| 研究生: |
莊詠涵 Chuang, Yung-Han |
|---|---|
| 論文名稱: |
聚(苯乙烯-乙烯-丙烯-苯乙烯)(SEPS)和聚丙烯(PP)共混物磺酸化之分析鑑定與血袋材料上之應用 Sulfonation and characterization of poly(styrene-ethylene-propylene-styrene)(SEPS) and polypropylene (PP) blends for blood bag applications |
| 指導教授: |
林睿哲
Lin, Jui-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 陰離子聚合 、氫化 、磺酸化 、熱塑性彈性體 、聚丙烯 、苯乙烯 、異戊二烯 、血液相容性 |
| 外文關鍵詞: | Anionic polymerization, Hydrogenation, Sulfonation, Thermoelastomer, Hemocompatibility |
| 相關次數: | 點閱:53 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現有的血袋材料多為聚氯乙烯為主,然而其中卻含有高達45%的塑化劑,對於新生兒或是長期需要換液的病患,可能會有影響生長與生殖的風險。因此目前仍然在找尋可替代材料。
本研究利用陰離子聚合法,成功聚合出聚苯乙烯-異戊二烯-苯乙烯三嵌段共聚物(Poly(Styrene-Isoprene-Styrene),SIS),其中苯乙烯鏈段中含有不同比例的苯乙烯和叔丁基苯乙烯(4-tert-butylstyrene)。藉由金屬觸媒的催化,成功氫化SIS中未飽和的雙鍵,得到聚苯乙烯-乙烯-丙烯-苯乙烯(Poly(Styrene-Ethylene-Propylene-Styrene),SEPS)。之後,將SEPS和聚丙烯(Polypropylene,PP)依不同比例混參。由於SEPS結構與PP相似,這可能提供兩者良好的相容性,並且改善PP的機械性質。最後,利用醋酸酐(Acetic anhydride)與硫酸(Sulfuric acid)將SEPS磺酸化,預計以含有不同比例的叔丁基苯乙烯,獲得不同磺酸化程度的SEPS/PP (sulfonated SEPS/PP,s-SEPS)。
因帶有負電的磺酸根,改善材料的疏水性質;部分磺酸化也保留SEPS的熱彈性質;實驗結果亦顯示此材料無細胞毒性,且有效減少血小板貼附量和變形。具有發展成血袋材料的潛能。本研究將利用各種儀器與方法探討材料的結構、機械性質、親疏水性等物理特性。
Most of modern blood bag is mainly made of polyvinyl chloride (PVC) and plasticizers. However, for newborns or patients who need transfusion for a long time or a huge volume, exposure to plasticizers would be a potential problem of fertility and development. Therefore, these years, experts are still looking for alternative materials for blood bag.
In this study, we successfully synthesized poly(styrene-isoprene-styrene) (SIS) triblock copolymer whose styrene segments contain different ratio of 4-tert-butylstyrene (tBS) with anionic polymerization. Through hydrogenating unsaturated double bonds in SIS, poly(styrene-ethylene-propylene-styrene) (SEPS) was obtained. SEPS was then blended with polypropylene (PP) in different proportions. Since the structure of SEPS is similar to that of PP, this provide a good compatibility and, resulting, an improvement in mechanical properties of PP. Subsequently, the surface of blends was sulfonated with acetic anhydride and sulfuric acid. We expected that we could obtain different degrees of sulfonation of blends (s-SEPS/PP) with controlling different ratio of tBS, and this partial sulfonation could retain the thermoelastic properties of SEPS. Based on various analyses methods, the results would be reported to explore the physical properties and chemical characteristics, such as the chemical configuration, mechanical properties, surface hydrophobicity, and hemocompatibility of different materials prepared.
Finally, after sulfonation treatment, we could get a hemocompatibility material without cytotoxicity. With the negative surface, platelet adhesion and activation could be reduced by s-SEPS/PP blends. Nonetheless, due to little consideration of sulfonated PP and the effect of molecular weight, tuning degree of sulfonated SEPS/PP with different tBS ratio still poses challenges.
1. Prowse, C.V., D. de Korte, J.R. Hess, P.F. van der Meer, and C. Biomedical Excellence for Safer Transfusion, Commercially available blood storage containers. Vox Sang, 2014. 106(1): p. 1-13.
2. Giangrande, P.L.F., The history of blood transfusion. British Journal of Haematology, 2000. 110: p. 758-767.
3. Carmen, R., The Selection of Plastic Materials for Blood Bags. Transfusion Medicine Reviews, 1993. 7(1): p. 1-10.
4. RJ, J. and R. RJ, Plasticizers from plastic devices extraction, metabolism, and accumulation by biological systems. Science, 1970. 170: p. 460-462.
5. Scientific Committee on Emerging and Newly-Identified Health Risks. Opinion on The Safety of Medical Devices Containing DEHP plasticized PVC or Other Plasticizers on Neonates and Other Groups Possibly at Risk. 2008.
6. van der Meer, P.F., H.W. Reesink, S. Panzer, J. Wong, S. Ismay, A. Keller, J. Pink, C. Buchta, V. Compernolle, S. Wendel, S. Biagini, P. Scuracchio, L. Thibault, M. Germain, J. Georgsen, S. Begue, D. Dernis, E. Raspollini, S. Villa, P. Rebulla, M. Takanashi, D. de Korte, M. Lozano, J. Cid, H. Gulliksson, R. Cardigan, C. Tooke, M.K. Fung, N.L. Luban, R. Vassallo, and R. Benjamin, Should DEHP be eliminated in blood bags? Vox Sang, 2014. 106(2): p. 176-95.
7. Jiang, G., C. Wang, Z. Liu, Y. Zhai, Y. Zhang, J. Jiang, N. Moriguchi, J. Zhu, and Y. Yamana, Characterization of polypropylene/hydrogenated styrene-isoprene-styrene block copolymer blends and fabrication of micro-pyramids via micro hot embossing of blend thin-films. RSC Advances, 2015. 5(112): p. 92212-92221.
8. Matsuo, M., T. Ueno, H. Horino, S. Chujyo, and H. Asai, Fine structures and physical properties of styrene-butadiene block copolymers. Polymer, 1968. 9: p. 425-436.
9. Holden, G., E.T. Bishop, and N.R. Legge, Thermoplastic elastomers. Journal of Polymer Science Part C, 1969. 26: p. 37-57.
10. Inoue, T., T. Soen, T. Hashimoto, and H. Kawai, Thermodynamic interpretation of domain structure in solvent‐cast films of A–B type block copolymers of styrene and isoprene. Journal of Polymer Science Part A-2, 1969. 7: p. 1283-1302.
11. Beecher, J.F., L. Marker, R.D. Bradford, and S.L. Aggarwal, Morphology and mechanical behavior of block polymers. Journal of Polymer Science Part C, 1969. 26: p. 117-134
12. Inoue, T., M. Moritani, T. Hashimoto, and H. Kawai, Deformation Mechanism of Elastomeric Block Copolymers Having Spherical Domains of Hard Segments under Uniaxial Tensile Stress. Macromolecules, 1971. 4: p. 500-507.
13. Pedemonte, E., A.Turturro, U. Bianchi, and P. Devetta, The cubic structure of a SIS three block copolymer. Polymer, 1973. 14: p. 145-150.
14. Yeh, G.S.Y., R. Hosemann, J. Loboda-Čačković, and H. Čačković, Annealing effects of polymers and their underlying molecular mechanisms. Polymer, 1976. 17: p. 309-318.
15. Miroslawa El Fray, P.P., Judit E. Puskas, Volker Altsta¨dt, Biocompatibility and Fatigue Properties of PSIBS an emerging thermoplastic elastomeric biomaterial. Biomacromolecules, 2006. 7: p. 844-850.
16. Pinchuk, L., G.J. Wilson, J.J. Barry, R.T. Schoephoerster, J.M. Parel, and J.P. Kennedy, Medical applications of poly(styrene-block-isobutylene-block-styrene) ("SIBS"). Biomaterials, 2008. 29(4): p. 448-60.
17. Polat, K., I. Orujalipoor, S. İde, and M. Şen, Nano and microstructures of SEBS/PP/wax blend membranes: SAXS and WAXS analyses. Journal of Polymer Engineering, 2015. 35(2).
18. Râpă, M., E. Matei, P.N. Ghioca, L.I. Elena Grosu1, B. Spurcaciu, A.R. Trifoi, T. Gherman, A. Pica, A.M. Predescu, C. Cincu, and Á.A. András, Improvement of Some Post-consumer Polypropylene (rPP) By Melt Modification With Styrene-Diene Block Copolymers. Environmental Engineering and Management Journal, 2017. 16: p. 2615-2624.
19. Szwarc, M., "Living" Polymers. Nature, 1956. 178: p. 1168-1169.
20. Szwarc, M., M. Levy, and R. Milkovich, Polymerization Initiated by Electron Transfer to Monomer. A New Method of Formation of Block Polymers1. Journal of the American Chemical Society, 1956. 78(11): p. 2656-2657.
21. Hsieh, H.L. and R.P. Quirk, Anionic polymerization principles and practical applications. Marcel Dekker 1996.
22. Roovers, J.E.L. and S. Bywater, The Polymerization of Isoprene with sec-Butyllithium in Hexane. Macromolecules, 1968. 1(4): p. 328-331.
23. Roovers, J.E.L. and S. Bywater, The Reaction of tert- Butyllithium with Styrene and Isoprene. Macromolecules, 1975. 8: p. 251-254.
24. Worsfold, D.J. and S. Bywater, Anionic Polymerization of ISoprene. Canadian Journal of Chemistry, 1964. 42: p. 2884-2892.
25. Worsfold, D.J. and S. Bywater, Anionic Polymerization if Styrene. Canadian Journal of Chemistry, 1960. 38: p. 1891-1900.
26. Bywater, S. and D.J. Worsfold, Anionic Polymerization of Styrene effect of Tetrahydrofuran. Canadian Journal of Chemistry, 1962. 40: p. 1564-1570.
27. Bywater, S. and I.J. Alexander, Influence of dioxane on the anionic polymerization of styrene in benzene. Journal of Polymer Science Part A-1, 1968. 6: p. 3407-3410.
28. 何敏夫, 血液學. 合記出版社, 1993.
29. Tan, A., D. Goh, Y. Farhatnia, N. G, J. Lim, S.H. Teoh, J. Rajadas, M.S. Alavijeh, and A.M. Seifalian, An anti-CD34 antibody-functionalized clinical-grade POSS-PCU nanocomposite polymer for cardiovascular stent coating applications: a preliminary assessment of endothelial progenitor cell capture and hemocompatibility. PLoS One, 2013. 8(10): p. e77112.
30. Roghani, K., R.J. Holtby, and J.S. Jahr, Effects of hemoglobin-based oxygen carriers on blood coagulation. J Funct Biomater, 2014. 5(4): p. 288-95.
31. Okano, T., S. Nishiyama, I. Shinohara, T. Akaike, Y. Sakurai, K. Kataoka, and T. Tsuruta, Effect of hydrophilic and hydrophobic microdomains on mode of interaction between block polymer and blood platelets. Journal of Biomedical Materials Research, 1981. 15: p. 393-402.
32. Ito, E., K. Suzuki, M. Yamato, M. Yokoyama, Y. Sakurai, and T. Okano, Active platelet movements on hydrophobic/hydrophilic microdomain-structured surfaces. J Biomed Mater Res,, 1998. 42: p. 148-155.
33. Roh, H.W., M.J. Song, D.K. Han, D.S. Lee, J.H. Ahn, and S.C. Kim, Effect of cross-link density and hydrophilicity of PU on blood compatibility of hydrophobic PS/hydrophilic PU IPNs. Journal of Biomaterials Science, Polymer Edition, 1999. 10(1): p. 123-143.
34. Cheng, C., S. Sun, and C. Zhao, Progress in heparin and heparin-like/mimicking polymer-functionalized biomedical membranes. J. Mater. Chem. B, 2014. 2(44): p. 7649-7672.
35. Han, D.K., K.D. Park, K.-D. Ahn, S.Y. Jeong, and Y.H. Kimt, Preparation and surface characterization of PEO-grafted and heparin-immobilized polyurethanes. J. Biomed. Mater. Res.: Applied Biomaterials, 1989. 23: p. 87-104.
36. Begovac, P.C., R.C. Thomson, J.L. Fisher, A. Hughson, and A. Gällhagen, Improvements in GORE-TEX® vascular graft performance by Carmeda® bioactive surface heparin immobilization. European Journal of Vascular and Endovascular Surgery, 2003. 25(5): p. 432-437.
37. Chang, C.-H., L.S. Lico, T.-Y. Huang, S.-Y. Lin, C.-L. Chang, S.D. Arco, and S.-C. Hung, Synthesis of the Heparin-Based Anticoagulant Drug Fondaparinux. Angew. Chem. Int. Ed., 2014. 53: p. 9876 –9879.
38. KeunHan, D., N. YoungLee, K.D. Park, Y.H. Kim, H.I. Cho, and B.G. Min, Heparin-like anticoagulant activity of sulphonated poly(ethylene oxide) and sulphonated poly(ethylene oxide)-grafted polyurethane. Biomaterials, 1995. 16: p. 467-471.
39. A.Z.Okkema and S.L.Cooper, Effect of carboxylate and/or sulphonate ion incorporation on the physical and blood-contacting properties of a polyetherurethane. Biomaterials, 1991. 12: p. 668-676.
40. Okkema, A.Z., S.A. Visser, and S.I. Cooper, Physical and blood‐contacting properties of polyurethanes based on a sulfonic acid‐containing diol chain extender. Journal of Biomedical Materials Research, 1991. 25: p. 1371-1395.
41. Han, D.K., S.Y. Jeong, Y.H. Kim, B.G. Min, and H.I. Cho, Negative cilia concept for thromboresistance: Synergistic effect of PEO and sulfonate groups grafted onto polyurethanes. Journal of Biomedical Materials Research, 1991. 25: p. 561-575
42. SRINIVASAN, S., C.B. BURROWES, T. LUCAS, S.B. BAUER, and P. N. SAWYER, Effect of Varying Electrolyte Concentration on in Vitro Streaming Potentials Across Canine Aortae and Carotid Arteries. J. BIOMED. MATER. RES., 1967. 1: p. 355-367.
43. Wade, L.G. and J.W. Simek, Organic Chemistry (9th Edition) Pearson College Div, 2016.
44. Briggs, D., M.P. Seah, J. Wiely, and Sons., Quantification of AES and XPS, Practical Surface Analysis , Chapter 5. 1990. 1: p. 201-256.
45. Ratner, B.D., D.G. Castner, J.C. Vickerman, and J. Wiely, Electron Spectroscopy for Chemical Analysis, Surface Analysis-The Principal Technique, Chapter 3. 1997: p. 43-98.
46. Velichkova, R., V. Toncheva, C. Antonov, V. Alexandrov, S. Pavlova, L. Dubrovina, and E. Gladkova, Styrene-Isoprene Block Copolymers. II. Hydrogenation and Solution Properties. Journal of Applied Polymer Science, 1991. 42: p. 3083-3090.
47. Beckingham, B.S. and R.A. Register, Synthesis and Phase Behavior of Block-Random Copolymers of Styrene and Hydrogenated Isoprene. Macromolecules, 2011. 44(11): p. 4313-4319.
48. Li, W., Y. Li, Y. Hu, and Y. Wang, Synthesis and characterisation of HSIBR used as viscosity index improver for lubricants. Lubrication Science, 2012. 24(4): p. 188-197.
49. Li, W., Hydrogenated styrene-isoprene-butadiene rubber: optimisation of hydrogenation conditions and performance evaluation as viscosity index improver. Lubrication Science, 2015. 27(5): p. 279-296.
50. Mather, B.D., F.L. Beyer, and T.E. Long, Synthesis and SAXS characterization of sulfonated SEPS triblock copolymers. Polymer Preprints, 2006. 47(1): p. 456-457.
51. Weiss, R.A., A. Sen, C.L. Willis, and L.A. Pottick, Sulfonation of Alkenes by Chlorosulfuric Acid, Acetyl Sulfate, and Trifluoroacetyl Sulfate. Polymer, 1991. 32: p. 1867-1873.
52. Xu, X., J. Liu, G. Sheng, R. Chen, J. Zhao, X. Liu, Q. Shi, and J. Yin, Construction of anti-thrombotic and anti-oxidative surfaces with elastomer/Pluronic F127 assembled microfibers. Applied Surface Science, 2018. 451: p. 76-85.
53. Sato, H. and Y. Tanaka, 1H‐NMR study of polyisoprenes. Journal of Polymer Science: Polymer Chemistry Edition, 1979. 17: p. 3551-3558.
54. Li, H., X. Zeng, and W. Wu, Epoxidation of styrene-isoprene-styrene block copolymer and its use for hot-melt pressure sensitive adhesives. Polymer-Plastics Technology and Engineering, 2008. 47(10): p. 978-983.
55. Guo, F., R. Meng, Y. Li, and Z. Hou, Highly cis -1,4-selective terpolymerization of 1,3-butadiene and isoprene with styrene by a C 5 H 5 -ligated scandium catalyst. Polymer, 2015. 76: p. 159-167.
56. Morton, M., E.E. Bostick, and R.G. Clarke, Homogeneous Anionic Polymerization. III. Molecular Weight of Polyisoprene Initiated by Butyllithium. Journal of Polymer Science: Part A, 1963. 1: p. 475-482.
57. Orujalipoor, I., K. Polat, Y.-C. Huang, S. İde, M. Şen, U.S. Jeng, G.K. Ağçeli, and N. Cihangir, Partially sulfonated styrene-(ethylene-butylene)-styrene copolymers: Nanostructures, bio and electro-active properties. Materials Chemistry and Physics, 2019. 225: p. 399-405.
58. Polat, K. and M. Sen, Preparation and characterization of a thermoplastic proton-exchange system based on SEBS and polypropylene blends. Express Polymer Letters, 2017. 11(3): p. 209-218.
59. Tada, H. and S. Ito, Conformational Change Restricted Selectivity in the Surface Sulfonation of Polypropylene with Sulfuric Acid. Langmuir, 1997. 13(15): p. 3982-3989.
60. Merche, D., J. Hubert, C. Poleunis, S. Yunus, P. Bertrand, P. De Keyzer, and F. Reniers, One Step Polymerization of Sulfonated Polystyrene Films in a Dielectric Barrier Discharge. Plasma Processes and Polymers, 2010. 7(9-10): p. 836-845.
61. NASEF, M.M., H. SAIDI, H.M. NOR, and M.A. YARMO, XPS Studies of Radiation Grafted PTFE-g-polystyrene Sulfonic Acid Membranes. Journal of Applied Polymer Science, 2000. 76: p. 336–349.
62. Singare, P.U., R.S. Lokhande, and R.S. Madyal, Thermal degradation studies of polystyrene sulfonic and polyacrylic carboxylic cationites. Russian Journal of General Chemistry, 2010. 80(3): p. 527-532.
63. Matsuda, M., K. Funabashi, H. Yusa, and M. Kikuchi, Influence of Functional Sulfonic Acid Group on Pyrolysis Characteristics for Cation Exchange Resin. Journal of Nuclear Science and Technology, 1987. 24(2): p. 124-128.
64. RÂPĂ, M., P. N. GHIOCA, E. GROSU, L. IANCU, B. SPURCACIU, R. GRIGORESCU, A. TRIFOI, and C. CINCU, Development of new recycled polypropylene - styrene-isoprene-styrene block copolymers composites. Journal of Optoelectronics and Advanced Materials, 2013. 15: p. 817 - 822.
校內:2024-08-21公開