| 研究生: |
林易增 Lin, Yi-Tseng |
|---|---|
| 論文名稱: |
量子位勢流及其數值分析 Quantum Potential Flow and Its Numerical Analysis |
| 指導教授: |
楊憲東
Yang, Cian-Dong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 量子力學 、波姆力學 、複數力學 、量子流體力學 、量子位勢流 、數值分析 |
| 外文關鍵詞: | quantum mechanics, Bohmian mechanics, complex mechanics, hydrodynamic formulation of quantum mechanics, quantum potential flow, numerical analysis |
| 相關次數: | 點閱:114 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
透過波姆力學(Bohmian mechanics)這個具有因果內涵的量子理論,前人替流體力學形式的量子力學打下基礎。在波姆力學的架構底下,薛丁格方程式可以被拆解成兩個量子流體力學最基本的方程式。由於量子流體力學為吾人提供了熟悉的物理圖像,所以儘管這個架構有瑕疵仍然受到廣泛的討論。根據計算方式的不同,量子流體力學的研究可以分成解析型以及合成型兩種。解析型研究主要以提供詮釋為主,而合成型則和數值計算有關。在本論文中吾人將從另一更為完善且具因果內涵的量子力學─複數力學的角度出發,建立起新的量子流體力學,期盼能提供解析型以及合成型研究的一個新研究方向。在複數力學的架構之下,吾人建立了量子位流理論,將機率流和位勢流理論連結,提供解析型研究新的詮釋。而吾人同時也將舊有的數值計算技巧沿用到複數力學的架構之下,提供合成型研究一個新的視野。
The foundation of hydrodynamic formulation of quantum mechanics has been established by Bohm through his deterministic quantum theory, called Bohmian mechanics. Under the framework of Bohmian mechanics, Schrödinger equation has been separated into two equations, which are the basic formulation of quantum hydrodynamics. Because of the considerable insight that was provided by the hydrodynamics quantum mechanics, it has still been used for a diverse spectrum of physical processes even if it has several drawbacks. Depending on how they are computed, the methods may be broadly divided into two categories, analytic approach and synthetic approach. The purpose of analytic approach is not to solve the Schrödinger equation but rather to provide physical insights. The synthetic approach has something to do with the computational tool for solving the quantum hydrodynamic formulation.
The main purpose of the present thesis is to implement the new hydrodynamic formulation of quantum mechanics, which is constructed by a justified deterministic quantum theory, called complex mechanics. Under the scheme of complex mechanics, we established the quantum potential flow theory, which reveal a novel analogy between the probability flow and the potential flow, and we also incorporate the computational techniques into the new framework.
[1] D. Bohm, “A Suggested interpretation of the quantum theory in terms of ‘hidden variables’I”, Phys. Rev. 85, 166-179 (1952)
[2] D. Bohm, “A Suggested interpretation of the quantum theory in terms of ‘hidden variables’II”, Phys. Rev. 85, 180-193 (1952)
[3] M.V. John, “Modified De Broglie-Bohm Approach to Quantum Mechanics”, Found. Phys. Lett. 15, 329 (2002)
[4] Z.S Wang, G.R. Darling, S. Holloway, “Dissociation dynamics from a de Broglie-Bohm perspective”, J. Chem. Phys. 115, 10373 (2001)
[5] A.S. Sanz, F. Borondo, S. Miret-Artes, “Causal trajectories decription of atom diffraction by surfaces”, Phys. Rev. B. 61, 7743 (2000)
[6] G.E. Bowman, “Bohmian mechanics as a heuristic device: Wave packets in the harmonic oscillator”, Am. J. Phys 70, 313 (2002)
[7] J.R. Barker, R. Akis, and D.K. Ferry, “On the use of Bohm trajectories for interpreting quantum flows in quantum dot structures”, Superlattices and Microstructures 27, 319 (2000).
[8] F.Sales Mayor, A. Askar, and H.A. Rabitz, “Quantum fluid dynamics in the Lagrangian representation and applications to photodissociation problems”, J. Chem. Phys. 111,2423 (1999).
[9] G. Drolshagen, E. J. Heller, “A WavePacket Approach To Gas–Surface Scattering: Application To Surfaces With Imperfections”, Elsevier, New York (1983)
[10] E.A. McCullough, R.E. Wyeth, “Quantum fluid dynamics in the Lagrangian representation and applications to photodissociation problems” J. Chem. Phys. 51, 1253-1969 (1961)
[11] J. H. Weiner and A. Askar, “Time‐Dependent Perturbation Calculations Based on the Hydrodynamic Analogy to Quantum Mechanics”, J. Chem. Phys. 54, 1108 (1971)
[12] A. Askar and J.H. Weiner, “Wave packet dynamics on two-dimensional quadratic potential surface.”, Am. J. Phys.39, 10 (1971).
[13] R. Aris, “Vectors, Tensors, and the Basic Equations of Fluid Mechanics”, Englewood Cliffs, NJ (1962)
[14] B. Schutz, “Geometric Methods of Mathematical Physics”, Cambridge University Press, Cambridge, UK (1995)
[15] F.M.M. Faisal, U. Schwengelbeck, “Unified theory of Lyapunov exponents and a positive example of deterministic quantum chaos”, Phys. Lett. A 207, 31 (1995)
[16] C.Y. Wong, “On the Schrödinger equation in fluid mechanical form”, J. Math. Phys. 17,1008 (1976)
[17] S. Sonego, “Interpretation of the hydrodynamical formalismof quantum mechanics”, Found. Phys. 21, 1135 (1991)
[18] J. O. Hirschfelder, A. C. Christoph, W. E. Palke, “Quantum mechanical streamlines. I. Square potential barrier”, J. Chem. Phys. 61, 5435 (1974).
[19] J. O. Hirschfelder, C. J. Goebel, and L. W. Bruch, “Quantized vortices around wavefunction nodes. II”, J. Chem. Phys. 61, 5456 (1974)
[20] J. O. Hirschfelder and K. T. Tang, “Quantum mechanical streamlines. III. Idealized reactive atom-diatomic molecule collision”, J. Chem. Phys. 64, 760 (1976)
[21] J. O. Hirschfelder and K. T. Tang, “Quantum mechanical streamlines. IV. Collision of two spheres with square potential wells or barriers”, J. Chem. Phys. 65, 470 (1976)
[22] J. O. Hirschfelder, “The angular momentum, creation, and significance of quantized Yortices”, J. Chem. Phys. 67, 5477 (1977)
[23] R.J. Harvey, “Navier-Stokes nalogue of quantum mechanics.”, Phys. Rev. 152, 1115 (1966)
[24] C.D. Yang, “A New Hydrodynamic Formulation of Complex-Valued Quantum Mechanics,” Chaos, Solitons & Fractals, Vol. 42, pp. 453-468 (2009)
[25] C.D. Yang, “Quantum Motion in Complex Space,” Chaos, Solitons & Fractals, Vol. 33, pp.1073-1092. (2007)
[26] C.D.Yang, ”Complex mechanics”, Asian Academic Publisher, ISSN 2007-8139,Hong Kong. (2010)
[27] R.E. Wyatt, “Quantum Dynamics with Trajectories”, Springer, New York. (2005)
[28] D. Bohm, J.P. Vigier,” Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations.”, Phys. Rev. 96:208–16.(1954)
[29] Yang CD, Wei CH. Parameterization of all path integral trajectories. Chaos, Solitons & Fractals 2007;33:118–34.
[30] Yang CD. Wave-particle duality in complex space. Ann Phys 2005;319:444–70.
[31] J.Z.H. Zhang, Theory and Application of Quantum Molecular Dynamics, World Scientific, Singapore. (1999)
[32] C.C. Chou, “Trajectory approach to quantum wave packet dynamics: The correlated derivative propagation method”, Chem. Phys. Lett.500,342-346. (2010)
[33] Y. Goldfarb, “Complex trajectory method in time-dependent WKB”, J. Chem. Phys.128,164114
[34] J.H. Weiner, Y. Partom, “Quantum Theory of Motion”, Cambridge Press,New York.(1993)
[35] A. Askar, J.H. Weiner, “Wave packet dynamics on two-dimensional quadratic potential surfaces, Am. J. Phys. 39,1230 (1971)
[36] C.L. Lopreore, R.E. Wyatt, ” Quantum Wave Packet Dynamics with Trajectories”, Phys. Rev. Lett. 82, 5190-5193 (1999)
[37] C.J. Tranhan, K. Hughes, R.E. Wyatt, “A new method for wave packet propagation: Derivative propagation along quantum trajectories”, J. Chem. Phys. 188, 9911 (2003)
[38] C.C. Chou, ”Hydrodynamic View of Wave-Packet Interference: Quantum Caves”, Phys. Rev. Lett. 102, 250401 (2009)
[39] P. L. Hagelstein, S.D. Senturia, T.P. Orlando, “Introductory Applied Quantum and Statistical Mechanics”, John Wiley & Sons, Hoboken. (2004)