| 研究生: |
吳孟靜 Wu, Meng-Ching |
|---|---|
| 論文名稱: |
抗血管增生藥物之製造與抗血管增生活體試驗 Production of Anti-Angiogenic Molecule and in vivo Study of Anti-Angiogenic Effect |
| 指導教授: |
蕭世裕
Hsiao, Shih-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 抗血管新生 |
| 外文關鍵詞: | TideCell reactor, spinner flask, K1-4/IgG |
| 相關次數: | 點閱:42 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
癌細胞血管阻斷素(angiostatin)為內源性蛋白質,包含了血纖維蛋白溶解酶原(plasminogen)的前4個kringles。在活體實驗,癌細胞血管阻斷素會抑制小鼠的腫瘤生長,而且還可以抑制血管新生依賴型的腫瘤轉移。我們實驗室之前建構了一個K1-4/IgG嵌合蛋白質,它是由人類血纖維蛋白溶解酶原的kringle 1-4接上人類IgG的CH2-CH3所組成。在本篇研究中利用spinner flask及TideCell reactor兩種生物反應器系統生產K1-4/IgG蛋白質,研究發現,利用spinner flask 進行semi-perfusion culture的方法可以獲得最高的蛋白質產量(18.2mg/L),其產量比其它方法高出3~6倍。在活體實驗方面,將生產純化所獲得的K1-4/IgG蛋白質以及癌細胞血管阻斷素進行抑制小鼠血管新生及抗腫瘤之試驗,小鼠在接種小鼠膀胱癌細胞(MBT-2 cells)後,每天施以一定劑量的K1-4/IgG蛋白質或癌細胞血管阻斷素。由免疫組織染色以及抗腫瘤活體試驗可看出K1-4/IgG蛋白質以及癌細胞血管阻斷素不但可以減少腫瘤的微血管生成並可以明顯的抑制腫瘤細胞生長。此外,結合使用抗癌藥物doxorubicin與K1-4/IgG蛋白質比單獨使用doxorubicin更有效的抑制腫瘤生長。
Angiostatin is an internal proteolytically derived fragment of plasminogen. It spans the first four kringle domains. In in vivo studies, angiostatin could suppress tumor growth and angiogenesis-dependent tumor metastasis. A cell line that produces chimeric protein (K1-4/IgG) consisting of kringle 1-4 of human plasmonogen and CH2-CH3 of human IgG has been constructed in our laboratory. In this study, we used spinner flask and TideCell reactor as cell culture systems to produce K1-4/IgG protein. For this cell line, using semi-perfusion culture by spinner flask could gain the highest K1-4/IgG proteins production yield (18.2mg/L) as comparing to other methods. To evaluate the anti-angiogenesis effect of the K1-4/IgG protein in vivo, the murine tumor assay was used. After inoculation of MBT-2 cells, mice were treated with constant dosage of K1-4/IgG protein and angiostatin daily. In immunohistochemistry and in vivo anti-tumor test, K1-4/IgG protein and angiostatin could suppress angiogenesis around the tumor, and also could inhibit tumor growth. In addition, combination of using doxorubicin and K1-4/IgG protein could suppress tumor growth better than using doxorubicin alone.
Aslankaraoglu E, Gurhan SI, Gumusderelioglu M. Anchorage-dependent and suspended baby-hamster kidney cells on three-dimensional non-woven polyester fabric discs: comparison of growth characteristics. Biotechnol Appl Biochem 30 (Pt1):65-71(1999)
Brower V. Tumor angiogenesis--new drugs on the block. Nat Biotechnol. 17(10):963-8(1999)
Cao R, Wu HL, Veitonmaki N, Linden P, Farnebo J, Shi GY, Cao Y. Suppression of angiogenesis and tumor growth by the inhibitor K1-5 generated by plasmin-mediated proteolysis. PNAS 96(10):5728-33(1999)
Chen C, Huang YL, Yang ST. A fibrous-bed bioreactor for continuous production of developmental endothelial locus-1 by osteosarcoma cells. J Biotechnol 97(1):23-39(2002)
Collins PC, Miller WM, Papoutsakis ET. Stirred culture of peripheral and cord blood hematopoietic cells offers advantages over traditional static systems for clinically relevant applications. Biotechnol Bioeng 59(5):534-43(1998)
Folkman J, Shing Y. Angiogenesis. J. Biol. Chem. 267(16):10931-10934(1992)
Folkman J. Tumor angiogenesis: Therapeutic implication. New Engl. J. Med 285:1182-1186(1971)
Gumusderelioglu M, Aslankaraoglu E, Gurhan SI. Rabies virus production in non-woven polyester fabric (NWPF) packed-bed reactors. Biotechnol Appl Biochem 33(Pt 3):167-72(2001)
Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. J. Cell 86, 353–364. (1996)
Heifetz AH, Braatz JA, Wolfe RA, Barry RM, Miller DA, Solomon BA. Monoclonal antibody production in hollow fiber bioreactors using serum-free medium. Biotechniques 7(2):192-9(1989)
Hu WS, Aunins JG. Large-scale mammalian cell culture. Curr Opin Biotechnol 8(2):148-53(1997)
Hu YC, Kaufman J, Cho MW, Golding H, Shiloach J. Production of HIV-1 gp120 in packed-bed bioreactor using the vaccinia virus/T7 expression system. Biotechnol Prog 16(5):744-50(2000)
Korke R, Rink A, Seow TK, Chung MC, Beattie CW, Hu WS. Genomic and proteomic perspectives in cell culture engineering. J Biotechnol. 94(1):73-92. Review. (2002)
Kretzmer G. Industrial processes with animal cells. Appl Microbiol Biotechnol 59(2-3):135-42(2002)
Lund, P. L-glutamine and L-glutamate. In: Methods of enzymatic analysis, 3rd ed. Weinheim, VCH Verlagsgesellschaftt Chemie. p 357-363(1985)
Merten OW, Cruz PE, Rochette C, Geny-Fiamma C, Bouquet C, Goncalves D, Danos O, Carrondo MJ. Comparison of different bioreactor systems for the production of high titer retroviral vectors. Biotechnol Prog 17(2):326-35(2001)
O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis Lung carcinoma. Cell 79:315-328(1994)
Pierson BA, Europa AF, Hu WS, Miller JS. Production of human natural killer cells for adoptive immunotherapy using a computer-controlled stirred-tank bioreactor. J Hematother 5(5):475-83(1996)
Sikavitsas VI, Bancroft GN, Mikos AG. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor.J Biomed Mater Res 62(1):136-48(2002)
Stiens LR, Buntemeyer H, Lutkemeyer D, Lehmann J, Bergmann A, Weglohner W. Development of serum-free bioreactor production of recombinant human thyroid stimulating hormone receptor. Biotechnol Prog 16(5):703-9(2000)
Wang MD, Yang M, Huzel N, Butler M. Erythropoietin production from CHO cells grown by continuous culture in a fluidized-bed bioreactor. Biotechnol Bioeng 77(2):194-203(2002)
Wang SS, Good TA. Effect of culture in a rotating wall bioreactor on the physiology of differentiated neuron-like PC12 and SH-SY5Y cells. J Cell Biochem 83(4):574-84(2001)
Zhou W, Cai S. Production of monoclonal antibody in hollow fiber culture system with serum-free medium. Chin J Biotechnol 8(1):41-9(1992)