簡易檢索 / 詳目顯示

研究生: 蕭鎮豪
Hsiao, Chen-Hao
論文名稱: (NH4)2S2O8-H2SO4系統下製備膨脹石墨並應用於柴油吸附之研究
Preparation of expanded graphite in an (NH4)2S2O8-H2SO4 system and the use in diesel sorption
指導教授: 陳盈良
Chen, Ying-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 138
中文關鍵詞: 凝析石墨微波法膨脹石墨吸附材料柴油
外文關鍵詞: kish graphite, irradiation, expanded graphite, sorbent, diesel
相關次數: 點閱:53下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 I 英文摘要 III 致謝 X 目錄 XII 表目錄 XV 圖目錄 XVI 第一章 前言 1 1-1研究動機與目的 1 1-2研究內容 2 第二章 文獻回顧 4 2-1高爐集塵灰之特性及資源化現況 4 2-1-1高爐集塵灰來源及特性 4 2-1-2高爐集塵灰之利用現況 5 2-1-3凝析石墨形成機制及特性 6 2-2石墨種類、特性及發展現況 10 2-2-1石墨種類與特性 10 2-2-2石墨純化之程序 13 2-2-3石墨應用與發展現況 17 2-3膨脹石墨製備程序及特性 21 2-3-1石墨插層化合物形成機制及製備程序 23 2-3-2膨脹石墨形成機制及製備程序 28 2-3-3膨脹石墨特性及應用 30 2-4 油污染對環境之影響及處理方式 32 2-4-1 油污染來源及現今處理方式 32 2-4-2各類吸附材料對油污處理之效果 33 2-4-3吸附材料脫附之方法 36 2-5小結 38 第三章 研究材料、設備和方法 39 3-1研究架構與實驗流程 39 3-2研究材料與設備 42 3-2-1樣品前處理 42 3-2-2 實驗試藥與儀器設備 42 3-3研究分析與方法 45 3-3-1製備石墨插層化合物之參數設計及實驗流程 45 3-3-2製備膨脹石墨之參數設計及實驗流程 46 3-3-3膨脹石墨吸附油品之實驗流程 46 3-3-4膨脹石墨循環性之實驗流程 47 3-3-5分析方法 47 第四章 結果與討論 52 4-1天然石墨與凝析石墨之基本特性 52 4-1-1物理特性 52 4-1-2化學成分與晶相組成 55 4-1-3小結 60 4-2 膨脹石墨製備參數之探討 60 4-2-1氧化插層條件對膨脹石墨之影響 60 4-2-2微波對膨脹石墨體積之影響 71 4-2-3膨脹石墨微觀結構之探討 74 4-2-4小結 82 4-3以凝析石墨製備膨脹石墨之探討 84 4-3-1氧化插層條件對膨脹石墨之影響 84 4-3-2微波對膨脹石墨體積之影響 93 4-3-3膨脹石墨微觀結構之探討 97 4-3-4小結 104 4-4天然石墨與凝析石墨吸附柴油及脫附之探討 106 4-4-1膨脹石墨對柴油之吸附探討 106 4-4-2膨脹石墨對柴油之脫附探討 113 4-4-3膨脹石墨循環之探討 126 4-4-4小結 129 第五章 結論與建議 131 5-1結論 131 5-2建議 132 參考文獻 134

    1. 中國鋼鐵股份有限公司,中鋼公司109年企業社會責任報告書,2020。
    2. 蔡榮恩,Kish graphite回收與精製之研究,碩士論文,國立成功大學,1993。
    3. 江尉萍,高爐凝析石墨富集與純化之研究,碩士論文,國立成功大學,2019。
    4. 黃盈超、邵建榮、方敏鏗、黃豐基,FMR電熔爐整體耐火材改善,中國鑛冶工程學會會刊 58(3),78-86,2014。
    5. Nicks, L.J., Nehl, F.H., Chambers, M.F., Recovering flake graphite from steelmaking kish, Journal of the Minerals Metals & Materials Society, 47(6), 48-51, 1995.
    6. Frost, R., The Recovery of Kish Graphite from Secondary Sources, Master's Thesis, University of Birmingham, 2014.
    7. Bourelle, E., Kaburagi, Y., Hishiyam, Y., Inagaki, M., STM study of surfaces of kish graphite doped by iron, Carbon, 39, 1955-1962, 2001.
    8. Okamoto, H., The C-Fe (carbon-iron)system. Journal of Phase Equilibria, 13(5), 543-565, 1992.
    9. 丁偉中,碳在合金及其子系中的飽和溶解度,上海金屬,18(3), 1996。
    10. 丁躍華、唐啟榮、楊曉源、王玉仁、楊武態,高爐鐵水碳溶解度與片狀石墨析出的實驗研究,昆明理工大學學報, 29(5),2004。
    11. Shengli, L., Carl, R., Loper, J., Kish, A source of crystalline graphite, Carbon, 29(8), 1119-1124, 1991.
    12. Yang, G., Li, L., Lee, W.B., Ng, M.C., Structure of graphene and its disorders: A review, Science and Technology of Advanced Materials, 19(1), 613-648, 2018.
    13. Solfiti, E., Berto, F., Mechanical properties of flexible graphite review, Procedia Structural Integrity, 25, 420-729, 2020.
    14. Jangbarwala, J., Review of carbonaceous nanomaterials and graphite, Graphitic Nanofibers, 13-40, 2017.
    15. Annunciado, T.R., Sydenstricker, T.H., Amico, S.C., Experimental investigation of various vegetable fibers as sorbent materials for oil spills, Marine Pollution Bulletin, 50(11), 1340-1346, 2005.
    16. Paul, R.M., Application of a three-dimensional random pore model for thermal oxidation of synthetic graphite, Journal of Nuclear Materials, 543, 2021.
    17. Zhang, L., Fang J.J., Zhao, M.J., Li, G.D., Development of aphanitic graphite purification, Chemical Industry and Engineering Progress, 36(1), 261-267, 2017.
    18. Ge, P., Wang, H., Xie, L., Zhao, J., Zhang, Q., Progress of the methods of graphite purification, Metal Mine, 10, 2010.
    19. Xie, G., Li, X.Y., Zang, J., Yan, J.F., Yang, D.J., Yu, X.H., Yu, Z.L., Current situation and development on preparation of high purity graphite, Yunnan Metallurgy, 40(1), 2011.
    20. Tan, X.S., Luo, L.Q., Tian, J.X., Shu, W., Cheng, Q.L., Research on alkali-acid process of graphite purification, China Mining Magazine, 24(10), 138-144, 2015.
    21. Amani-Ghadim, A.R., Khodam, F., Aber, S., Seyed Dorraji, M.S., Mesoporous CuZnAl-layered double hydroxide/graphene oxide nanohybrid as an energy storage electrode for supercapacitor application, Bulletin of Materials Science, 44(1), 61, 2021.
    22. Simón, M., Benítez, A., Caballero, A., Morales, J., Vargas, O., Untreated natural graphite as a graphene source for high-performance Li-ion batteries, Batteries, 4(1), 2018.
    23. Ohzeki, K., Saito, Y., Golman, B., Shinohara, K., Shape modification of graphite particles by rotational impact blending, Carbon, 43(8), 1673-1679, 2005.
    24. Heidari, K.E., Gol, A.K., Sohi, M.H., Ataie, A., Electrode materials for lithium ion batteries: A review, Journal of Ultrafine Grained and Nanostructured Materials, 51(1), 1-12, 2018.
    25. Tian, Y., Ma, H., Xing, B., Preparation of surfactant modified magnetic expanded graphite composites and its adsorption properties for ionic dyes, Applied Surface Science, 537, 2021.
    26. Chung, D.D.L., A review of exfoliated graphite, Journal of Materials Science, 51(1), 554-568, 2015.
    27. Dai, C., Gu, C., Liu, B., Lyu, Y., Yao, X., He, H., Fang, J., Zhao, G., Preparation of low-temperature expandable graphite as a novel steam plugging agent in heavy oil reservoirs, Journal of Molecular Liquids, 293, 2019.
    28. Liqun, L., Bin, L., Fengwen, A., The pore structure of expanded graphite and its characterization, Chemical Industry and Engineering Progress, 36(2), 611-617, 2017.
    29. Guo, L., Zhang, D.Z., Xu, M., The factors influencing expanded volume for preparation of expanded graphite, Science and Technology in Chemical Industry, 5, 35-38, 2011.
    30. Chandesris, M., Caliste, D., Jamet, D., Pochet, P., Thermodynamics and related kinetics of staging in intercalation compounds, The Journal of Physical Chemistry, 123(38), 23711-23720, 2019.
    31. Inagaki, M., Applications of graphite intercalation compounds and related processes for synthesis, Chemical Physics of Intercalation, 172, 105-106, 1987.
    32. Li, J., Zeng, X., Ren, T., Van Der Heide, E., The preparation of graphene oxide and its derivatives and their application in bio-tribological systems, Lubricants, 2(3), 137-161, 2014.
    33. Yakovlev, A.V., Finaenov, A.I., Zabud’kov, S.L., Yakovleva, E.V., Thermally expanded graphite: Synthesis, properties, and prospects for use, Russian Journal of Applied Chemistry, 79(11), 1741-1751, 2006.
    34. 張俊紅,環境友好型材料膨脹石墨的製備方法及應用現狀,中國非金屬礦工業導刊,1,15-17,2010。
    35. Wang, P., Zhang, J., Dong, L., Sun, C., Zhao, X., Ruan, Y., Lu, H., Interlayer polymerization in chemically expanded graphite for preparation of highly conductive, mechanically strong polymer composites, Chemistry of Materials, 29(8), 3412-3422, 2017.
    36. Gurzęda, B., Krawczyk, P., Electrochemical formation of graphite oxide from the mixture composed of sulfuric and nitric acids, Electrochimica Acta, 310, 96-103, 2019.
    37. Li, J., Li, J., Li, M., Ultrasound irradiation prepare sulfur-free and lower exfoliate-temperature expandable graphite, Materials Letters, 62(14), 2047-2049, 2008.
    38. Chung, D.D.L., Exfoliation of graphite. Journal of Material Science, 22, 4190-4198, 1987.
    39. Goudarzi, R., Hashemi Motlagh, G., The effect of graphite intercalated compound particle size and exfoliation temperature on porosity and macromolecular diffusion in expanded graphite, Heliyon, 5(10), 2019.
    40. 賴怡瑾,劉偉仁,微波脫層法製備奈米石墨烯片及其散熱之應用,中國礦冶工程學會會刊,2017。
    41. Akbarinezhad, E., Sabouri, M., Synthesis of exfoliated conductive polyaniline-graphite nanocomposites in supercritical CO2, The Journal of Supercritical Fluids, 75, 81-87, 2013.
    42. Liu, T., Zhang, R., Zhang, X., Liu, K., Liu, Y., Yan, P., One-step room-temperature preparation of expanded graphite, Carbon, 119, 544-547, 2017.
    43. Celzard, A., Mareche, J., Furdin, G., Modelling of exfoliated graphite, Progress in Materials Science, 50(1), 93-179, 2005.
    44. Kim, S., Yoon, Y., Narejo, G.M., Jung, M., Kim, K.J., Kim, Y.J., Flexible graphite bipolar plates for vanadium redox flow batteries, International Journal of Energy Research, 45(7), 11098-11108, 2021.
    45. Li, J.T., Li, M., Li, J.H., Sun, H.W., Decolorization of azo dye direct scarlet 4BS solution using exfoliated graphite under ultrasonic irradiation, Ultrasonics Sonochemistry, 14(2), 241-245, 2007.
    46. Bayat, A., Aghamiri, S.F., Moheb, A., Oil sorption by synthesized exfoliated graphite (EG), Iranian Journal of Chemical Engineering, 5(1), 2008.
    47. Ossai, I.C., Ahmed, A., Hassan, A., Hamid, F.S., Remediation of soil and water contaminated with petroleum hydrocarbon: A review, Environmental Technology & Innovation, 17, 100526, 2020.
    48. Deschamps, G., Caruel, H., Borredon, M.E., Bonnin, C., Vignoles, C., Oil removal from water by selective sorption on hydrophobic cotton fibers, study of sorption properties and comparison with other cotton fiber-based sorbents, Environmental Science & Technology, 37(5), 1013-1015, 2003.
    49. Iqbal, M.Z., Abdala, A.A., Oil spill cleanup using graphene, Environmental Science and Pollution Research, 20(5), 3271-3279, 2013.
    50. Zunan, Q., Yi, Z., Yuqiao, F., Removal of oil from concentrated wastewater by attapulgite and coagulant, Water Quality Research Journal, 30(1), 89-100, 1995.
    51. Savos'kin, M.V., Yaroshenko, A.P., Mochalin, V.N., Panchenko, B.V., Sorption of industrial oil by expanded graphite, Russian Journal of Applied Chemistry, 76(6), 906-908, 2003.
    52. Pintor, A.M.A., Ferreira, C.I.A., Pereira, J.P.C., Souza, R.S., Silva, S.P., Vilar, V.J.P., Botelho, C.M.S., Boaventura, R.A.R., Oil desorption and recovery from cork sorbents, Journal of Environmental Chemical Engineering, 3(4A), 2917-2923, 2015.
    53. Toyoda, M., Inagaki, M., Heavy oil sorption using exfoliated graphite: new application of exfoliated graphite to protect heavy oil pollution, Carbon, 38(2), 199-210, 2000.
    54. Inagaki, M., Kawahara, A., Nishi, Y., Iwashita, N., Heavy oil sorption and recovery by using carbon fiber felts, Carbon, 40(9), 1487-1492, 2002.
    55. Falciglia, P.P., Giustra, M.G., Vagliasindi, F.G.A., Low-temperature thermal desorption of diesel polluted soil: Influence of temperature and soil texture on contaminant removal kinetics, Journal of Hazardous Materials, 185 (1), 392-400, 2011.
    56. Cho, K., Myung, E., Kim, H., Purev, O., Park, C., Choi, N., Removal of total petroleum hydrocarbons from contaminated soil through microwave irradiation, International Journal of Environmental Research and Public Health, 17(16), 2020.
    57. Li, J., Liu, R., Ma, L., Wei, L., Cao, L., Shen, W., Kang, F., Huang, Z.H., Combining multiple methods for recycling of kish graphite from steelmaking slags and oil sorption performance of kish-based expanded graphite, ACS Omega, 6(14), 9868-9875, 2021.
    58. Hou, B., Sun, H.J., Peng, T.J., Zhang, X.Y., Ren, Y.Z., Rapid preparation of expanded graphite at low temperature, New Carbon Materials, 35(3), 262-268, 2020.
    59. Kolthoff, I., Miller, I., The chemistry of persulfate,the kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium, Journal of the American Chemical Society, 73(7), 3055-3059, 1951.
    60. Li, J.H., Feng, L.L., Jia, Z.X., Preparation of expanded graphite with 160 μm mesh of fine flake graphite, Materials Letters, 60(6), 746-749, 2006.
    61. Wei, T., Fan, Z., Luo, G., Zheng, C., Xie, D., A rapid and efficient method to prepare exfoliated graphite by microwave irradiation, Carbon, 47(1), 337-339, 2009.
    62. Coenen, K., Gallucci, F., Mezari, B., Hensen, E., Van Sint Annaland, M., An in-situ IR study on the adsorption of CO2 and H2O on hydrotalcites, Journal of CO2 Utilization, 24, 228-239, 2018.
    63. Stuart, B.H., Infrared spectroscopy: Fundamentals and applications, New York: John Wiley & Sons, 2004.
    64. Sykam, N., Jayram, N.D., Mohan Rao, G., Exfoliation of graphite as flexible SERS substrate with high dye adsorption capacity for Rhodamine 6G. Applied Surface Science, 471, 375-386, 2019.
    65. Hampton, C., Demoin, D., Glaser, R.E., Vibrational spectroscopy tutorial: Sulfur and phosphorus, University of Missouri, 2010.
    66. Sorokina, N.E., Redchitz, A.V., Ionov, S.G., Avdeev, V.V., Different exfoliated graphite as a base of sealing materials, Journal of Physics and Chemistry of Solids, 67(5), 1202-1204, 2006.
    67. Wang, C.y., Wu, Z., Wei, M.y., Pei, N., Wei, J., Study on the mechanism of expanded graphite degreasing and influencing factors, Enviornmental Science and Management, 34(4), 2009.
    68. Benamara, C., Gharbi, K., Amar, M.N., Hamada, B., Prediction of wax appearance temperature using artificial intelligent techniques, Arabian Journal for Science and Engineering, 45(2), 1319-1330, 2020.
    69. 豊田昌宏、盛屋考治、稲垣道夫,重油を収着した膨張黒鉛からの重油の回収,日本化學會誌,3,2000。

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE