| 研究生: |
邱瑞杰 Jui, Chieh-Chiu |
|---|---|
| 論文名稱: |
毫米波三倍頻器與混頻器單晶微波積體電路及被動電路之研究 Study of Millimeter-Wave Tripler, Mixer MMICs and Passive Circuits |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 毫米波 、被動電路 、MMIC |
| 外文關鍵詞: | MMIC, Millimeter-Wave, Passive Circuit |
| 相關次數: | 點閱:74 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文著眼於毫米波三倍頻器的設計與各項主要的被動電路的設計。在三倍頻器的設計,以平衡式的基本架構,提出一個新的架構,設計出操作在Ka band的毫米波三倍頻。在被動電路方面,針對較常用的功率分配器(Power divider)與蘭吉耦合器(Lange coupler)提出新式改良,使得電路可以克服在PCB的設計上的問題。
毫米波三倍頻器方面,為了達到毫米波的頻率,採用國家晶片中心(CIC)透過WIN半導體公司提供的PHEMT製程,採用單晶微波積體電路(millimeter- wave monolithic integrated circuit,MMIC)的製程。以新式的Balanced的架構提出一個操作在Ka 頻帶,有良好輸出特性的單晶微波積體電路(MMIC)。此新式的Balanced的架構,有效的結合了,PHEMT電晶體、功率分配合器、移相器、L-C Tank濾波器,得到一個不錯的輸出結果。
被動電路方面,主要設計的重點為一分三個的功率分配器,與兩種不同結構的蘭吉耦合器。其中,一分三的功率分配器,利用耦合線具阻抗轉換的功能,成功的解決了,傳統上一分三的功率分配器無法平面化的問題。而蘭吉耦合器方面,分別利用微帶線-共平面波導的轉換,有效的解決傳統蘭吉耦合器須要Bonding wires的問題,同時結合CPW耦合線的結構,調整耦合線的間距,以適合即有的PCB製程。另一面,針對三條耦合線的整理出適合的方程式,使得所提出的結構,更加的完整。
In this dissertation, a novel millimeter-wave tripler, a high performance millimeter-wave mixer and a full range phase control active phase shifter will be developed firstly for the communication system applications.
To operate a circuit in mm-wave frequency, the monolithic microwave integrated circuit tripler and mixer are fabricated on 100µm-thick GaAs substrates using 0.15µm InGaAs/AlGaAs/GaAs PHEMT technology. The proposed new structures of the balanced tripler and star mixer are composed of PHEMTs, power divider, coupler, phase delay line and LC tank filter. From the measured results, the proposed structures are more compact with excellent performance.
Then, a 360-degree full range active phase shifter consists of a novel coupler circuit, variable gain amplifiers and a four-way power combiner is demonstrated. Based on the novel coupler and the vector sum method, the control mechanism of this novel phase shifter is discussed in depth, which also can support 360 degrees full range phase control.
In passive elements, a novel planar three-way power divider and two kinds of Lange couplers are proposed. Based on the conventional coupled line technology, the proposed three-way power divider can modify the problem of conventional Wilkinson three-way power divider from a three-dimensional configuration into two-dimension, meanwhile to keep the length of the circuit to be λ/4. The planar structure enables circuit easily designed in printed circuit boards and monolithic microwave integrated circuits.
The proposed Lange couplers are implemented by microstrip–to-coplanar waveguide (CPW) via-hole transitions and CPW couple line structure. As compared to the conventional Lange coupler, the proposed couplers have the advantages of increasing coupled line widths and coupling spacing without using extra bonding wires. In addition, the proposed structure can easily be realized in a single–layer substrate by printed circuit board manufacturing processes to eliminate the effects and uncertain factors from a multi-layer substrate. Finally, a suitable model of the proposed 3dB coupler structure is also established.
REFERENCES
[1] P. Ladbrooke, MMIC Design GaAs FETs and HEMTs, Artech House, 1988.
[2] F. X. Sinnesbichler, H. Geltinger and G. R. Olbrich, "A 38GHz push-push oscillator based on 25-GHz fT BJT's," IEEE Microwave Guided Wave lett., vol. 9, pp.151-153, Apr. 1999.
[3] A. Boudiaf, D. Bachelet and C. Rumelhard, “A high-efficiency and low- phase-noise 38-GHz pHEMT MMIC tripler,” IEEE Trans. Microwave Theory and Tech., vol. 48 pp.2546-2553, Dec. 2000.
[4] Y. Campos-Roca, L. Verweyen, M. Fernandez-Barciela, W. Bischof, M. C. Curras-Francos, E. Sanchez, A. Hulsmann, and M. Schlechtweg, ”38/76 GHz PHEMT MMIC balance frequency doublers in coplanar technology,” IEEE Microwave and Guided Wave Lett., vol. 10, no. 11, pp. 484-487, Nov. 2000.
[5] H. Fudem and E. C. Niehenke, “Novel millimeter wave active MMIC triplers,” IEEE MTT-S Int. Microwave Symp. Dig., vol 2, pp. 387-390, 1998.
[6] C. Beaulie, “Millimeter wave broadband frequency tripler in GaAs/InGaP HBT technology,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, pp. 1581-1584, June 2000.
[7] A. Donald, B. Danny and G. Warren, “25.5 to 76.5GHz active frequency tripler for automotive radar applications,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, pp. 2233-2236, June 2003.
[8] G. Zhang, R. D. Pollard and C. M. Snowden, ”A novel technique for HEMT tripler design,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, pp. 663-666, June 1996.
[9] A. Boudiaf, D. Bachelet, and C. Rumelhard, “38 GHz MMIC PHEMT-based tripler with low phase-noise properties,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, pp. 509-512, June 2000.
[10] H. Okazaki and Y. Yamaguchi,” Wide-band SSB subharmonically pump mixer MMIC,” IEEE Trans. Microwave Theory Tech, vol.45, no. 12, pp 2375-2379, Dec.1997.
[11] C. Creamer, P. Chye and B. Sinclair, “43.5 to 45.5 GHz active times-4 frequency multiplier with 1.4 watt output power,” IEEE MTT-S Int. Microwave Symp. Dig., 1991 Emerging Technologies Symposium, pp.70–73, 10-11 Sept. 2001.
[12] B. R. Hallford, "100-mW output upconverter using four Schottky diodes," IEEE MTT-S Int. Microwave Symp. Dig., p.492, 1979.
[13] S. Basu and S. A. Maas, ”Design and performance of a planar star mixer,” IEEE Trans. on Microwave Theory and Tech., vol. 41, pp.2028 – 2030, Nov. 1993.
[14] Y. I. Ryu, K. W. Kobayashi and A. K. Oki, ”A monolithic broadband doubly balanced EHF HBT star mixer with novel microstrip baluns,” IEEE MTT-S Int. Microwave Symp. Dig., vol.1, pp.119 – 122, 16-20 May 1995.
[15] M. K. Lee, J. D. Park, D. An, B. H. Lee, S. J. Lee, T. J. Baek, J. H. Oh, S. W. Moon, H. J. Kwon, W. J. Kim, Y. H. Kim, H. M. Park and J. K. Rhee, ”A 94 GHz diode mixer for low LO power operation,” Asia-Pacific Microwave Conference Proceedings, APMC 2005, Vol. 5, 4-7, Dec. 2005.
[16] J. W. Lee and K. J. Webb, “A low-loss planar microwave balun with an integrated bias scheme for push-pull amplifiers,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 1 pp. 197 - 200, 20-25 May, 2001.
[17] K. W. Yeom and D. H. Ko, ”A novel 60-GHz monolithic star mixer using gate-drain-connected pHEMT diodes,” IEEE Trans. on Microwave Theory and Tech., Vol. 53, pp.2435 - 2440, July 2005.
[18] S. A. Maas and K. W. Chang, ”A broadband, planar, doubly balanced monolithic Ka-band diode mixer,” IEEE Trans. on Microwave Theory and Tech., vol. 41, pp.2330 – 2335, Dec. 1993.
[19] S. J. Kim, N. H. Myung, ”A new active phase shifter using a vector sum method,” IEEE Microwave and Guided Wave Lett., vol. 10, No. 6, pp.233 – 235, June 2000.
[20] M. Kumar, R. J. Menna, and H. C. Huang, “Broad-band active phase shifters using dual gate MESFET,” IEEE Trans. on Microwave Theory and Tech., vol. MTT-29, pp.1098 –1101, 1981.
[21] P. Coget, P. Philippe, V. Pauker, P. Dautriche and P. Jean, “A multioctave active MMIC quadrature phase shifter,” IEEE 1989 Microwave and Millimeter-Wave Monolithic Circuits Symp., 1989. Digest of Papers.12-13 pp.75 – 77, June 1989.
[22] P. Y. Chen, T. W. Huang, H. Wang, Y. C. Wang, C. H. Chen, P. C. Chao, “K-band HBT and HEMT monolithic active phase shifters using vector sum method,” IEEE Trans. on Microwave Theory and Tech., vol. 52, no. 5, pp.1414 – 1424, May 2004.
[23] J. L. Vorhaus, R. A. Pucel, Y. Tajima, “Monolithic dual-gate GaAs FET digital phase shifter,” IEEE Trans. on Microwave Theory and Tech., vol. 82, no. 7, pp. 982 – 992, Jul 1982.
[24] J. K. Ryoo, S. H. Oh, ” Broadband 4-bit digital phase shifter based on vector combining method,” Microwave and Optoelectronics Conference, 2003. IMOC 2003. Proceedings of the 2003 SBMO/IEEE MTT-S International, Sept. 20-23, 2003, vol. 1, pp. 17-19.
[25] Y. Gazit and H. C. Johnson, “A continuously-variable Ku-band phase/amplitude module,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 81, no. 1, pp.436 – 438, Jun. 1981.
[26] J. R. Selin, “Continuously variable L-band monolithic GaAs phase shifter,” Microwave J., vol. 30, pp.211–218, Sep. 1987.
[27] D. K. Paul and P. Gardner, “Microwave quadrature active phase shifter using MESFETs,” Microwave Opt. Technol. Lett., vol. 15, pp. 359–360, 1997
[28] E. J. Wilkinson, “An N-way power divider,” IEEE Trans. Microwave Theory Tech., vol. MTT-8, pp. 116-118, Jan. 1960.
[29] S. Rosloniec, “Three-port hybrid power dividers terminated in complex frequency-dependent impedances,” IEEE Trans. Microwave Theory and Tech., vol. MTT- 44, pp. 1490-1493, Aug. 1996.
[30] M. Nakatsugawa and K. Nishikawa, ”A novel configuration for 1:N multiport power dividers using series/parallel transmission-line division and a polyimide/alumina – ceramic structure for HPA module implementation,” IEEE Trans. Microwave Theory and Tech., vol. 49, no. 6, pp.1187 – 1193, June 2001.
[31] K. Hettak, C. J. Verver, M.G. Stubbs and G. A. Morin, ”Broadbanding techniques for TEM N-way power dividers,” IEEE MTT-S Int. Microwave Sym. Dig., 2003 vol.1, pp.59 - 62 , 8-13 June, 2003.
[32] E. Turan and S. Demir, ”An all 50 ohm divider/combiner structure,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, pp.105 – 108, 2-7 June, 2002.
[33] M. E. Goldfarb, ”A recombinant, in-phase power divider,” IEEE Trans. Microwave Theory Tech., vol. 39. No 8, pp.1438 – 1440, Aug. 1991.
[34] S. Avrillon, A. Chousseaud and S. Toutain, ”Dividing and filtering function integration for the development of a band-pass filtering power amplifier,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, pp.1173 – 1176, 2-7 June, 2002.
[35] S. Avrillon, I. Pele, A. Chousseaud and S. Toutain, ”Dual-band power divider based on semiloop stepped-impedance resonators,” IEEE Trans. Microwave Theory Tech., vol. 51, No. 4, pp.1269 - 1273, Apr. 2003.
[36] H. R. Mgombelo and J. G. Gardiner, ”Three-way power dividers and combiners constructed on the basis of a three-way Luzzato divider,” IEE Colloquium on RF Combining, pp. 4/1– 410, 12 Apr. 1990.
[37] S. B. Cohn, “A class of broad-band three-port TEM mode hybrids,” IEEE Trans. Microwave Theory and Tech., vol. MTT-16, pp. 110-116, Feb. 1968.
[38] F. A. Abouzahra and K. C. Gupta, “Multi-way unequal power divider circuits using sector-shaped planar components,” IEEE MTT-S Int. Microwave Symp., Dig.,vol. 1 , pp. 321-324, Jun.1989.
[39] Z. Galani and S. J. Temple, “A broad-band planar n-way combiner/divider,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 77, pp. 499-502, Jun. 1977.
[40] Y. J. Chen and R. B. Wu, "A wide-band multiport planar power divider design using matched sectorial components in radial arrangement," IEEE Trans. Microwave Theory Tech., vol. 46, pp. 1072-1078, Aug. 1998.
[41] V. K. Tripathi, Y. K. Chin, H. S. Chang and N. Orhanovic, “Coupled line multiports,” IEEE Int. Symp. on Circuits and Systems, vol.2. pp. 1021 – 1024, May 1992.
[42] J. Lange, "Tnterdigitated stnpline quadrature hybrid," IEEE Trans. Microwave Theory Tech., vol. MTT-17, pp. 1150-1151, Dec. 1969.
[43] S. M. Perlow and A. Presser, “The interdigitated three-strip coupler,” IEEE Trans. Microwave Theory and Tech., vol. MTT-32, pp. 1418 – 1422, Oct. 1984.
[44] D. Kajfez, Z. Paunovic, and S. Pavlin, “Simplified design of lange coupler,” IEEE Trans. Microwave Theory and Tech., vol. MTT-26, pp.806 - 808, Oct. 1978.
[45] D. P. Andrews and C. S. Aitchison, “Wide-band lumped element quadrature 3-dB couplers in microstrip,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 2424-2431, Dec. 2000.
[46] J. H. Lee and H. Y. Lee, “Novel quadrature branch-line coupler using CPW-to-microstrip transitions,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, pp. 621 – 624, Jun. 2000.
[47] W. Wiatr, D. K. Walker and D. F. Williams, “Coplanar-waveguide-to- microstrip transition model,” IEEE MTT-S Int., Microwave Symp. Dig., vol. 3 pp. 1797 – 1800. Jun. 2000.
[48] L. Krishnamurthy, V. van Tuyen, R. Sloan, K. Williams and A.A. Rezazadeh, “Broadband CPW multilayer directional couplers on GaAs for MMIC applications,” High Frequency Postgraduate Student Colloquium, pp.183 – 188, Sept. 2004.
[49] A. Sawicki and K. Sachse, “A novel directional coupler for PCB and LTCC applications,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 2225-2228, 2002.
[50] S. Al-Taei, P. Lane, and G. Passiopoulos, “Design of high directivity directional couplers in multilayer ceramic technologies,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 51–54, May 2001.
[51] Q. H. Wang, T. Gokdemir, D. Budimir, U. Karacaoglu, A. A. Rezazadeh, and I.D. Robertson, “Fabrication and microwave characterisation of multilayer circuits for MMIC applications,” IEE Proceedings, Microwaves, Antennas and Propagation, vol. 143, pp. 225 – 232, Jun. 1996.
[52] A. Sawicki, and K. Sachse, “Novel coupled-line conductor-backed coplanar and microstrip directional couplers for PCB and LTCC applications,” IEEE Trans. Microwave Theory and Tech., vol. MTT-51, pp. 1743 - 1751, Jun. 2003.
[53] K.Sachse and A. Sawicki, “Quasi-ideal multilayer two- and three-strip directional couplers for monolithic and hybrid MICs,” IEEE Trans. Microwave Theory and Tech., vol. MTT-47, pp.1873 - 1882, Sept. 1999.
[54] E. Rius, T. L. Gouguec, K. Hettak, J.P. Coupez and S. Toutain, “A broadband, high directivity 3 dB coupler using coplanar waveguide technology,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 671–674, May 1995.
[55] V. Tulaja, B. Schiek, and J. Kohler, “An interdigitated 3-dB coupler with three strips,” IEEE Trans. Microwave Theory and Tech., vol. MTT-26, pp. 643-645, Sept. 1978.
[56] R. Waugh and D. LaCombe, “Unfolding the Lange coupler,” IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp. 777-779, 1972.
[57] M. Nedil, T. A. Denidni, and L. Talbi, “CPW multilayer slot-coupled directional coupler,” Electronics Letters, vol. 41, pp.706 – 707, Jun. 2005.
[58] D. Willems, and I. Bahl, “An MMIC-compatible tightly coupled line structure using embedded microstrip,” IEEE Trans. Microwave Theory and Tech., vol. MTT-41 pp. 2303 - 2310, Dec. 1993.
[59] C. V. Borges Maciel, D. F. M. Argollo and H. Abdalla, “Broadside suspended stripline 3 dB couplers,” SBMO International Microwave Conference/Brazil, vol. 1, pp.117 – 122, Aug. 1993.
[60] F. Tefiku, E. Yamashita, and J. Funada, “Novel directional couplers using broadside-coupled coplanar waveguides for double-sided printed antennas,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 275-282, Feb. 1996.
[61] M. Nakajima, E. Yamashita, and M. Asa, “New broad-band 5-section microstrip-line directional coupler,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 383 – 386, May 1990.
[62] E. G. Cristal, "Coupled-transmission-line directional couplers with coupled lines of unequal characteristic impedances,” IEEE Trans. Microwave Theory Tech., vol. MTT-4, pp. 337–346, July 1966.
[63] D. M. Pozar, Microwave Engineering, 2nd ed. New York: Wiley 1998.