| 研究生: |
簡淑珺 Chien, Shu-Chun |
|---|---|
| 論文名稱: |
創傷弧菌RTX細胞毒素的運送及其在宿主細胞之分布位置 Studies on export of Vibrio vulnificus RTX cytotoxin and location of this toxin in host cell |
| 指導教授: |
何漣漪
Hor, Lien-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 創傷弧菌 、切割 、分泌 |
| 外文關鍵詞: | Vibrio vulnificus, RTX, CPD, RID |
| 相關次數: | 點閱:116 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
創傷弧菌是一種藉由傷口或食入受汙染之海鮮,感染人類的侵入性革蘭氏陰性病原菌,可造成嚴重的皮膚損傷與敗血症。我們實驗室已發現該菌所產生的RTX細胞毒素在對抗巨噬細胞之吞噬作用上扮演重要角色,然而,此毒素如何造成吞噬作用之缺陷,目前仍不清楚。為了探討RTX毒素如何參與抗吞噬作用,我們必須瞭解此毒素的分泌機制,以及當細菌感染宿主細胞之後,此巨型毒素是否被切割,和此毒素會位於宿主細胞的何處。本研究中,我初步純化出包含RID domain的RTX2366-2928胜肽鏈,並以此胜肽鏈免疫小鼠,製備anti-RID抗血清。以此抗血清進行西方墨點分析生長於LB培養基之創傷弧菌野生株的全細胞萃取液,在130至170 kDa的區間能偵測到RTX專一性的bands。將野生株與HEp-2細胞共同培養後,再收取其全細胞萃取液進行西方墨點分析,發現RTX專一性的bands數目更多,分布的範圍也更廣,顯示當RTX毒素被運送穿越細菌,再與宿主細胞接觸的過程中,此毒素可能進一步被切割。然而,在霍亂弧菌已被發現參與RTX自我切割的CPD domain,在本研究中,則發現並非為創傷弧菌RTX的切割或活性所必須。以西方墨點分析構成第一型分泌系統之成員(包含RtxB、RtxD和TolC) 的突變株,發現其RTX毒素會累積於細胞膜和細胞質中。Anti-RID抗血清在免疫螢光染色之實驗中,於未感染細菌之HEp-2細胞組別和以不產RTX的突變株感染之組別,都有非專一性訊號。此顯示若使用此anti-RID 抗血清於免疫螢光染色實驗以偵測RTX毒素,此抗血清之專一性需加以改善。
Vibrio vulnificus, a gram-negative invasive bacterial pathogen, causes severe skin lesions and septicemia via wound infection or ingestion of contaminated seafood. We have previously shown that the RTX (repeat in toxin) cytotoxin is an important virulence factor of V. vulnificus protecting the organism from engulfment by the phagocytes. However, how this toxin leads to impairment of phagocytosis is unclear. To explore how RTX participates in antiphagocytosis, we need to understand how this toxin is secreted, whether this enormous toxin is processed, and where this toxin is located in the infected host cell. In this study, I have purified a peptide, RTX2366-2928, that contains the Rho-inactivation domain (RID), and generated the antiserum against this peptide in mice. Western blotting with this anti-RID antiserum revealed the RTX-specific bands ranging from 130 kDa to 170 kDa in the whole cell lysate of a wild-type strain. A different RTX banding pattern with a wider range of molecular weight was detected in the whole cell lysate of the wild-type strain coincubated with HEp-2 cells. These suggest that the RTX toxin might be processed during transport across the bacterial cell wall and interaction with the host cell. However, the CPD (cysteine protease domain) domain, which has been implicated in RTX autoprocessing in V. cholerae, of RTX is found in this study not required for the processing or activity of RTX in V. vulnificus. The RTX toxin accumulated in cell membrane, and cytoplasm of the mutants defective in various components, including RtxB, RtxD and TolC, of Type I secretion system. The anti-RID antiserum gave rise to non-specific signals in the uninfected HEp-2 cells or those infected by the RTX-deficient V. vulnificus mutant examined by immunofluorescent staining. This indicates that the specificity of anti-RID antiserum needs to be improved if it is to be used in immunofluorescent staining to detect the RTX toxin.
1.O'Neill, K.R., S. H. Jones, and D. J. Grimes. 1992. Seasonal incidence of Vibrio vulnificus in the Great Bay estuary of new hampshire and marine. Appl Environ Microbiol 58: 3257-62.
2.Jones, M.K., and J. D. Oliver. 2009. Vibrio vulnificus: disease and pathogenesis. Infect Immun 77: 1723-33.
3.Hollis, D.G., R. E. Weaver, C. N. Baker, and C. Thornsberry. 1976. Halophilic Vibrio species isolated from blood cultures. J Clin Microbiol 3: 425-31.
4.Linkous, D.A., and J. D. Oliver. 1999. Pathogenesis of Vibrio vulnificus. FEMS Microbiol Lett 174: 207-14.
5.Amaro, C., E. G. Biosca, B. Fouz, and E. Garay. 1992. Electrophoretic analysis of heterogeneous lipopolysaccharide from various strains of Vibrio vulnificus biotype 1 and 2 by silver staining and immunoblotting. Curr Microbiol 25: 99-104.
6.Amaro, C., L. I. Hor, E. Marco-Noales, T. Bosque, B. Fouz, and E. Alcaide. 1999. Isolation of Vibrio vulnificus serovar E from aquatic habitats in Taiwan. Appl Environ Microbiol 65: 1352-5.
7.Amaro, C., and E. G. Biosca. 1996. Vibrio vulnificus biotype 2, pathogenic for eels, is also an opportunistic pathogen for humans. Appl Environ Microbiol 62: 1454-7.
8.Bisharat, N., V. Agmon, R. Finkelstein, and R. Raz. 1999. Clinical, epidemiological, and microbiolofical features of Vibrio vulnificus biogroup 3 causing outbreaks of wound infection and bacteraemia in Israel. Israel Vibrio Study Group. Lancet 354: 1421-4.
9.Bisharat, N., D. I. Cohen, and R. M. Harding. 2005. Hybrid Vibrio vulnificus. Emerg Infect Dis 11: 30-5.
10.Yuan, C.Y., C. C. Yuan, D. C. Wei, and A. M. Lee. 1987. Septicemia and gangrenous change of the legs caused by marine vibrio, Vibrio vulnificus - report of a case. Taiwan Yi Xue Hui Za Zhi 86: 448-51.
11.Chuang, Y.C., C. Y. Yuan, C. Y. Liu, C. K. Lan, and A. H. Huang. 1992. Vibrio vulnificus infection in Taiwan: report of 28 cases and review of clinical manifestations and treatment. Clin Infect Dis 15: 271-6.
12.Hsueh, P.R., C. Y. Lin, H. J. Tang, H. C. Lee, J. W. Liu, Y. C. Liu, and Y. C. Chuang. 2004. Vibrio vulnificus in Taiwan. Emerg Infect Dis 10: 1363-8.
13.Blake, P.A., M. H. Merson, R. E. Weaver, D. G. Hollis, and P. C. Heublein. 1979. Diease caused by a marine Vibrio. Clinical characteristics and epidemiology. N Engl J Med 300: 1-5.
14.Halow, K.D., R. C. Harner, and L. J. Fontenelle. 1996. Primary skin infections secondary to Vibrio vulnificus: the role of operative intervention. J Am Coll Surg 183: 329-34.
15.Klontz, K.C., S. Lieb, M. Schreiber, H. T. Janoqski, L. M. Baldy, and R. A. Gunn. 1988. Syndromes of Vibrio vulnificus infections. Clinical and epidemiologic features in Florida cases, 1981-1987. Ann Intern Med 109: 318-23.
16.Kumamoto, K.S., and D. J. Vukich. 1998. Clinical infections of Vibrio vulnificus: a case report and review of the literature. J Emerg Med 16: 61-6.
17.Strom, M.S., and R. N. Paranjpye. 2000. Epidemiology and pathogenesis of Vibrio vulnificus. Microbes Infect 2: 177-88.
18.Vollberg, C.M., and J. L. Herrera. 1997. Vibrio vulnificus infection: an important cause of septicemia in patients with cirrhosis. South Med J 90: 1040-2.
19.Hlady, W.G., and K. C. Klontz. 1996. The epidemiology of Vibrio infections in Florida, 1981-1993. J Infect Dis 173: 1176-83.
20.Koenig, K.L., J. Mueller, and T. Rose. 1991. Vibrio vulnificus sepsis presenting as leg pain and lower extremity rash. Am J Emerg Med 9: 523-4.
21.Warnock, E.W., and T. L. MacMath. 1993. Primary Vibrio vulnificus septicemia. J Emerg Med 11: 153-6.
22.Bullen, J.J., P. B. Spalding, C. G. Ward, and J. M. Gutteridge. 1991. Hemochromatosis, iron and septicemia caused by Vibrio vulnificus. Arch Intern Med 151: 1606-9.
23.Chan, T.Y., D. P. Chow, K. C. Ng, K. W. Pang, and G. A. McBrige. 1994. Vibrio vulnificus septicemia in a patient with liver cirrhosis. Southeast Asian J Trop Med Public Health 25: 215-6.
24.Hor, L.I., Y. K. Chang, C. C. Chang, H. Y. Lei, and J. T. Ou. 2000. Mechanism of high susceptibility of iron-overloaded mouse to Vibrio vulnificus infection. Microbiol Immunol 44: 871-8.
25.Hor, L.I., T. T. Chang, and S. T. Wang. 1999. Survival of Vibrio vulnificus in whole blood from patients with chronic liver diseases: association with phagocytosis by neutrophils and serum ferritin levels. J Infect Dis 179: 275-8.
26.Elmore, S.P., J. A. Watts, L. M. Simpson, and J. D. Oliver. 1992. Reversal of hypotension induced by Vibrio vulnificus lipopolysaccharide in the rat by inhibition of nitric oxide synthase. Microb Pathog 13: 391-7.
27.Yoshida, S., M. Ogawa, and Y. Mizuguchi. 1985. Relation of capsular materials and colony opacity to virulence of Vibrio vulnificus. Infect Immun 47: 446-51.
28.Gander, R.M., and M. T. LaRocco. 1989. Detection of piluslike structures on clinical and enviromental isolates of Vibrio vulnificus. J Clin Microbiol 27: 1015-21.
29.Lee, J.H., J. B. Rho, K. J. Park, C. B. Kim, Y. S. Han, S. H. Choi, K. H. Lee, and S. J. Park. 2004. Role of flagellum and motility in pathogenesis of Vibrio vulnificus. Infect Immun 72: 4905-10.
30.Alice, A.F., H. Naka, and J. H. Crosa. 2008. Global gene expression as a function of the iron status of the bacterial cell: influence of differentially expressed genes in the virulence of the human pathogen Vibrio vulnificus. Infect Immun 76: 4019-37.
31.Kim, C.M., R. Y. Park, J. H. Park, H. Y. Sun, Y. H. Bai, P. Y. Ryu, S. Y. Kim, J. H. Rhee, and S. H. Shin. 2006. Vibrio vulnificus vulnibactin but not metalloprotease VvpE is essentially required for iron-uptake from human holotransferrin. Biol Pharm Bull 29: 911-8.
32.Simpson, L.M., and J. D. Oliver. 1983. Siderophore production by Vibrio vulnificus. Infect Immun 41: 644-9.
33.Kim, I.H., J. I. Shim, K. E. Lee, W. Hwang, I. J. Kim, S. H. Choi, and K. S. Kim. 2008. Nonribosomal peptide synthetase is responsible for the biosynthesis of siderophore in Vibrio vulnificus MO6-24/O. J Microbiol Biotechn 18: 35-42.
34.Litwin, C.M., T. W. Rayback, and J. Skinner. 1996. Role of catechol siderophore synthesis in Vibrio vulnificus virulence. Infect Immun 64: 2834-8.
35.Webster, A.C.D., and C. M. Litwin. 2000. Cloning and characterization of vuuA, a gene encoding the Vibrio vulnificus ferric vulnibactin receptor. Infect Immun 68: 526-34.
36.Hoffbrand, A.V., F. Al-Refaie, B. Davis, N. Siritanakatkul, B. F. Jackson, J. Cochrane, E. Prescott, and B. Wonke. 1998. Long-term trial of deferiprone in 51 transfusion-dependent iron overloaded patients. Blood 91: 295-300.
37.Kim, C.M., Y. J. Park, and S. H. Shin. 2007. A widespread deferoxaminemediated iron-uptake system in Vibrio vulnificus. J Infect Dis 196: 1537-45.
38.Litwin, C.M., and B. L. Byrne. 1998. Cloning and characterization of an outer membrane protein of Vibrio vulnificus required for heme utilization: regulation of expression and determination of the gene sequence. Infect Immun 66: 3134-41.
39.Kim, C.M., R. Y. Park, M. H. Choi, H. Y. Sun, and S. H. Shin. 2007. Ferrophilic characteristics of Vibrio vulnificus and potential usefulness of iron chelation therapy. J Infect Dis 195: 90-8.
40.Shao, C.P., and L. I. Hor 2000. Metalloprotease is not essential for Vibrio vulnificus virulence in mice. Infect Immun 68: 3569-73.
41.Shao, C.P., and L. I. Hor 2001. Regulation of metalloprotease gene expression in Vibrio vulnificus by a Vibrio harveyi LuxR homologue. J Bacteriol 183: 1369-75.
42.Kim, Y.R., S. E. Lee, H. Kook, J. A. Yeom, H. S. Na, S. Y. Kim, S. S. Chung, H. E. Choy, and J. H. Rhee. 2008. Vibrio vulnificus RTX toxin kills host cells only after contact of the bacteria with host cells. Cell Microbiol 10: 848-62.
43.Lo, H.R., J. H. Lin, Y. H. Chen, C. L. Chen, C. P. Shao, Y. C. Lai, and L. I. Hor. 2011. RTX toxin enhances the survival of Vibrio vulnificus during infection by protecting the organism from phagocytosis. J Infect Dis 203: 1866-74.
44.Lee, J.H., M. W. Kim, B. S. Kim, B. S. Kim, S. M. Kim, B. C. Lee, T. S. Kim, and S. H. Choi. 2007. Identification and characterization of the Vibrio vulnificus RtxA essential for cytotoxicity in vitro and virulence in mice. J Microbiol 45: 146-52.
45.Welch, R.A., C. Forestier, and A. Lobo. . 2006. The synthesis and function of the Escherichia coli hemolysin and related RTX exotoxins. FEMS Microbiol Lett 105: 29-36.
46.Davies, R.L., T. S. Whittam, and P. K. Selander. 2001. Sequence diversity and molecular evolution of the leukotoxin (lktA) gene in bovine and ovine strains of Mannheimia (Pasteurella) haemolytica. J Bacteriol 183: 1394-404.
47.Kraig, E., Dailey, T., and D. Kolodrubetz. 1990. Nucleotide sequence of the leukotoxin gene from Actinobacillus actinomycetemcomitans: homology to the alpha-hemolysin/leukotoxin gene family. Infect Immun 58: 920-9.
48.Bassinet, L., C. Fitting, B. Housset, J. M. Cavaillon, and N. Guiso. . 2004. Bordetella pertussis adenylate cyclase-hemolysin induces interleukin-6 secretion by human tracheal epithelial cells. Infect Immun 72: 5530-3.
49.Lin, W., K. J. Fullner, R. Clayton, J. A. Sexton, M. B. Rogers, K. E. Calia, S. B. Calderwood, C. Fraser, and J. J. Mekalanos. 1999. Identification of a Vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc Natl Acad Sci USA 96: 1071-6.
50.Sheahan, K.L. 2007. Autoprocessing of the Vibrio cholerae RTX toxin by the cysteine protease domain. EMBO J 26: 2552-61.
51.Lally, E.T., R. B. Hill, I. R. Kieba, and J. Korostoff. 1999. The interaction between RTX toxins and target cells. Trends Microbiol 7: 356-61.
52.Lobo, A.L., and R. A. Welch. 1994. Identification and assay of RTX family of cytolysins. Method Enzymol 235: 667-78.
53.Stanley, P., V. Koronakis, and C. Hughes. 1998. Acylation of Escherichia coli hemolysin: a unique protein lipidation mechanism underlying toxin function. Microbiol Mol Biol Rev 62: 309-33.
54.Issartel, J.P., V. Koronakis, C. Hughes. 1991. Activation of Escherichia coli prohaemolysin to the mature toxin by acyl carrier protein-dependent fatty acylation. Nature 351: 759-61.
55.Welch, R.A. 2001. RTX toxin structure and function: a story of numerous anomalies and few analogies in toxin biology. Curr Top Microbiol Immunol 257: 85-111.
56.Baumann, U., S. Wu, K. M. Flaherty, and D. B. McKay. 1993. Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. EMBO J 12: 3357-64.
57.Rose, T., P. Sebo, J. Bellalou, and D. Ladant 1995. Interaction of calcium with Bordetella pertussis adenylate cyclase toxin. Characterization of multiple calcium-binding sites and calcium-induced conformational changes. J Biol Chem 270: 26370-6.
58.Joseph, J.L., and P. A. Gulig. 2007. Analysis of the three RTX loci in pathogenesis of Vibrio vulnificus, abstr. B-035. Abstr. 107th Gen. Meet. Am. Soc. Microbiol. American Society for Microbiology, Washington, DC.
59.Lee, C.T., C. Amaro, K. M. Wu, E. Valiente, Y. F. Chang, S. F. Tsai, C. H. Chang, and L. I. Hor. 2008. A common virulence plasmid in biotype 2 Vibrio vulnificus and its dissemination aided by a conjugal plasmid. J Bacteriol 190: 1638-48.
60.Roig, F.J., F. Gonzalez-Candelas, and C. Amaro. 2010. Domain organization and evolution of multifunctional autoprocessing repeats-in-toxin (MARTX) toxin in Vibrio vulnificus. Appl Environ Microbiol 77: 657-68.
61.Sheahan, K.L., and K. J. F. Satchell. 2007. Inactivation of small Rho GTPases by the multifunctional RTX toxin from Vibrio cholerae. Cell Microbiol 9: 1324-35.
62.Shen, A., P. J. Lupardus, V. E. Albrow, A. Guzzetta, J. C. Powers, K. C. Garcia, and M. Bogyo. 2009. Mechanistic and structural insights into the proteolytic activation of Vibrio cholerae MARTX toxin. Nat Chem Biol 5: 469-78.
63.Egerer, M., and K. J. F. Satchell. 2010. Inositol hexakisphosphate-induced autoprocessing of large bacterial protein toxins. PLoS Pathog 6: 1-8.
64.Pei, J., and N. V. Grishin. 2009. The Rho GTPase inactivation domain in Vibrio cholerae MARTX toxin has a circularly permuted papain-like thiol protease fold. Proteins 77: 413-9.
65.Prochazkova, K., and K. J. F. Satchell. 2008. Structure-function analysis of inositol hexakisphosphate-induced autoprocessing of the Vibrio cholerae multifunctional autoprocessing RTX toxin. J Biol Chem 283: 23656-64.
66.Lupardus, P.J., A. Shen, M. Bogyo, and K. C. Garcia. 2008. Small molecule–induced allosteric activation of the Vibrio cholerae RTX cysteine protease domain. Science 322: 265-8.
67.Kuhnert, P. 1997. Detection of RTX toxin genes in gram-negative bacteria with a set of specific probes. Appl Environ Microbiol 63: 2258-65.
68.Boardman, B.K., and K. J. Satchell. 2004. Vibrio cholerae strains with mutations in an atypical type I secretion system accumulate RTX toxin intracellularly. J Bacteriol 186: 8137-43.
69.Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557-80.
70.Chen, C.Y., K. M. Wu, Y. C. Chang, C. H. Chang, H. C. Tsai, T. L. Liao, Y. M. Liu, H. J. Chen, A. B. Shen, J. C. Li, T. L. Su, C. P. Shao, C. T. Lee, L. I. Hor, and S. F. Tsai. . 2003. Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res 13: 2577-87.
71.Lin, M.W. 2002, July. Role of TolC in virulence of Vibrio vulnificus. MS. National Cheng Kung University, Tainan, Taiwan.
72.Yanisch-Perron, C., J. Vieira, and J. Messing. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors Gene 33: 103-19.
73.Philippe, N., J. P. Alcaraz, E. Coursange, J. Geiselmann, and D. Schneider. 2004. Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. Plasmid 51: 246-55.