簡易檢索 / 詳目顯示

研究生: 馮韻庭
Feng, Yun-Ting
論文名稱: 群聚式高密度網路之無人機行動邊緣運算方案
UAV-Enabled Mobile Edge Computing for Clustered High Density Network
指導教授: 張志文
Jhang, Jhih-Wun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 41
中文關鍵詞: 無人機行動邊緣運算叢集密集網路
外文關鍵詞: UAV, MEC, cluster, dense network
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本文中,我們研究了群集和無人機(UAV)支持的MEC計算網絡的結合,從而以最小的傳輸功率有效地完成了計算任務。為了實現這一目標,開發了支持叢集的UAV-BS(UAV-BS)方案(CUBE)以迭代解決五個子問題:(1)叢集數量;(2)UE 與UAV 之間的計算關聯;(3)傳輸數據的傳輸功率;(4)每個UE 的無人機計算能力的分佈;以及(5)每個UAV的位置(包括其高度)。基於模擬結果,提出的算法可以正確地維持人口密集UAV 的MEC 網絡的運行。

    In this paper, we investigate the incorporation of the clustering and unmanned aerial vehicle (UAV) enabled MEC computation network to efficiently accomplish the computation tasks using minimum transmission power. To achieve this goal, the clustering UAV-base-station (UAV-BS) enabled (CUBE) scheme is developed to iteratively solve five sub-problems: (1) the number of clusters; (2) the computing associations between UEs and UAVs; (3) the transmission power for transferring data; (4) the distribution of the UAVs' computation capacity for each UE; and (5) the locations of each UAV (including its height). Based on the simulation results, the proposed algorithm can properly maintain the operation of the UAV-enabled MEC network with dense population.

    Chinese Abstract i English Abstract ii Acknowledgements iii Contents iv List of Tables vi List of Figures vii List of Variables viii List of Acronyms x 1 Introduction 1 2 Related Works 3 2.1 Clustering Schemes 3 2.2 UAV-enabled MEC Network 3 3 Background Knowledge 7 3.1 Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) 7 3.2 Half-Duplex (HD) and Full-Duplex(FD) 9 3.2.1 Half-Duplex (HD) 9 3.2.2 Full-Duplex (FD) 9 3.3 Mobile Edge Computing(MEC) 9 3.4 Cluster 10 4 System Model and Problem Description 13 4.1 Problem Description 13 4.2 Computation Association between UEs and UAVs 14 4.3 Time and Power Consumption 15 5 Problem Formulation and Proposed CUBE-MEC Scheme 18 5.1 Problem Formulation 18 5.2 Proposed CUBE-MEC Scheme 20 5.2.1 Sub-Problem of User Association 20 5.2.2 Sub-Problem of Power Control 24 5.2.3 Sub-problem of Allocating Computation Capacity 26 5.2.4 Sub-Problem of UAVs' Locations 27 6 Simulation Results 30 7 Conclusions and Future Works 34 Bibliography 35 Appendix A 37 Appendix B 40 Vita 41

    [1] F. Zhou, R. Q. Hu, Z. Li, and Y. Wang,"Mobile edge computing in unmanned aerial vehicle networks," IEEE Wireless Communications, vol. 27, no. 1, pp. 140-146, January 2020.
    [2] M. Gharbieh, A. Bader, H. ElSawy, H.-C. Yang, M.-S. Alouini, and A. Adinoyi,"Self-organized scheduling request for uplink 5G networks: A D2D clustering approach,"IEEE Transactions on Communications, vol. 67, no. 2,pp.1197-1209,Oct. 2018.
    [3] J. Yu, R. Zhang, Y. Gao, and L.-L. Yang,"Modularity-based dynamic clustering for energy efficient UAVs-aided communications," IEEE Wireless Communications Letters, vol. 7, no. 5, pp. 728-731, March 2018.
    [4] Y. Qian, F. Wang, J. Li, L. Shi, K. Cai, and F. Shu, "User association and path planning for UAV-aided mobile edge computing with energy restriction," IEEE Wireless Communications Letters, vol. 8, no. 5, pp. 1312-1315, April 2019.
    [5] X. Hu, K.-K. Wong, K. Yang, and Z. Zheng, "Task and bandwidth allocation for UAV-assisted mobile edge computing with trajectory designs," Dec. 2019.
    [6] Y. Du, K. Wang, K. Yang, and G. Zhang, "Energy- efficient resource allocation in UAV based MEC system for IoT devices," in IEEE Global Communications Conference, Dec. 2018.
    [7] Y. Yu, X. Bu, K. Yang, H. Yang, and Z. Han,"UAV-aided low latency mobile edge computing with mmWave backhaul," in IEEE International Conference on Communications, May 2019.
    [8] J. Xiong, H. Guo, and J. Liu,"Task offloading in UAV-aided edge computing:bit allocation and trajectory optimization," IEEE Communications Letters, vol. 23,no. 3, pp. 538-541, Jan. 2019.
    [9] Z. Yu, Y. Gong, S. Gong, and Y. Guo,"Joint task offloading and resource allocation in UAV-enabled mobile edge computing," IEEE Internet of Things Journal,vol. 7, no. 4, pp. 3147-3159, January 2020.
    [10] F. Zhou, Y. Wu, H. Sun, and Z. Chu,"UAV-enabled mobile edge computing:offloading optimization and trajectory design," in IEEE International Conference on ommunications, May 2018.
    [11] F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian,"Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing systems," IEEE Journal on Selected Areas in Communications, vol. 36, no. 9, pp. 1927-1941, August 2018.
    [12] Z. Yang, C. Pan, K. Wang, and M. Shikh-Bahaei,"Energy efficient resource allocation in UAV-enabled mobile edge computing networks," IEEE Transactions on Wireless Communications, vol. 18, no. 9, pp. 4576-4589, July 2019.

    無法下載圖示 校內:2025-11-13公開
    校外:2025-11-13公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE