-gradient index, U.S. Geol. Surv. Jour. Res., v.1, p. 421-429.
Hack, J.T. (1957) Studies in longitudinal stream profiles in Virginia and Maryland, U.S. Geol. Surv. Prof. Pap, v.249-B, p.45–97.
Harrison, T.M., Ryerson, F.J., Le Fort, P., Yin, A. Lovera, O.M. and Catlos, E.J. (1997) A late Miocene-Pliocene origin for the central Himalayan inverted metamorphism, Earth and Planetary Science Letters, v.146, E1-E7.
Ho, C.S. (1986) A synthesis of the geologic evolution of Taiwan, Tectonophysics, v.125, p.1-16.
Hovius, N., Stark, C.P., and Allen, P.A. (1997) Sediment flux from a mountain belt derived by landslidemapping, Geology, v.25, p.231–234.
Hovius, N., Stark, C.P., Chu, H.T., and Lin, J.C. (2000) Supply and removal of sediment in a landslidedominatedmountain belt: Central Range, Taiwan, Journal of Geology, v.108, p.73-89.
Howard, A.D. (1994) A detachment-limited model of drainage basin evolution, Water Resources Research, v.30, p.2261-2285.
Howard, A.D., and Kerby, G. (1983) Channel changes in badlands, Geological Society of America Bulletin, v.94, p.739-752.
Howard, A.D., Seidl, M.A., and Dietrich, W.E. (1994) Modeling fluvial erosion on regional to continental scales, Journal of Geophysical Research, v.99, p.13,971-13,986.
Hsieh, M.L., Liew, P.M., and Hsu. M.Y. (2003) Holocene tectonic uplift on the Hua-tung coast, eastern Taiwan, Accepted by Quaternary International. Spec. Issue for Sea level change and coastal evolution and Neotectonics.
Hsu, T.L. (1976) Neotectonics of the Longitudinal Valley, eastern Taiwan, Bull. Geol. Sur. Taiwan, v.25, p.53-62.
Hu, J.C., J. Angelier and Yu, S.B. (1997) An interpretation of the active deformation of southern Taiwan based on numerical simulation and GPS studies, Tectonophysics, v.274, p.145-169.
Hu, J.C., Yu, S.B., Angelier, J. and Chu, H.T. (2001) Active deformation of Taiwan from GPS measurements and numerical simulations, J. Geophys. Res., v.106, p.2265-2280.
Huang T. C. (1962) The Sungsan formation in the Taipei basin. Memoir of the Geological Society of China, no.1, p133-151.
Hung, J.H., Wiltsscko, D.V., Lin, H.C., Hickman, J.B., Fang, P. and Bock, Y. (1999) Structure and motion of the southern Taiwan Fold and Thrust Belt, Terrestrial, Atmospheric and Oceanic Sciences, v.10, p.543-568.
Hurtrez, J.E., Sol, C. and Lucazeau, F. (1999) Effect of drainage area on hypsometry from an analysis of small-scale drainage basins in the Siwalik Hills (central Nepal), Earth Surf. Process Landforms, v.24, p.799-808.
Jenson, S.K., and Dominque, J.O. (1988) Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis, Photogrammetric Engineering and Remote Sensing, v.54, no.11, p.1593-1600.
Kamp, P.J., Green, P.F., and White, S.H. (1989) Fission track analysis reveals character of collisionaltectonics in New Zealand, Tectonics, v.8, p.169–195.
Keller, E.A. and Pinter, N. (1996) Active Tectonics: Earthquake, Uplift, and Landscape, Upper Saddle River, New Jersey, Prentice Hall.
Kimura, M. (1985) Back-arc rifting in the Okinawa trough, Mar. Pet. Geol., v.2, p.222-240.
Klinkenberg, B. and Goodchild, F. (1992) The fractal properties of topography: a comparison of methods, Earth Surf. Process. Landforms, v.17, p.217-214.
Kooi, H., and Beaumont, C. (1996) Large-scale geomorphology: Classical concepts reconciled and integrated with contemporary ideas via a surface processes model, Journal of Geophysical Research, v.102, p.3361–3386.
Krige, D.G. (1966) Two-dimensional weighted moving average trend surfaces for ore valuation, Journal of the South African Institute of Mining and Metallurgy: Symposium-Mathematical statistics and computer applications in ore evaluation, v.67, p.13-79.
Lacombe, O., Mouthereau, F., Deffontaines, B. and Angelier, J. (1999) Geometry and Quaternary kinematics of fold-and-thrust units of southwestern Taiwan, Tectonics, v.18, no.6, p.1198-1223.
Li, Y.H. (1976) Denudation of Taiwan islandsince the Pliocene Epoch, Geology, v.4, p.277-311
Liew, P.M. (1988) Quarternary stratigraphy in western Taiwan: Palynological Correlation, Proc. Geol. Sec. China, v.31, p.169-180.
Lifton, N.A. and Chase, C.G. (1992) Tectonic, climatic and lithologic influences on landscape fractal dimension and hypsometry: implications for landscape evolution in the San Gabriel Mountains, California, Geomorphology, v.5, p.77-114.
Lin, J.C. (1999) Morphotectonic evolution of Taiwan, Geomorphology and Global Tectonics, p.135-146.
Liu, T.K., Chen, Y.G., Chen, W.S., and Jiang, S.H. (2000) Rates of cooling and denudation of the early Penglai orogeny, Taiwan as assessed by fission-track constraints, Tectonphysics, v.320, p.69-82.
Liu T.K., Hsieh S., Chen Y.G. and Chen W.S. (2001) Thermo-kinematic evolution of the Taiwan oblique-collision mountain belt as revealed by zircon fission track dating, Earth and Planetary Science Letters, v.186, p.45-56.
Lu, C.Y. (1994) Neotectonics in the Foreland Thrust Belt of Taiwan, Petrol. Geol. Taiwan, v.29, p.1-26.
Lu, C.Y. and Malavieille, J. (1994) Oblique convergence, indentation and rotation tectonic in the Taiwan mountain belt: insights from experimental modeling, Earth and Planetary Sciences Letters, v.121, p.477-494.
Lu, C.Y., Angelier, J., Chu, H.T. and Lee, J.C. (1995) Contractional, transcurrent, rotational and extensional tectonics: examples from northern Taiwan, Techtonophysics, v.246, p.129-146.
Mandelbort, B.B. (1977) Fractal: Form, Chance and Dimension, San Francisco, W.H. Freeman.
Mandelbort, B.B. and Van Ness, J.W. (1968) Fractal Brownian motions, fractal noises and applications, Siam Review, v.10, no.4, p.422-437.
Mandelbrot, B.B. (1967) How long is the Coast of the Britain? Statistical Self-Similarity and Fractal Dimension, Science, v.155, p.636-638.
Mandelbrot, B.B. (1975) Stochastic models for the Earth’s relief, the shape and the fractal dimension of coastlines, and the number-area rule for islands. Proceeding of the National Academy of Sciences, USA, v.72, p.3825-3828.
Mandelbrot, B.B. (1982) The Fractal Geometry of Nature, San Francisco, W.H. Freeman.
Mark, D.M. (1984) Automated detection of drainage networks from digital elevation models,Cartographica, v.21, no.2, p.168-178.
Marple, R.T. and Talwani, P. (1993) Evidence of possible tectonic upwarping along the South Carolina coastal plain from an examination of river morphology and elevation data, Geology, v.21, p.651-654.
Masek, J.G., Isacks, B.L., Gubbels, T.L. and Fielding, E.J. (1994) Erosion and tectonics at the margins of Continental Plateaus, Journal of Geophysical Research, v.99, p.13941-13956.
Mayer, L. (1990) Introduction to quantitative Geomorphology. Mathematrica Geology, v.10, p.59-72.
Merritts, D. and Vincent, K.R. (1989) Geomorphic response of coastal streams to low, intermediate, and high rates of uplift, Mendocino Triple Junction region, Northern California, Geol. Soc. Am. Bull., v.110, p.1373-1388.
Miller, C. L. and Leflamme, R. A. (1958) The digital terrain model-theory and application, Photo. Eng., v.24, p.433-442.
Mouthereau, F., Lacombe, O., Deffontaines, B., Angelier, J., Chu, H.T., and Lee, C.T. (1999) Quaternary transfer faulting and belt front deformation at Pakuashan (western Taiwan), Tectonics, v.18, no.2, p.215-230.
Norris, R.J., Koons, P.O., and Cooper, A.F. (1990) The obliquely-convergent plate boundary in the SouthIsland of New Zealand: Implications for ancient collision zones, Journal of Structural Geology, v.12, p.715–725.
Ohmori, H. (1993) Changes in the hypsometric curve through mountain building resulting from concurrent tectonics and denudation, Geomorphology, v.8, p.263-277.
Ohmori, H. (1991) Change in the mathematical function type describingthe longitudinal profile of a river through an evolutionaryprocess, J. Geol., v.99, p.97-110.
Ohmori, H., Saito, K. (1993) Morphological development of longitudinal profiles in Japan and Taiwan, Bulletin of the Department of Geography, University of Tokyo, v.25, p.29-41.
Ouchi, S. (1985) Response of alluvial rivers to slow active tectonic movement. Geol. Soc. Am. Bull., v.96, p.504-515.
Peitgen, H.O., Barnsley, M.F., Devaney, R.L., Mandelbrot, B.B., Saupe, D. and Voss, R.F. (1988) The science of fractal images, New York, Springer-Verlag press.
Peng, T.H., Li, Y.H. and Wu, F.T. (1977) Tectonic uplift rates of the Taiwan Island since the early Holocene, Men. Geol. Soc. China, v.2, p.57-69.
Pike, R.J. and Wilson, S.E. (1971) Elevation-Relief Ratio, Hypsometric Integral, and Geomorphic Area-Altitude Analysis, Geological Society of America Bulletin, v.82, p.1079-1084.
Rãdoane, Maria; Rãdoane, Nicolae; Dumitriu, Dan (2003) Geomorphological evolution of longitudinal river profiles in the Carpathians, Geomorphology, v.50, Iss.4, p.293-306.
Rhea, S. (1989) Evidence of uplift near Charleston, South Carolina, Geology, v.17, p.311-315.
Romesburg, H.C. (1984) Cluster Analysis for Researchers, Belmont, California: Lifetime Learning Publications.
Seeber, L. and Gornitz, V. (1983) River profiles along the Himalayan arc as indicators of active tectonics, Tectonophysics, v.92, p.335-367.
Seno, T. (1977) The instantaneous rotation vector of the Philippine Sea plate relative to the Eurasian plate, Tectonophys, v.42, p.209-206.
Sibuet, J.C., Letouzey, J., Barbier, F., Charvet, J., Foucher, J.P., Hilde, T.W.C., Kimura, M., Ling-Yun, C., Marsett, B., Muller, C. and Stephan, J.F. (1987) Back-arc extension in the Okinawa trough, J. Geophys. Res., v.92, p.14,041-14,063.
Snow, R.S., and Slingerland, R.L. (1990) Stream profile adjustment to crustal warping: Nonlinear results from a simple model, Jour. Geol., v.98, p.699-708.
Snyder, N., Whipple, K., Tucker, G., and Merritts, D. (2000) Landscape response to tectonic forcing: digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California, Geological Society of America Bulletin, v.112, p.1250-1263.
Strahler, A.N. (1952) Hypsometric (Area-Altitude) Analysis of Erosional Topography, Bulletin of the Geological Society of America, v.63, p.1117-1142.
Sung, Q.C. and Chen, Y.C. (2003) Self-affinity Dimensions of Topography and its Implications in Morphotectonics: An Example from Taiwan. (Submitted to Geomorphology)
Sung, Q.C. and Chen, Y.C. (2004) Geomorphic evidence and kinematic model for the Quaternary Transfer Faulting of the Pakuashan Anticline, Central Taiwan. (Submitted to Journal of Asian Earth Sciences)
Sung, Q.C., Chen Y.C., Tsai, H., Chen, Y.G. and Chen, W.S. (2000). Comparison study on the Coseismic deformation of the 1999 Chi-Chi earthquake and long-term stream gradient changes along the Chelungpu fault in central Taiwan, Terrestrial, Atmospheric and Oceanic Sciences, v.11, no.3, p.735-750.
Sung, Q.C., Chen, Y.C. and Chao, P.C. (1998) Spatial variation of fractal parameters and its geological implications, Terrestrial, Atmospheric and Oceanic Sciences, v.9, no.4, p.655-672.
Suppe, J. (1981) Mechanics of mountain-building and metamorphism in Taiwan, Mem. Geol. Soc. China, v.4, p.67-90.
Suppe, J. (1984) Kinematics of arc-continent collision, Flipping of subduction, and back-arc spreading near Taiwan, Mem. Geol. Soc. China, v.6, p.21-33.
Suppe, J. (1987) The active mountain belt. In S.P. Schaer and J. Rodgers (eds) The Anatomy of Mountain Ranges, Princeton University Press, New Jersey, p.277-293.
Tarboton, D.G., Bras, R.L., and Rodriguez-Iturbe, I. (1991) On the extraction of channel networks fromdigital elevation data, Hydrological Processes, v.5, p.81-100.
Teng, L.S. (1987) Stratigraphy records of the late Cenozoic Penglai orogeny of Taiwan, Acta. Geol. Taiwan, v.25, p.205-224.
Teng, L.S. (1990) Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan, Tectonophysics, v.183, p.57-76.
Teng, L.S., Lee, C.T., Peng, C.H., Chen, W.F., and Chu, C.J. (2001) Origin and geological evolution of the Taipei Basin northern Taiwan, Western Pacific Earth Sciences, v.1, p.115-142.
Thorn, C.E. (1988) An Introduction to Theoretical Geomorphology, Boston, Unwin Hyman.
Vlokov, N.G., Sokolovsky, I.L., and Subbotin, A.I. (1967) Effect of recent crustal movements on the shape of longitudinal profiles and water levels in rivers. Symposium on River Mechanics (Bern), Int. Union Geodesy Geophys. Pub. v.75, p.105-116.
Voss, R.F. (1985) Random fractal forgeries. In: Eamshaw, R.A. (eds) Fundamental algorithms for computer graphics, Berlin: Springer-Verlag, NATO ASI Series, F17, p.805-835.
Wang, W.H. and Chen, C.H. (1990) The volcanology and fission track age dating of pyroclastic deposits in Tatun Volcano Group, Acta Geologica Taiwanica, v.28, p.1-30.
Weibel, R. and Heller, M. (1991) Digital Terrain Modeling. In: Maguire, D.J., Goodchild, M.F. and Rhind, D.W. (Hrsg.). Geographical Information Systems: Principles and Applications, London, Longman, p.269-297.
Wheeler, D.A. (1979) The overall shape of longitudinal profiles of streams. In: Pitty, A.F. (eds), Geographical Approaches to Fluvial Processes, GeoAbstracts, Norwich, p.241-260.
Whipple, K.X., and Tucker, G.E. (1999) Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs, Journal of Geophysical Research, v.104, p.17661-17674.
Whipple, K.X., Hancock, Gregory, S. and Anderson, R.A. (2000) River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation, Geological Society of America Bulletin, v.112, p.490-503.
Willgoose G.R., Bras R.L. and Rodriguez-Iturbe I. (1990) A model of river basin evolution, Eos (Transaction, American Geophysical Union), v.71, p.1806-1807.
Willgoose, G.R. (1994) A physical explanation for an observed area-slope-elevation relationship for catchments with declining relief, Water Resources Research, v.30, p.151-159.
Willgoose, G.R. and Hancock, G. (1998) Revisiting the hypsometric curve as an indicator of form and process in transport-limited catchment, Earth surface Process and Landform, v.23, p.611-623.
Wilson, T.H. (2000) Some distinctions between self-similar and self-affine estimates of fractal dimension with case history, Mathematical Geology, v.32, no.3, p.319-335.
Xu, T., Moore, I.D. and Gallant, J.C. (1993) Fractal, fractal dimension and landscapes - a review, Geomorphology, v.3, p.245-262.
Yang, K.M. and Hung, J.H. (2001) Revaluation of geologic structures and crustal deformation in southwestern Taiwan, Central Geological Survey Report, no.89-4 and 90-4, Taiwan.
Yang, K.M. and Hung, J.H. (2002) Revaluation of geologic structures and crustal deformation in southwestern Taiwan, Central Geological Survey Report, no.91-4, Taiwan.
Yang, K.M., Chi, W.R., Wu, J.C. and Ting, H.H. (1994) Tectonic evolution and mechanisms for formation of Neogene extensional basin in southwestern Taiwan: implications for hydrocarbon exploration, Annual meeting of Geol. Soc. China, program with abstracts, p.392-395.
Yang, K.M., Ting, H.H. and Yuan, J.W. (1991) Structural styles and tectonic modes of Neogene extensional tectonics in southwestern Taiwan: implications for hydrocarbon exploration, Petrol. Geol. Taiwan, v.26 p.1-31.
Yeh, Y.H., Barrier, E. Lin, C.H. and Angelier, J. (1991) Stress tensor analysis in the Taiwan area from local mechanisms of earthquakes, Tectonophysics, v.200, p.267-280.
Yu, S.B. and Chen, H.Y. (1994) Global positioning system measurement of crustal deformation in the Longitudinal Valley area, eastern Taiwan, Terrestrial, Atmospheric and Oceanic Sciences, v.5, p.477-498.
Yu, S.B., Chen, Y.S. and Kuo, L.C. (1997) Velocity field of GPS stations in Taiwan area, Tectonophysics, v.274, p.41-59.