簡易檢索 / 詳目顯示

研究生: 黃妮妮
Huang, Ni-Ni
論文名稱: 量子狀態和過程之量子關聯性的量化及其應用:從量子非局域性到量子通訊
Quantifying Quantum Correlations of Quantum States and Processes and their Applications to Quantum Information Processing: from Quantum Nonlocality to Quantum Communication
指導教授: 李哲明
Li, Che-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 139
中文關鍵詞: 量子資訊處理量子關聯性貝爾非局域性古典過程量化量子過程
外文關鍵詞: Quantum information processing, Quantum correlations, Quantum nonlocality, Classical process, Quantifying quantum processes
相關次數: 點閱:107下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 量子資訊處理利用量子效應,提供了超越古典資訊理論方式之嶄新資訊處理之方法;例如製造、分發、保存糾纏(Entanglement),以及進行各式操作以完成量子計算或量子通訊任務。為了確認資訊處理結果是由量子方法所得,而非透過古典所模擬,研究糾纏狀態的特性及其經歷任務之過程的量化成為量子資訊處理不可缺乏之步驟。而這樣的探討通常用不同信任性的情境:兩邊皆不可信任、僅有一邊可信任及皆可信任。本論文中就前兩種情境探討了古典狀態與古典過程之量化判別與其應用。我們首先提出了對模組化量子電腦上之網絡型量子隱形傳輸進行判別分析的工具箱:N個位元的鏈狀或箱狀的圖態之網絡型量子隱形傳輸;量化之輸入可信任、輸出不可信任之古典過程模型。此部可延伸至:使用任意多體圖態進行網絡型量子隱形傳輸的一般通用形式;從過程的角度提出純的多體可操控性(genuine multipartite EPR steering) 為非古典網絡型量子隱形傳輸的資源之必要條件。本論文的第二個部分,有別於一般從狀態角度量化貝爾非局域性,我們結合了貝爾非局域性、量子資訊處理常用之狀態及過程斷層掃描及數值方法,開發出同時量化量子狀態及其經歷之過程之工具。我們利用這些工具量化了:晶片尺度之IBM量子電腦邏輯閘運算;光學尺度之雙光子製造及調變;遠距之量子通訊之糾纏分發及量子遙傳上糾纏態製造及所經歷通道的不完美性;三個廣為人知的噪音通道,其顯現出對於噪音強度之不同的靈敏性。本篇論文提供了在兩種不同信任情境下之量化之理論及其應用,其有助於未來量子資訊處理應用上之參考。

    Quantum information processing (QIP) provides a new means for information processing with quantum effects, which outperforms the classical analogue. For instance, using entanglement from generation, distribution, preservation, and manipulations to perform QIP tasks such as quantum computation or quantum communication. Accordingly, quantifying practical entanglement generation and its implemented processes by ruling out any classical strategy of mimicry is indispensable. In general, different combinations of trusted participants in QIP tasks are considered. In this thesis, we investigate two scenarios: only one party is trusted; both parties are not, and their quantitative quantification of quantum correlations of quantum states and processes. First, we propose an identification toolbox, consisting of systematically scalable networking teleportation protocols based on N-qubit cluster state and quantifying tools for examining nonclassical teleportation process on modular quantum computer. Furthermore, we then reveal that genuine multipartite EPR steering is necessary for two essential kinds of quantum networking tasks to faithfully outperform any classical dynamical processes of mimicry. Second, we propose an experimentally feasible method combining Bell nonlocality and tomographic tools for quantifying nonlocality for both states and channels. Our method quantifies different scale QIP tasks. Overall, the toolbox and method proposed in this study provides potential applications to faithfully perform QIP tasks.

    摘要 i Abstract ii 誌謝 iii Table of Contents iv List of Tables viii List of Figures ix Nomenclature xi Chapter 1. Introduction 1 1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3. Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 2. Essential Knowledge and Tools 10 2.1. Postulates of quantum mechanics . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1. Postulate 1 – State space . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.2. Postulate 2 – Evolution . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.3. Postulate 3 – Quantum measurement . . . . . . . . . . . . . . . . . 14 2.1.4. Postulate 4 – Composite system . . . . . . . . . . . . . . . . . . . 16 2.2. Different types of entangled states . . . . . . . . . . . . . . . . . . . . . . 18 2.3. The density operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4. Entanglement, EPR steering, and Bell nonlocality . . . . . . . . . . . . . . 23 2.5. Quantum teleportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.6. Quantum tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.6.1. Quantum state tomography . . . . . . . . . . . . . . . . . . . . . . 28 2.6.2. Quantum process tomography . . . . . . . . . . . . . . . . . . . . 29 Chapter 3. Identification of Networking Quantum Teleportation on 14-qubit IBM Universal Quantum Computer 33 3.1. Basic idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1.1. Modular architecture of the quantum network. . . . . . . . . . . . . 35 3.2. Networking teleportation protocols . . . . . . . . . . . . . . . . . . . . . . 37 3.2.1. Alice’s measurement . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.2. Participants’s measurements . . . . . . . . . . . . . . . . . . . . . 39 3.2.3. Bob’s operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.4. Comparison between the original teleportation protocol and our protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3. Identifying quantummechanical process of networking teleportation . . . . 46 3.4. Networking teleportation implemented on ibmq_16_melbourne device . . . 48 3.5. Identification of quantummechanical process of networking teleportation . 55 3.5.1. Detection of genuine multipartite entangled state . . . . . . . . . . 56 3.5.2. Examination of experimental controlled gate . . . . . . . . . . . . . 58 3.5.3. Relation between our process benchmark and calibration parameters of 14qubit IBM quantum processor . . . . . . . . . . . . . . . . . 60 3.6. Genuine multipartite EinsteinPodolskyRosen Steering as resources for networking quantum information processing . . . . . . . . . . . . . . . . . . 64 3.6.1. Opendestination teleportation via any graph state networks . . . . . 65 3.6.2. Genuine multipartite Einstein-Podolsky-Rosen Steering as resources for networking quantum teleportation . . . . . . . . . . . . . . . . 70 3.6.3. Genuine multipartite Einstein-Podolsky-Rosen Steering as resources for quantum secret sharing . . . . . . . . . . . . . . . . . . . . . . 71 Chapter 4. Quantifying Bell nonolocality of States and Channels 77 4.1. The three cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.2. Genuinely classical model states and processes. . . . . . . . . . . . . . . 79 4.2.1. Genuinely classical model states. . . . . . . . . . . . . . . . . . 80 4.2.2. Genuinely classical model processes. . . . . . . . . . . . . . . . 81 4.3. The two tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.3.1. The first test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.3.2. The second test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.3.3. Comparison between the two tests . . . . . . . . . . . . . . . . . . 87 4.3.4. Comparison between the two tests and other related studies . . . . . 87 4.4. The correspondence between the genuinely classical states and the processes 89 4.5. Quantifiers for nonclassical states and their nonclassical processes. . . . . . 90 4.5.1. Nonclassical composition . . . . . . . . . . . . . . . . . . . . . . . 91 4.5.2. Nonclassical robustness . . . . . . . . . . . . . . . . . . . . . . . . 92 4.5.3. Fidelity criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.6. Quantification of experimental imperfection to states and processes . . . . . 94 4.6.1. Quantum computation . . . . . . . . . . . . . . . . . . . . . . . . 95 4.6.2. Biphoton generation and modulation . . . . . . . . . . . . . . . . . 98 4.6.3. Quantum communication . . . . . . . . . . . . . . . . . . . . . . . 101 4.6.4. Quantification of nontrace preserving process projective measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Chapter 5. Summary and Outlook 106 5.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 References 112 Appendix A. The paper submitted for publication 124

    [1] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum­mechanical description of physical reality be considered complete?,” Physical Review, vol. 47, no. 10, p. 777, 1935.
    [2] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entangle­ ment,” Reviews of Modern Physics, vol. 81, no. 2, p. 865, 2009.
    [3] E. Schrödinger, “Discussion of probability relations between separated systems,” in Mathematical Proceedings of the Cambridge Philosophical Society, vol. 31, pp. 555– 563, Cambridge University Press, 1935.
    [4] H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the einstein­podolsky­rosen paradox,” Physical Review Letters, vol. 98, no. 14, p. 140402, 2007.
    [5] R. Uola, A. C. S. Costa, H. C. Nguyen, and O. Gühne, “Quantum steering,” 2019.
    [6] J. S. Bell, “On the einstein podolsky rosen paradox,” Physics Physique Fizika, vol. 1, no. 3, p. 195, 1964.
    [7] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden­variable theories,” Physical Review Letters, vol. 23, no. 15, p. 880, 1969.
    [8] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,”
    Reviews of Modern Physics, vol. 86, no. 2, p. 419, 2014.
    [9] M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Physical Review A, vol. 59, no. 3, p. 1829, 1999.
    [10] R. Raussendorf and H. J. Briegel, “A one­way quantum computer,” Physical Review Letters, vol. 86, pp. 5188–5191, May 2001.
    [11] E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computa­ tion with linear optics,” Nature, vol. 409, no. 6816, p. 46, 2001.
    [12] C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One­ sided device­independent quantum key distribution: Security, feasibility, and the con­ nection with steering,” Physical Review A, vol. 85, no. 1, p. 010301, 2012.
    [13] A. K. Ekert, “Quantum cryptography based on bell’s theorem,” Physical Review Let­ ters, vol. 67, no. 6, p. 661, 1991.
    [14] Č. Brukner, M. Żukowski, J.­W. Pan, and A. Zeilinger, “Bell’s inequalities and quan­ tum communication complexity,” Physical Review Letters, vol. 92, no. 12, p. 127901, 2004.
    [15] H. Buhrman, R. Cleve, S. Massar, and R. De Wolf, “Nonlocality and communication complexity,” Reviews of Modern Physics, vol. 82, no. 1, p. 665, 2010.

    [16] J. I. De Vicente, “On nonlocality as a resource theory and nonlocality measures,” Jour­ nal of Physics A: Mathematical and Theoretical, vol. 47, no. 42, p. 424017, 2014.
    [17] K. Vogel and H. Risken, “Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase,” Physical Review A, vol. 40, no. 5, p. 2847, 1989.
    [18] U. Leonhardt, Measuring the Quantum State of Light, vol. 22. Cambridge University Press, 1997.
    [19] A. Peres, “Separability criterion for density matrices,” Physical Review Letters, vol. 77, no. 8, p. 1413, 1996.
    [20] M. Horodecki, P. Horodecki, and R. Horodecki, “Separability of mixed states: neces­ sary and sufficient conditions,” Physics Letters A, vol. 223, p. 1–8, Nov 1996.
    [21] W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys­ ical Review Letters, vol. 80, pp. 2245–2248, Mar 1998.
    [22] G. Vidal and R. F. Werner, “Computable measure of entanglement,” Physical Review A, vol. 65, p. 032314, Feb 2002.
    [23] E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and M. D. Reid, “Experimental criteria for steering and the einstein­podolsky­rosen paradox,” Physical Review A, vol. 80, no. 3, p. 032112, 2009.
    [24] P. Skrzypczyk, M. Navascués, and D. Cavalcanti, “Quantifying einstein­podolsky­ rosen steering,” Physical Review Letters, vol. 112, no. 18, p. 180404, 2014.
    [25] M. Piani and J. Watrous, “Necessary and sufficient quantum information characteri­ zation of einstein­podolsky­rosen steering,” Physical Review Letters, vol. 114, no. 6, p. 060404, 2015.
    [26] R. Gallego and L. Aolita, “Resource theory of steering,” Physical Review X, vol. 5, no. 4, p. 041008, 2015.
    [27] P. H. Eberhard, “Background level and counter efficiencies required for a loophole­ free einstein­podolsky­rosen experiment,” Physical Review A, vol. 47, no. 2, p. R747, 1993.
    [28] S. Popescu and D. Rohrlich, “Quantum nonlocality as an axiom,” Foundations of Physics, vol. 24, no. 3, pp. 379–385, 1994.
    [29] B. F. Toner and D. Bacon, “Communication cost of simulating bell correlations,” Phys­ ical Review Letters, vol. 91, no. 18, p. 187904, 2003.
    [30] S. Pironio, “Violations of bell inequalities as lower bounds on the communication cost of nonlocal correlations,” Physical Review A, vol. 68, no. 6, p. 062102, 2003.
    [31] W. Van Dam, R. D. Gill, and P. D. Grunwald, “The statistical strength of nonlocality proofs,” IEEE Transactions on Information Theory, vol. 51, no. 8, pp. 2812–2835, 2005.

    [32] A. Acín, R. Gill, and N. Gisin, “Optimal bell tests do not require maximally entangled states,” Physical Review Letters, vol. 95, no. 21, p. 210402, 2005.
    [33] M. Junge, C. Palazuelos, D. Pérez­García, I. Villanueva, and M. M. Wolf, “Opera­ tor space theory: a natural framework for bell inequalities,” Physical Review Letters, vol. 104, no. 17, p. 170405, 2010.
    [34] M. J. Hall, “Relaxed bell inequalities and kochen­specker theorems,” Physical Review A, vol. 84, no. 2, p. 022102, 2011.
    [35] R. Chaves, D. Cavalcanti, L. Aolita, and A. Acín, “Multipartite quantum nonlocality under local decoherence,” Physical Review A, vol. 86, no. 1, p. 012108, 2012.
    [36] E. Fonseca and F. Parisio, “Measure of nonlocality which is maximal for maximally entangled qutrits,” Physical Review A, vol. 92, no. 3, p. 030101, 2015.
    [37] R. Chaves, R. Kueng, J. B. Brask, and D. Gross, “Unifying framework for relaxations of the causal assumptions in bell's theorem,” Physical Review Letters, vol. 114, no. 14, p. 140403, 2015.
    [38] M. Ringbauer, C. Giarmatzi, R. Chaves, F. Costa, A. G. White, and A. Fedrizzi, “Ex­ perimental test of nonlocal causality,” Science Advances, vol. 2, no. 8, p. e1600162, 2016.
    [39] A. Montina and S. Wolf, “Information­based measure of nonlocality,” New Journal of Physics, vol. 18, no. 1, p. 013035, 2016.
    [40] J. B. Brask and R. Chaves, “Bell scenarios with communication,” Journal of Physics A: Mathematical and Theoretical, vol. 50, no. 9, p. 094001, 2017.
    [41] R. Gallego and L. Aolita, “Nonlocality free wirings and the distinguishability between bell boxes,” Physical Review A, vol. 95, no. 3, p. 032118, 2017.
    [42] S. G. d. A. Brito, B. Amaral, and R. Chaves, “Quantifying bell nonlocality with the trace distance,” Physical Review A, vol. 97, no. 2, p. 022111, 2018.
    [43] M. A. Nielsen and I. Chuang, “Quantum computation and quantum information,” 2002.
    [44] M. F. Pusey, “Verifying the quantumness of a channel with an untrusted device,” Jour­ nal of the Optical Society of America B, vol. 32, no. 4, pp. A56–A63, 2015.
    [45] K. Jones, “Fundamental limits upon the measurement of state vectors,” Physical Re­ view A, vol. 50, no. 5, p. 3682, 1994.
    [46] I. L. Chuang and M. A. Nielsen, “Prescription for experimental determination of the dynamics of a quantum black box,” Journal of Modern Optics, vol. 44, no. 11­12, pp. 2455–2467, 1997.
    [47] J. Poyatos, J. I. Cirac, and P. Zoller, “Complete characterization of a quantum process: the two­bit quantum gate,” Physical Review Letters, vol. 78, no. 2, p. 390, 1997.

    [48] A. Orieux, L. Sansoni, M. Persechino, P. Mataloni, M. Rossi, and C. Macchiavello, “Experimental detection of quantum channels,” Physical Review Letters, vol. 111, no. 22, p. 220501, 2013.
    [49] D. Rosset, F. Buscemi, and Y.­C. Liang, “Resource theory of quantum memories and their faithful verification with minimal assumptions,” Physical Review X, vol. 8, no. 2, p. 021033, 2018.
    [50] Y.­Z. Zhen, Y. Mao, K. Chen, and O. Dahlsten, “Unified approach to witness nonentanglement­breaking quantum channels,” arXiv:1912.10605, 2019.
    [51] A. Jamiołkowski, “Linear transformations which preserve trace and positive semidef­ initeness of operators,” Reports on Mathematical Physics, vol. 3, no. 4, pp. 275–278, 1972.
    [52] M.­D. Choi, “Completely positive linear maps on complex matrices,” Linear Algebra and its Applications, vol. 10, no. 3, pp. 285–290, 1975.
    [53] M. Horodecki, P. W. Shor, and M. B. Ruskai, “Entanglement breaking channels,” Re­ views in Mathematical Physics, vol. 15, no. 06, pp. 629–641, 2003.
    [54] M. Piani, “Channel steering,” Journal of the Optical Society of America B, vol. 32, no. 4, pp. A1–A7, 2015.
    [55] R. Pal and S. Ghosh, “Non­locality breaking qubit channels: the case for chsh inequal­ ity,” Journal of Physics A: Mathematical and Theoretical, vol. 48, no. 15, p. 155302, 2015.
    [56] C.­C. Kuo, S.­H. Chen, W.­T. Lee, H.­M. Chen, H. Lu, and C.­M. Li, “Quantum pro­ cess capability,” Scientific Reports, vol. 9, no. 1, pp. 1–12, 2019.
    [57] J.­H. Hsieh, S.­H. Chen, and C.­M. Li, “Quantifying quantum­mechanical processes,”
    Scientific Reports, vol. 7, no. 1, p. 13588, 2017.
    [58] S.­H. Chen, H. Lu, Q.­C. Sun, Q. Zhang, Y.­A. Chen, and C.­M. Li, “Discriminat­ ing quantum correlations with networking quantum teleportation,” Physical Review Research, vol. 2, no. 1, p. 013043, 2020.
    [59] H. Kragh, Quantum Generations: A History of Physics in the Twentieth Century. Princeton University Press, 2002.
    [60] D. M. Greenberger, M. A. Horne, and A. Zeilinger, “Bell's theorem, quantum theory, and conceptions of the universe,” 1989.
    [61] M. Hein, J. Eisert, and H. J. Briegel, “Multiparty entanglement in graph states,” Phys­ ical Review A, vol. 69, no. 6, p. 062311, 2004.
    [62] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein­podolsky­rosen channels,” Physical Review Letters, vol. 70, no. 13, p. 1895, 1993.
    [63] R. Shankar, Principles of Quantum Mechanics. Springer Science & Business Media, 2012.

    [64] H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Physical Review Letters, vol. 86, no. 5, p. 910, 2001.
    [65] R. Raussendorf and H. J. Briegel, “A one­way quantum computer,” Physical Review Letters, vol. 86, no. 22, p. 5188, 2001.
    [66] P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. As­ pelmeyer, and A. Zeilinger, “Experimental one­way quantum computing,” Nature, vol. 434, no. 7030, p. 169, 2005.
    [67] C.­Y. Lu, X.­Q. Zhou, O. Gühne, W.­B. Gao, J. Zhang, Z.­S. Yuan, A. Goebel, T. Yang, and J.­W. Pan, “Experimental entanglement of six photons in graph states,” Nature Physics, vol. 3, no. 2, p. 91, 2007.
    [68] S. M. Lee, H. S. Park, J. Cho, Y. Kang, J. Y. Lee, H. Kim, D.­H. Lee, and S.­K. Choi, “Experimental realization of a four­photon seven­qubit graph state for one­way quantum computation,” Optics Express, vol. 20, no. 7, pp. 6915–6926, 2012.
    [69] B. Bell, D. Herrera­Martí, M. Tame, D. Markham, W. Wadsworth, and J. Rarity, “Experimental demonstration of a graph state quantum error­correction code,” Nature Communications, vol. 5, no. 1, pp. 1–10, 2014.
    [70] B. Bell, D. Markham, D. Herrera­Martí, A. Marin, W. Wadsworth, J. Rarity, and
    M. Tame, “Experimental demonstration of graph­state quantum secret sharing,” Na­ ture Communications, vol. 5, no. 1, pp. 1–12, 2014.
    [71] X.­L. Wang, L.­K. Chen, W. Li, H.­L. Huang, C. Liu, C. Chen, Y.­H. Luo, Z.­E. Su,
    D. Wu, Z.­D. Li, et al., “Experimental ten­photon entanglement,” Physical Review Letters, vol. 117, no. 21, p. 210502, 2016.
    [72] S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, “Demonstration of blind quantum computing,” Science, vol. 335, no. 6066, pp. 303– 308, 2012.
    [73] J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich,
    C. F. Roos, P. Zoller, and R. Blatt, “An open­system quantum simulator with trapped ions,” Nature, vol. 470, no. 7335, p. 486, 2011.
    [74] T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg, W. A. Coish, M. Har­ lander, W. Hänsel, M. Hennrich, and R. Blatt, “14­qubit entanglement: Creation and coherence,” Physical Review Letters, vol. 106, no. 13, p. 130506, 2011.
    [75] C. Song, K. Xu, W. Liu, C.­p. Yang, S.­B. Zheng, H. Deng, Q. Xie, K. Huang, Q. Guo,
    L. Zhang, et al., “10­qubit entanglement and parallel logic operations with a supercon­ ducting circuit,” Physical Review Letters, vol. 119, no. 18, p. 180511, 2017.
    [76] J. Cramer, N. Kalb, M. A. Rol, B. Hensen, M. S. Blok, M. Markham, D. J. Twitchen,
    R. Hanson, and T. H. Taminiau, “Repeated quantum error correction on a continuously encoded qubit by real­time feedback,” Nature Communications, vol. 7, p. 11526, 2016.
    [77] H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, and M. Van den Nest, “Measurement­based quantum computation,” Nature Physics, vol. 5, no. 1, p. 19, 2009.

    [78] V. Danos and E. Kashefi, “Determinism in the one­way model,” Physical Review A, vol. 74, no. 5, p. 052310, 2006.
    [79] D. E. Browne, E. Kashefi, M. Mhalla, and S. Perdrix, “Generalized flow and deter­ minism in measurement­based quantum computation,” New Journal of Physics, vol. 9, no. 8, p. 250, 2007.
    [80] D. Gottesman, “Stabilizer codes and quantum error correction,” arXiv:quant­ ph/9705052, 1997.
    [81] D. Schlingemann and R. F. Werner, “Quantum error­correcting codes associated with graphs,” Physical Review A, vol. 65, no. 1, p. 012308, 2001.
    [82] D. Schlingemann, “Stabilizer codes can be realized as graph codes,” arXiv:quant­ ph/0111080, 2001.
    [83] P. Aliferis and D. W. Leung, “Simple proof of fault tolerance in the graph­state model,”
    Physical Review A, vol. 73, no. 3, p. 032308, 2006.
    [84] A. Broadbent, J. Fitzsimons, and E. Kashefi, “Universal blind quantum computation,” in 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 517– 526, IEEE, 2009.
    [85] T. Morimae and K. Fujii, “Blind quantum computation protocol in which alice only makes measurements,” Physical Review A, vol. 87, no. 5, p. 050301, 2013.
    [86] C. Greganti, M.­C. Roehsner, S. Barz, T. Morimae, and P. Walther, “Demonstration of measurement­only blind quantum computing,” New Journal of Physics, vol. 18, no. 1, p. 013020, 2016.
    [87] A. Pirker, J. Wallnöfer, and W. Dür, “Modular architectures for quantum networks,”
    New Journal of Physics, vol. 20, no. 5, p. 053054, 2018.
    [88] P. Kok and B. W. Lovett, Introduction to optical quantum information processing. Cambridge University Press, 2010.
    [89] E. Schrödinger, “Die gegenwärtige situation in der quantenmechanik,” Naturwis­ senschaften, vol. 23, no. 49, pp. 823–828, 1935.
    [90] “IBM Q experience.” https://quantum-computing.ibm.com. Accessed: 20 Jan­ uary 2020.
    [91] C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” Science, vol. 339, no. 6124, pp. 1164–1169, 2013.
    [92] M. H. Devoret and R. J. Schoelkopf, “Superconducting circuits for quantum informa­ tion: an outlook,” Science, vol. 339, no. 6124, pp. 1169–1174, 2013.
    [93] L. Childress, R. Walsworth, and M. Lukin, “Atom­like crystal defects,” Physics Today, vol. 67, no. 10, p. 38, 2014.
    [94] C. Monroe, R. Raussendorf, A. Ruthven, K. Brown, P. Maunz, L.­M. Duan, and
    J. Kim, “Large­scale modular quantum­computer architecture with atomic memory and photonic interconnects,” Physical Review A, vol. 89, no. 2, p. 022317, 2014.

    [95] D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe, “Modular entanglement of atomic qubits using photons and phonons,” Nature Physics, vol. 11, no. 1, p. 37, 2015.
    [96] A. Narla, S. Shankar, M. Hatridge, Z. Leghtas, K. Sliwa, E. Zalys­Geller, S. Mund­ hada, W. Pfaff, L. Frunzio, R. Schoelkopf, et al., “Robust concurrent remote en­ tanglement between two superconducting qubits,” Physical Review X, vol. 6, no. 3, p. 031036, 2016.
    [97] T. Brecht, W. Pfaff, C. Wang, Y. Chu, L. Frunzio, M. H. Devoret, and R. J. Schoelkopf, “Multilayer microwave integrated quantum circuits for scalable quantum computing,” npj Quantum Information, vol. 2, p. 16002, 2016.
    [98] K. S. Chou, J. Z. Blumoff, C. S. Wang, P. C. Reinhold, C. J. Axline, Y. Y. Gao,
    L. Frunzio, M. Devoret, L. Jiang, and R. Schoelkopf, “Deterministic teleportation of a quantum gate between two logical qubits,” Nature, vol. 561, no. 7723, p. 368, 2018.
    [99] N. Leung, Y. Lu, S. Chakram, R. Naik, N. Earnest, R. Ma, K. Jacobs, A. Cleland, and D. Schuster, “Deterministic bidirectional communication and remote entangle­ ment generation between superconducting qubits,” npj Quantum Information, vol. 5, no. 1, p. 18, 2019.
    [100] H. J. Kimble, “The quantum internet,” Nature, vol. 453, no. 7198, p. 1023, 2008.
    [101] S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke,
    E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature, vol. 484, no. 7393, p. 195, 2012.
    [102] S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, p. eaam9288, 2018.
    [103] B. Jing, X.­J. Wang, Y. Yu, P.­F. Sun, Y. Jiang, S.­J. Yang, W.­H. Jiang, X.­Y. Luo,
    J. Zhang, X. Jiang, et al., “Entanglement of three quantum memories via interference of three single photons,” Nature Photonics, vol. 13, no. 3, p. 210, 2019.
    [104] H. Yamasaki and M. Murao, “Distributed encoding and decoding of quantum infor­ mation over networks,” Advanced Quantum Technologies, vol. 2, no. 1­2, p. 1800066, 2019.
    [105] “Qiskit.” https://qiskit.org/. Accessed: 25 August 2019.
    [106] D. Alsina and J. I. Latorre, “Experimental test of Mermin inequalities on a five­qubit quantum computer,” Physical Review A, vol. 94, no. 1, p. 012314, 2016.
    [107] Y. Wang, Y. Li, Z.­q. Yin, and B. Zeng, “16­qubit ibm universal quantum computer can be fully entangled,” npj Quantum Information, vol. 4, no. 1, p. 46, 2018.
    [108] G. J. Mooney, C. D. Hill, and L. C. Hollenberg, “Entanglement in a 20­qubit super­ conducting quantum computer,” Scientific reports, vol. 9, 2019.
    [109] J. Morris, F. A. Pollock, and K. Modi, “Non­markovian memory in ibmqx4,” arXiv:1902.07980.

    [110] H.­Y. Ku, N. Lambert, F.­R. Jhan, C. Emary, Y.­N. Chen, and F. Nori, “Experimental test of non­macrorealistic cat­states in the cloud,” Preprint at https://arxiv.org/ abs/1905.13454 (2019).
    [111] S. J. Devitt, “Performing quantum computing experiments in the cloud,” Physical Re­ view A, vol. 94, no. 3, p. 032329, 2016.
    [112] S. Fedortchenko, “A quantum teleportation experiment for undergraduate students,” arXiv:1607.02398.
    [113] M. Sisodia, A. Shukla, K. Thapliyal, and A. Pathak, “Design and experimental real­ ization of an optimal scheme for teleportation of an n­qubit quantum state,” Quantum Information Processing, vol. 16, no. 12, p. 292, 2017.
    [114] B. K. Behera, A. Banerjee, and P. K. Panigrahi, “Experimental realization of quan­ tum cheque using a five­qubit quantum computer,” Quantum Information Processing, vol. 16, no. 12, p. 312, 2017.
    [115] B. K. Behera, T. Reza, A. Gupta, and P. K. Panigrahi, “Designing quantum router in ibm quantum computer,” Quantum Information Processing, vol. 18, no. 11, p. 328, 2019.
    [116] C. H. Bennett, D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and
    W. K. Wootters, “Remote state preparation,” Physical Review Letters, vol. 87, no. 7, p. 077902, 2001.
    [117] D. Markham and B. C. Sanders, “Graph states for quantum secret sharing,” Physical Review A, vol. 78, no. 4, p. 042309, 2008.
    [118] K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Physical Review Letters, vol. 76, no. 25, p. 4656, 1996.
    [119] C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics bell state analysis,” Physical Review Letters, vol. 96, no. 19, p. 190501, 2006.
    [120] L. Zhou and Y.­B. Sheng, “Complete logic bell­state analysis assisted with photonic faraday rotation,” Physical Review A, vol. 92, no. 4, p. 042314, 2015.
    [121] Y.­B. Sheng and L. Zhou, “Two­step complete polarization logic bell­state analysis,”
    Scientific Reports, vol. 5, p. 13453, 2015.
    [122] L. Zhou and Y.­B. Sheng, “Feasible logic bell­state analysis with linear optics,” Sci­ entific Reports, vol. 6, p. 20901, 2016.
    [123] Y.­L. Liu, M.­W. Wang, C.­Y. Bai, and T.­J. Wang, “Asymmetrical bell state analysis for photon­atoms hybrid system,” Science China Physics, Mechanics & Astronomy, vol. 62, no. 12, p. 120311, 2019.
    [124] Y. Zheng, L. Liang, and M. Zhang, “Error­heralded generation and self­assisted com­ plete analysis of two­photon hyperentangled bell states through single­sided quantum­ dot­cavity systems,” Science China Physics, Mechanics&Astronomy, vol. 62, no. 7, p. 970312, 2019.

    [125] G.­Y. Wang, B.­C. Ren, F.­G. Deng, and G.­L. Long, “Complete analysis of hy­ perentangled bell states assisted with auxiliary hyperentanglement,” Optics Express, vol. 27, no. 6, pp. 8994–9003, 2019.
    [126] T. Li, A. Miranowicz, K. Xia, F. Nori, et al., “Resource­efficient analyzer of bell and greenberger­horne­zeilinger states of multiphoton systems,” Physical Review A, vol. 100, no. 5, p. 052302, 2019.
    [127] H.­P. Breuer, F. Petruccione, et al., The theory of open quantum systems. Oxford University Press on Demand, 2002.
    [128] A. Gilchrist, N. K. Langford, and M. A. Nielsen, “Distance measures to compare real and ideal quantum processes,” Physical Review A, vol. 71, no. 6, p. 062310, 2005.
    [129] S. Massar and S. Popescu, “Optimal extraction of information from finite quantum ensembles,” Physical Review Letters, vol. 74, p. 1259–1263, 1995.
    [130] C.­K. Chen, S.­H. Chen, W.­T. Lee, J.­H. Hsieh, and C.­M. Li, “Can all entangled states enable genuine quantum teleportation?,” unpublished.
    [131] J. Doi, H. Takahashi, R. Raymond, T. Imamichi, and H. Horii, “Quantum computing simulator on a heterogenous hpc system,” in CF, pp. 85–93, 2019.
    [132] D. F. James, P. G. Kwiat, W. J. Munro, and A. G. White, “On the measurement of qubits,” in Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 509–538, World Scientific, 2005.
    [133] G. Tóth and O. Gühne, “Detecting genuine multipartite entanglement with two local measurements,” Physical Review Letters, vol. 94, no. 6, p. 060501, 2005.
    [134] J. L. O’Brien, G. Pryde, A. Gilchrist, D. James, N. K. Langford, T. Ralph, and
    A. White, “Quantum process tomography of a controlled­not gate,” Physical Review Letters, vol. 93, no. 8, p. 080502, 2004.
    [135] “Nminimize routine in Mathematica® 12.0.”
    [136] J. M. Gambetta, A. Córcoles, S. T. Merkel, B. R. Johnson, J. A. Smolin, J. M. Chow,
    C. A. Ryan, C. Rigetti, S. Poletto, T. A. Ohki, et al., “Characterization of addressabil­ ity by simultaneous randomized benchmarking,” Physical Review Letters, vol. 109, no. 24, p. 240504, 2012.
    [137] C.­M. Li, K. Chen, A. Reingruber, Y.­N. Chen, and J.­W. Pan, “Verifying genuine high­order entanglement,” Physical Review Letters, vol. 105, no. 21, p. 210504, 2010.
    [138] B. M. Terhal and P. Horodecki, “Schmidt number for density matrices,” Physical Re­ view A, vol. 61, no. 4, p. 040301, 2000.
    [139] X.­W. Wang, Y.­G. Shan, L.­X. Xia, and M.­W. Lu, “Dense coding and teleportation with one­dimensional cluster states,” Physics Letters A, vol. 364, no. 1, pp. 7–11, 2007.
    [140] Q. He and M. Reid, “Genuine multipartite einstein­podolsky­rosen steering,” Physical Review Letters, vol. 111, no. 25, p. 250403, 2013.

    [141] H. Lu, C.­Y. Huang, Z.­D. Li, X.­F. Yin, R. Zhang, T.­L. Liao, Y.­A. Chen, C.­M. Li, and J.­W. Pan, “Counting classical nodes in quantum networks,” arXiv:1903.07858, 2019.
    [142] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11, pp. 612–613, 1979.
    [143] B. Schneier, “Applied cryptography: protocols, algorithms, and source code in c,” 2007.
    [144] R. Cleve, D. Gottesman, and H.­K. Lo, “How to share a quantum secret,” Physical Review Letters, vol. 83, no. 3, p. 648, 1999.
    [145] D. Gottesman, “Theory of quantum secret sharing,” Physical Review A, vol. 61, no. 4, p. 042311, 2000.
    [146] A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Physical Review A, vol. 59, no. 1, p. 162, 1999.
    [147] L. Xiao, G. L. Long, F.­G. Deng, and J.­W. Pan, “Efficient multiparty quantum­secret­ sharing schemes,” Physical Review A, vol. 69, no. 5, p. 052307, 2004.
    [148] M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Nest, and H.­J. Briegel, “Entanglement in graph states and its applications,” arXiv:quant­ph/0602096, 2006.
    [149] Z.­j. Zhang and Z.­x. Man, “Multiparty quantum secret sharing of classical messages based on entanglement swapping,” Physical Review A, vol. 72, no. 2, p. 022303, 2005.
    [150] K. Chen and H.­K. Lo, “Multi­partite quantum cryptographic protocols with noisy ghz states,” arXiv:quant­ph/0404133, 2004.
    [151] Y. Wu, J. Zhou, X. Gong, Y. Guo, Z.­M. Zhang, and G. He, “Continuous­variable measurement­device­independent multipartite quantum communication,” Physical Review A, vol. 93, no. 2, p. 022325, 2016.
    [152] Y. Fu, H.­L. Yin, T.­Y. Chen, and Z.­B. Chen, “Long­distance measurement­device­ independent multiparty quantum communication,” Physical Review Letters, vol. 114, no. 9, p. 090501, 2015.
    [153] A. Marin and D. Markham, “Equivalence between sharing quantum and classical se­ crets and error correction,” Physical Review A, vol. 88, no. 4, p. 042332, 2013.
    [154] A. M. Lance, T. Symul, W. P. Bowen, T. Tyc, B. C. Sanders, and P. K. Lam, “Con­ tinuous variable (2, 3) threshold quantum secret sharing schemes,” New Journal of Physics, vol. 5, no. 1, p. 4, 2003.
    [155] A. Keet, B. Fortescue, D. Markham, and B. C. Sanders, “Quantum secret sharing with qudit graph states,” Physical Review A, vol. 82, no. 6, p. 062315, 2010.
    [156] H.­K. Lau and C. Weedbrook, “Quantum secret sharing with continuous­variable clus­ ter states,” Physical Review A, vol. 88, no. 4, p. 042313, 2013.
    [157] Y. Wu, R. Cai, G. He, and J. Zhang, “Quantum secret sharing with continuous variable graph state,” Quantum Information Processing, vol. 13, no. 5, pp. 1085–1102, 2014.

    [158] A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K. Lam, “Tripartite quan­ tum state sharing,” Physical Review Letters, vol. 92, no. 17, p. 177903, 2004.
    [159] W. Tittel, H. Zbinden, and N. Gisin, “Experimental demonstration of quantum secret sharing,” Physical Review A, vol. 63, no. 4, p. 042301, 2001.
    [160] Y.­A. Chen, A.­N. Zhang, Z. Zhao, X.­Q. Zhou, C.­Y. Lu, C.­Z. Peng, T. Yang, and J.­
    W. Pan, “Experimental quantum secret sharing and third­man quantum cryptography,”
    Physical Review Letters, vol. 95, no. 20, p. 200502, 2005.
    [161] S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, “Experimental demon­ stration of four­party quantum secret sharing,” Physical Review Letters, vol. 98, no. 2, p. 020503, 2007.
    [162] Y. Zhou, J. Yu, Z. Yan, X. Jia, J. Zhang, C. Xie, and K. Peng, “Quantum secret shar­ ing among four players using multipartite bound entanglement of an optical field,” Physical Review Letters, vol. 121, no. 15, p. 150502, 2018.
    [163] C. Bennett, “G. Brassard in proceedings of ieee international conference on computers, systems, and signal processing, bangalore, india,(new york),” 1984.
    [164] H. Barnum, C. Crépeau, D. Gottesman, A. Smith, and A. Tapp, “Authentication of quantum messages,” in The 43rd Annual IEEE Symposium on Foundations of Com­ puter Science, 2002. Proceedings, pp. 449–458, IEEE, 2002.
    [165] D. Markham and A. Marin, “Practical sharing of quantum secrets over untrusted channels,” in International Conference on Information Theoretic Security, pp. 1–14, Springer, 2015.
    [166] D. Markham and A. Krause, “A simple protocol for certifying graph states and appli­ cations in quantum networks,” Cryptography, vol. 4, no. 1, p. 3, 2020.
    [167] M. Jiang, S. Luo, and S. Fu, “Channel­state duality,” Physical Review A, vol. 87, no. 2, p. 022310, 2013.
    [168] J. Löfberg, “YALMIP: a toolbox for modeling and optimization in MATLAB®,” in Computer Aided Control Systems Design, 2004 IEEE International Symposium on, pp. 284–289, IEEE, 2004.
    [169] K.­C. Toh, M. J. Todd, and R. H. Tütüncü, “SDPT3–A Matlab software package for semidefinite­quadratic­linear programming in Matlab®, version 4.0,” Handbook on Semidefinite, Conic and Polynomial Optimization, pp. 715–754, 2012.
    [170] M. ApS, “The mosek optimization toolbox for matlab manual. version 9.0.,” 2019.
    [171] C.­H. Wu, C.­K. Liu, Y.­C. Chen, and C.­S. Chuu, “Revival of quantum interference by modulating the biphotons,” Physical Review Letters, vol. 123, no. 14, p. 143601, 2019.
    [172] J. Yin, Y. Cao, Y.­H. Li, S.­K. Liao, L. Zhang, J.­G. Ren, W.­Q. Cai, W.­Y. Liu, B. Li,
    H. Dai, et al., “Satellite­based entanglement distribution over 1200 kilometers,” Sci­ ence, vol. 356, no. 6343, pp. 1140–1144, 2017.

    [173] J.­G. Ren, P. Xu, H.­L. Yong, L. Zhang, S.­K. Liao, J. Yin, W.­Y. Liu, W.­Q. Cai,
    M. Yang, L. Li, et al., “Ground­to­satellite quantum teleportation,” Nature, vol. 549, no. 7670, p. 70, 2017.
    [174] E. Schrödinger, “Die gegenwärtige Situation in der Quantenmechanik,” Naturwis­ senschaften, vol. 23, no. 48, p. 844, 1935.
    [175] D­Wave Systems, Inc., “D­Wave The quantum computing system.” https://www. dwavesys.com/quantum-computing.
    [176] H.­J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imper­ fect local operations in quantum communication,” Physical Review Letters, vol. 81, no. 26, p. 5932, 1998.
    [177] D. E. Browne and T. Rudolph, “Resource­efficient linear optical quantum computa­ tion,” Physical Review Letters, vol. 95, no. 1, p. 010501, 2005.
    [178] T. Morimae, “Verification for measurement­only blind quantum computing,” Physical Review A, vol. 89, no. 6, p. 060302, 2014.
    [179] S. Barz, J. F. Fitzsimons, E. Kashefi, and P. Walther, “Experimental verification of quantum computation,” Nature Physics, vol. 9, no. 11, pp. 727–731, 2013.
    [180] M. Hayashi and T. Morimae, “Verifiable measurement­only blind quantum computing with stabilizer testing,” Physical Review Letters, vol. 115, no. 22, p. 220502, 2015.
    [181] M. Hajdušek, C. A. Pérez­Delgado, and J. F. Fitzsimons, “Device­independent verifi­ able blind quantum computation,” arXiv:1502.02563, 2015.
    [182] K. Fujii and M. Hayashi, “Verifiable fault tolerance in measurement­based quantum computation,” Physical Review A, vol. 96, no. 3, p. 030301, 2017.

    下載圖示 校內:2025-01-01公開
    校外:2025-01-01公開
    QR CODE