| 研究生: |
侯坤慶 Hou, Kun-Ching |
|---|---|
| 論文名稱: |
添加非離子界面活性劑對電化學拋光不銹鋼316L表面特性影響之研究 Surface Characteristics of AISI 316L Stainless Steel Electropolished in Presence of Nonionic Surfactants |
| 指導教授: |
陳炳宏
Chen, Bing-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 非離子型界面活性劑 、316L 不銹鋼 、電化學拋光 、表面粗糙度 、抗腐蝕性 、纖維細胞 |
| 外文關鍵詞: | nonionic surfactant, AISI 316L stainless steel, electropolishing, RMS roughness, corrosion resistance, Murine NIH-3T3 fibroblasts |
| 相關次數: | 點閱:153 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對316L 不銹鋼在經由不同的電化學拋光條件處理之後,試片表面特性的探討。在電化學拋光的電解液中加入不同濃度的非離子界面活性劑,藉由界面活性劑能降低溶液的表面張力的特性,提升電化學拋光的速率。從V-I curve可以發現電拋光的電流密度會隨界面活性劑濃度增加而上升;而根據光學顯微鏡的表面型態觀察與AFM 測量的表面粗糙度(RMS roughness)值比較發現,當電解液中界面活性劑濃度超過20 ppm以上,拋光後的316L 不銹鋼表面平整程度都可以獲得改善;而在酸性溶液中的抗腐蝕比較也發現,在電解液中加入界面活性劑,可以使電拋光後的316L 不銹鋼試片具有與經過較長電拋光時間的試片相同的改善效果;XPS的分析解果顯示,在電解液中加入界面活性劑,可以使電拋光後的316L 不銹鋼試片表面有較高的Cr/Fe值而增強抗腐蝕能力;在纖維細胞生長實驗中,經過拋光處理的316L不銹鋼表面在具有較多的細胞數量,表示平坦的316L不銹鋼表面有利細胞生長,另一方面,在細胞型態的觀察結果發現,表面粗糙度降低會使得細胞貼附的情況變差。
Electropolishment is the most important surface treatment procedure for medical grade AISI 316L stainless steel. A lot of new investigations focus on improving this technology with additional equipment, such as external magnetic field. Unlike those procedures, we simply modified the electropolishing procedure by introducing surfactant into the bath. With the addition of surfactant, the surface morphology and corrosion resistance of 316L stainless steel were improved after the electropolishing process.
In this study, atomic force microscope (AFM), scanning electron microscope (SEM), as well as X-ray photoelectron spectroscopy (XPS) is employed to characterize the surface finish of the electropolished 316L pieces. Proper dosage of surfactant is introduced in the bath used in the electropolishing process to give better finish surface. The electrochemical corrosion behavior of 316L stainless steel was investigated in 1.0 N hydrochloric acid. The results showed that the presence of surfactant was found not only to smooth the surface but also decrease the corrosion rate. Furthermore, the results cellular adhesion and proliferation on the stainless steel surface film have been presented.
Bard, A. J., Faulkner, L. R. Electrochemical Methods: Fundaments and Applications (2nd ed.). New York: John Wiley & Sons, Inc.; 2001
Carvalho, G. S., Castanheira, M., Diogo, I., Abreu, A. M., Sousa, J. P., Loon, J. A., Blitterswijk, C. A. Inhibition and stimulation of enzymatic activities of human fibroblasts by corrosion products and metal salts. Journal of Materials Science: Materials in Medicine, 7(2), 77-83.; 1996
Chen, B. H., Hong, L., Ma, Y., Ko, T. M. Effects of surfactants in an electroless nickel-plating bath on the properties of Ni-P alloy deposits. Industrial & Engineering Chemistry Research, 41(11), 2668-2678.; 2002
Chung, T.-W., Wang, Y.-Z., Huang, Y.-Y., Pan, C.-I., Wang, S.-S. Poly (ɛ-caprolactone) Grafted With Nano-structured Chitosan Enhances Growth of Human Dermal Fibroblasts. Artificial Organs, 30(1), 35-41.; 2006
Crobu, M., Scorciapino, A., Elsener, B., Rossi, A. The corrosion resistance of electroless deposited nano-crystalline Ni-P alloys. Electrochimica Acta, 53(8), 3364-3370.; 2008
D'Errico, G., Ciccarelli, D., Ortona, O. Effect of glycerol on micelle formation by ionic and nonionic surfactants at 25 degrees C. Journal of Colloid and Interface Science, 286(2), 747-754.; 2005
Disegi, J. A., Eschbach, L. Stainless steel in bone surgery. Injury-International Journal of the Care of the Injured, 31, S2-S6.; 2000
Eliaz, N., Nissan, O. Innovative processes for electropolishing of medical devices made of stainless steels. Journal of Biomedical Materials Research Part A, 83A(2), 546-557.; 2007
Elsener, B., Crobu, M., Scorciapino, M., Rossi, A. Electroless deposited Ni–P alloys: corrosion resistance mechanism. Journal of Applied Electrochemistry, 38(7), 1053-1060.; 2008
Hryniewicz, T., Rokicki, R., Rokosz, K. Magnetoelectropolishing for metal surface modification. Transactions of the Institute of Metal Finishing, 85, 325-332.; 2007
Hryniewicz, T., Rokicki, R., Rokosz, K. Surface characterization of AISI 316L biomaterials obtained by electropolishing in a magnetic field. Surface & Coatings Technology, 202(9), 1668-1673.; 2008
Hryniewicz, T., Rokosz, K. Analysis of XPS results of AISI 316L SS electropolished and magnetoelectropolished at varying conditions. Surface & Coatings Technology, 204(16-17), 2583-2592.; 2010
Hryniewicz, T., Rokosz, K., Filippi, M. Biomaterial Studies on AISI 316L Stainless Steel after Magnetoelectropolishing. Materials, 2(1), 129-145.; 2009
Hryniewicz, T., Rokosz, K., Rokicki, R. Electrochemical and XPS studies of AISI 316L stainless steel after electropolishing in a magnetic field. [Article]. Corrosion Science, 50(9), 2676-2681.; 2008
Kue, R., Sohrabi, A., Nagle, D., Frondoza, C., Hungerford, D. Enhanced proliferation and osteocalcin production by human osteoblast-like MG63 cells on silicon nitride ceramic discs. Biomaterials, 20(13), 1195-1201.; 1999
Lampin, M., Warocquier-Clérout, R., Legris, C., Degrange, M., Sigot-Luizard, M. F. Correlation between substratum roughness and wettability, cell adhesion, and cell migration. Journal of Biomedical Materials Research, 36(1), 99-108.; 1997
Leitao, E., Silva, R. A., Barbosa, M. A. Electrochemical and surface modifications on N+-ion-implanted 316 L stainless steel. Journal of Materials Science: Materials in Medicine, 8(6), 365-368.; 1997
Lin, C. C., Hu, C. C., Lee, T. C. Electropolishing of 304 stainless steel: Interactive effects of glycerol content, bath temperature, and current density on surface roughness and morphology. Surface & Coatings Technology, 204(4), 448-454.; 2009
Martinesi, M., Bruni, S., Stio, M., Treves, C., Bacci, T., Borgioli, F. Biocompatibility evaluation of surface-treated AISI 316L austenitic stainless steel in human cell cultures. Journal of Biomedical Materials Research Part A, 80A(1), 131-145.; 2007
Meredith, D. O., Eschbach, L., Wood, M. A., Riehle, M. O., Curtis, A. S. G., Richards, R. G. Human fibroblast reactions to standard and electropolished titanium and Ti–6Al–7Nb, and electropolished stainless steel. Journal of Biomedical Materials Research Part A, 75A(3), 541-555.; 2005
Morais, S., Sousa, J. P., Fernandes, M. H., Carvalho, G. S., de Bruijn, J. D., van Blitterswijk, C. A. Effects of AISI 316L corrosion products in in vitro bone formation. Biomaterials, 19(11-12), 999-1007.; 1998
Pereira, M. L., Abreu, A. M., Sousa, J. P., Carvalho, G. S. Chromium accumulation and ultrastructural changes in the mouse liver caused by stainless steel corrosion products. Journal of Materials Science: Materials in Medicine, 6(9), 523-527.; 1995
V J Morris, A R Kirby, Gunning, A. P. Atomic force microscopy for biologists (1st ed.). London: Imperial College Press.; 1999
Zhao, H., Humbeeck, J. V., Sohier, J., Scheerder, I. D. Electrochemical polishing of 316L stainless steel slotted tube coronary stents. Journal of Materials Science: Materials in Medicine, 13(10), 911-916.; 2002
王明誠. 利用同步輻射X光光電子能譜研究電漿誘導生成官能基對生物單體固定之模式. 中原大學, 桃園縣. (2004)
田福助. 電化學:理論與應用 (7th ed.). 台北市: 高立圖書有限公司. (1992)
林佳穎. 添加界面活性劑對於電化學拋光316L不鏽鋼片之研究. 國立成功大學, 台南市. (2010).
林俊毅. 去氧核醣核酸在胺基矽烷自組裝膜上的吸附行為. 國立成功大學, 台南市. (2005).
表面處理編輯委員會. 表面處理 (6th ed.). 台北縣: 新文京開發出版股份有限公司. (2004).
柯賢文. 腐蝕及其防制. 台北市: 全華出版社. (1995).
郭明同. 以無電鍍製備鎳鐵磷合金及其抗腐蝕性質之研究. 國立成功大學, 台南市. (2007).
陳裕豐. 高潔淨閥件支流道表面處理-電解拋光(EP)技術. 機械工業雜誌, 198, 230-240. (1999).
趙承琛. 界面科學基礎 (12 ed.). 台南市: 復文書局. (1993).
鮮祺振. 金屬腐蝕及其控制. 台北縣: 財團法人徐氏基金會. (1995).