簡易檢索 / 詳目顯示

研究生: 賴光傑
Lai, Kuang-Chieh
論文名稱: 利用高光捕捉之背反射層改善薄膜太陽能電池效率
Improvement of thin film solar cells efficiency by using high light trapping-based back reflector
指導教授: 洪茂峰
Houng, Mau-Phon
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 79
中文關鍵詞: 氧化鎵鋅背反射層表面電漿子光捕捉效應薄膜太陽能電池
外文關鍵詞: Gallium-doped zinc oxide, back reflector, surface plasmon, light trapping effect, thin film solar cells
相關次數: 點閱:115下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是利用氧化鎵鋅(ZnO:Ga)作為透明導電層之接觸電極材料,並且應用於矽薄膜太陽能電池元件。氧化鎵鋅薄膜普遍使用物理氣相沉積之濺鍍方式成長,而利用濺鍍製程參數控制薄膜品質及特性值得我們進一步的研究。在論文中,首先將探討氧化鎵鋅材料應用於微晶矽薄膜太陽能電池,作為前後之透明接觸電極層並分析元件效率的影響。
    此外,我們進一步研究將表面粗糙化的氧化鎵鋅薄膜作為薄膜太陽能電池之背電極接觸層。氧化鎵鋅薄膜沉積於元件吸收層上,利用電漿乾式蝕刻與化學濕式蝕刻兩種不同方式形成粗糙化之氧化鎵鋅透明電極層。氧化鎵鋅透明電極層在電漿乾式蝕刻後,可增加光學的擴散反射及反射霧度特性,並且比較電漿乾式蝕刻之粗糙化結構在非晶矽薄膜太陽能電池之特性,光電流以及影響因子可獲得改善,元件效率也相對增加了4.6%的幅度。
    而在化學濕式蝕刻的部份,粗糙化之氧化鎵鋅背接觸電極應用於微晶矽薄膜太陽能電池。利用化學蝕刻氧化鎵鋅薄膜5-6秒的製程,可獲得較佳的薄膜擴散反射特性,在最佳蝕刻條件下,粗糙化之氧化鎵鋅背接觸電極可得到6.88%微晶矽太陽能電池之效率 (FF = 68 %, VOC = 471 mV and JSC = 21.48 mA/cm2)。微晶矽太陽能電池效率從6.54 %提升到6.88%,主要是由於粗糙化之背反射層增加了反射光路徑,進而提升元件吸收效率使元件光電流增加,而從外部量子效率分析也可發現主要是長波長光譜響應的部分獲得改善。
    化學濕式蝕刻之粗糙化背反射層的光捕捉效應(light trapping effect)也在疊層式薄膜太陽能電池中得到驗證,粗糙化背反射層應用於疊層式薄膜太陽能電池中,由於改善了光捕捉效應,所以增加了底部電池(bottom cell)相對8%的短路電流值。研究結果說明長波長光捕捉效應之改善,主要是歸因於粗糙化的氧化鎵鋅背反射層增加了元件光捕捉能力,並提高2 μm底電池之疊層式薄膜太陽能電池效率。

    Gallium-doped zinc oxide (ZnO:Ga, GZO) thin films are of interest to the semiconductor industry as transparent conductive surfaces and as transparent contact electrode layers for applications such as silicon thin film solar cells. Physical vapor deposition (PVD) via sputtering is commonly used to produce thin films such as GZO, but film quality and characteristics depend significantly on the PVD processing parameters. Additionally, the effects of the produced GZO material when applied as multi-layer front and back layer electrodes to hydrogenated microcrystalline silicon (μc-Si:H) thin film solar cells is evaluated in terms of open circuit voltage (VOC), short circuit current density (JSC), fill factor (FF) and efficiency (Eff.) of the cells.
    Besides, our study considers texturing of GZO films used as back contacts in silicon thin film solar cells. GZO thin films are first prepared by conventional methods. The propertied of as-deposited GZO surface back contact are modified so that light trapping on silicon thin film solar cell is enhanced. Texturing is performed by dry plasma etching in a CVD process chamber and chemical wet etching process. Comparison of the with/without texturing GZO films shows that plasma etching increases optical scattering reflectance and reflection haze. SEM and TEM are used to evaluate the morphological treatment-induced changes in the films. Comparison of the amorphous silicon solar cells with/without texturing shows that the plasma treatment increases both the short-circuit current density and fill factor. Consequently, a-Si solar cell efficiency is relatively improved by 4.6 %.
    Furthermore, surface wet etching is applied to the GZO back contact in μc-Si:H thin film solar cells. Texturing enhances reflective scattering, with etching around 5-6 seconds producing the best scattering, whereas etching around 5 seconds produces the best fabricated solar cells. Etching beyond these time produces suboptimal performance related to excessive erosion of the GZO. The best μc-Si:H solar cell achieves FF = 68 %, VOC = 471 mV and JSC = 21.48 mA/cm2 (Eff. = 6.88 %). Improvement is attributed to enhanced texture-induced scattering of light reflected back into the solar cell, increasing the efficiency of our lab-made single μc-Si:H solar cells from 6.54 % to 6.88 %. Improved external quantum efficiency is seen primarily in the longer wavelengths, i.e. 600 to 1100 nm. However, variation of the fabrication conditions offers opportunity for significant tuning of the optical absorption spectrum.
    Effects of textured back reflectors on light trapping in a-Si / μc-Si:H tandem cells are investigated with textured GZO back contacts obtained by surface wet etching. It is observed that rough back reflectors in fabricated tandem solar cells increase the short circuit current density of the bottom cells by 8 %, which is attributed to light-trapping improvement. It is shown that enhanced longer wavelength light trapping is mainly attributable to improved light scattering at the back side by comparing identical a-Si / μc-Si:H tandem solar cells, both with a GZO back reflector but only one with a textured back reflector. Effectiveness of the textured GZO back reflector is also demonstrated in a textured a-Si / μc-Si:H tandem cell with a bottom cell thickness of 2 μm, which showed higher conversion efficiency than the reference cell.

    ABSTRACT (Chinese)……………………………………………………………I ABSTRACT (English)…………………………………………………………III TABLE CAPTIONS…………………………………………………………………VI FIGURE CAPTIONS………………………………………………………………VII CHAPTER 1 Introduction………………………………………………………1 CHAPTER 2 Background Theory………………………………………………5 2.1 Solar Cell Type and Efficiency……………………………………5 2.2 Preparation of Solar cells…………………………………………7 2.2.1 Crystal Structure and Characteristics of ZnO 2.2.2 Physical Vapor Deposition (PVD) by Sputtering 2.2.3 Plasma-Enhanced Chemical Vapor Deposition (PECVD) 2.3 Solar Cell Characterization………………………………………13 2.3.1 Current-Voltage Characteristics 2.3.2 Quantum Efficiency CHAPTER 3 Experiments………………………………………………………21 3.1 Sputter Tuning for GZO Contact Films…………………………21 3.2 Textured GZO Back Contact by Plasma Dry Etching Process……………………………………………………………………………22 3.3 Textured GZO Back Contact by Chemical Wet Etching Process……………………………………………………………………………23 CHAPTER 4 Characterization of GZO Transparent Contact Electrodes………………………………………………………………………26 4.1 Results and Discussion………………………………………………26 4.1.1 Optical, Electrical and Material Property for GZO Single Films 4.1.2 Application of GZO Films on uc-Si:H Thin Film Solar Cells 4.2 Summary……………………………………………………………………34 CHAPTER 5 Plasma-induced TCO Texture of GZO Back Contacts…………………………………………………………………………36 5.1 Results and Discussion………………………………………………36 5.1.1 The Structure of Back Contact GZO by Plasma Dry Etching 5.1.2 Light Scattering Effect for Textured GZO/Ag Films 5.1.3 Textured Back GZO Contact on a-Si Silicon Thin Film Solar Cells 5.2 Summary……………………………………………………………………42 CHAPTER 6 Wet-etch Texturing of GZO Back Contacts……………43 6.1 Results and Discussion………………………………………………43 6.1.1 Influence of Substrate Temperature for GZO Films 6.1.2 Surface Plasmon Effect for Etched ZnO/Ag Interface 6.1.3 Surface Morphology of Etched GZO on Single μc-Si:H Solar Cells 6.1.4 Enhancement of Light Trapping in Single μc-Si:H Solar Cells 6.1.5 Light Scattering Effect for Wet Etching GZO/Ag Films 6.1.6 Surface Morphology of Etched GZO on Silicon Tandem Solar Cells 6.1.7 Crystallinity of GZO Films on Different Substrates 6.1.8 Enhancement of Light Trapping in Tandem Silicon Solar Cells 6.2 Summary……………………………………………………………………61 CHAPTER 7 Conclusion and Future Works………………………………63 7.1 Conclusion…………………………………………………………………63 7.2 Future Works………………………………………………………………64 REFERENCES………………………………………………………………………65 PUBLICATIONS LIST……………………………………………………………77 VITA………………………………………………………………………………79

    [1]
    G. Haacke, Transparent conducting oxides, Ann. Rev. Mater. Sci. Vol. 7, p.p. 73–93, 1977.
    [2]
    S. J. Hsieh, C. C. Chen and W. C. Say, Process for recovery of indium from ITO scraps and metallurgic microstructures, Mater. Sci. Eng. B Vol. 158, p.p. 82–87, 2009.
    [3]
    L. Hu, D. S. Hecht and G. Gruner, Infrared transparent carbon nanotube thin films, Appl. Phys. Lett. Vol. 94 , p. 081103, 2009.
    [4]
    P.K. Song, M. Watanabe, M. Kon, A. Mitsui and Y. Shigesato, Electrical and optical properties of gallium-doped zinc oxide films deposited by dc magnetron sputtering, Thin Solid Films Vol. 411, p.p. 82–86, 2002.
    [5]
    V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M.E.V. Costa and R. Martins, Influence of the deposition pressure on the properties of transparent and conductive GZO thin-film produced by r.f. sputtering at room temperature, Thin Solid Films Vol. 427, p.p. 401–405, 2003.
    [6]
    A. Tiburcio-Silver, A. Sanchez-Juarez and A. Avila-Garcia, Properties of gallium-doped ZnO deposited onto glass by spray pyrolysis, Sol. Energy Mater. Sol. Cells Vol. 55, p.p. 3–10, 1998.
    [7]
    V. Khranovskyy, U. Grossner, V. Lazorenko, G. Lashkarev, B.G. Svensson and R. Yakimova, PEMOCVD of ZnO thin films, doped by Ga and some of their properties, Superlattices Microstruct. Vol. 39, p.p. 275–281, 2006.
    [8]
    E. Fortunato, V. Assuncao, A. Goncalves, A. Marques, H. Aguas, L. Pereira, I. Ferreira, P. Vilarinho and R. Martins, High quality conductive gallium-doped zinc oxide films deposited at room temperature, Thin Solid Films Vol. 451–452, p.p. 443–447, 2004.
    [9]
    T. Yamada, A. Miyake, S. Kishimoto, H. Makino, N. Yamamoto and T. Yamamoto, Effects of substrate temperature on crystallinity and electrical properties of Ga-doped ZnO films prepared on glass substrate by ion-plating method using DC arc discharge, Surf. Coat. Technol. Vol. 202, p.p. 973–976, 2007.
    [10]
    K. Yamamoto, A. Nakajima, M. Yoshimi, T. Sawada, S. Fukuda, T. Suezaki, M. Ichikawa, Y. Koi, M. Goto, T. Meguro, T. Matsuda, M. Kondo, T. Sasaki, Y. Tawada, A high efficiency thin film silicon solar cell and module, Sol. Energy Mater. Vol. 77, p.p. 939–949, 2004.
    [11]
    H. Sai, H. Fujiwara, M. Kondo, Back surface reflectors with periodic textures fabricated by self-ordering process for light trapping in thin-film microcrystalline silicon solar cells, Sol. Energy Mater. Sol. Cells Vol. 93, p.p. 1087–1090, 2009.
    [12]
    J. Müller, B Rech, J Springer, M Vanecek, TCO and light trapping in silicon thin film solar cells, Sol. Energy Vol. 77, p.p. 917–930, 2004.
    [13]
    A.M.K. Dagamseh, B. Vet, F.D. Tichelaar, P. Sutta, M. Zeman, ZnO:Al films prepared by rf magnetron sputtering applied as back reflectors in thin-film silicon solar cells, Thin Solid Films Vol. 516, p.p. 7844–7850, 2008.
    [14]
    J. Krč, M. Zeman, O. Kluth, F. Smole, M. Topič, Effect of surface roughness of ZnO:Al films on light scattering in hydrogenated amorphous silicon solar cells, Thin Solid Films Vol. 426, p.p. 296–304, 2003.
    [15]
    B. Rech, O. Kluth, T. Repmann, T. Roschek, J. Springer, J. Müller, F. Finger, H. Stiebig, H. Wagner, New materials and deposition techniques for highly efficient silicon thin film solar cells, Sol. Energy Mater. Sol. Cells Vol. 74, p.p. 439–447, 2002.
    [16]
    J. Hüpkes, B. Rech, O. Kluth, T. Repmann, B. Zwaygardt, J. Müller, R. Drese, M. Wuttig, Surface textured MF-sputtered ZnO films for microcrystalline silicon-based thin-film solar cells, Sol. Energy Mater. Sol. Cells Vol. 90, p.p. 3054–3060, 2006.
    [17]
    O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, H.W. Schock, Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells, Thin Solid Films Vol. 351, p.p. 247–253, 1999.
    [18]
    R. H. Franken, R. L. Stolk, H. Li, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, Understanding light trapping by light scattering textured back electrodes in thin film n-i-p-type silicon solar cells, J. Appl. Phys. Vol. 102, p.p. 014503-1–014503-7, 2007.
    [19]
    J. Springer, B. Rech, W. Reetz, J. Müller, M. Vanecek, Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass-ZnO substrates, Sol. Energy Mater. Sol. Cells Vol. 85, p.p. 1–11, 2005.
    [20]
    Swati Ray, Rajesh Das, A.K. Barua, Performance of double junction a-Si solar cells by using ZnO:Al films with different electrical and optical properties at the n/metal interface, Sol. Energy Mater. Sol. Cells Vol. 74, p.p. 387–392, 2002.
    [21]
    H. Sai, M. Kondo, Effect of self-orderly textured back reflectors on light trapping in thin-film microcrystalline silicon solar cells, J. Appl. Phys. Vol. 105, p.p. 094511-1–094511-8, 2009.
    [22]
    V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, A. Polman, Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors, Appl. Phys. Lett. Vol. 95, p.p. 183503-1–183503-3, 2009.
    [23]
    K. Winz, C.M. Fortmann, T. Eickhoff, C. Beneking, H. Wagner, H. Fujiwara, I. Shimizu, Novel light-trapping schemes involving planar junctions and diffuse rear reflectors for thin-film silicon-based solar cells, Sol. Energy Mater. Sol. Cells Vol. 49, p.p. 195–203, 1997.
    [24]
    S. J. Tark, M. G. Kang, S. Park, J. H. Jang, J. C. Lee, W. M. Kim, J. S. Lee, D. Kim, Development of surface-textured hydrogenated ZnO:Al thin-films for μc-Si solar cells, Curr. Appl. Phys. Vol. 9, p.p. 1318–1322, 2009.
    [25]
    Y. Nasuno, N. Kohama, K. Nishimura, T. Hayakawa, H. Taniguchi, M. Shimizu, Effect of perforated transparent electrodes on light transmittance and light scattering in substrates used for microcrystalline silicon thin-film solar cells, Appl. Phys. Lett. Vol. 88, p.p. 071909-1–071909-3, 2006.
    [26]
    R. Groenen, M. Creatore, M. van de Sanden, Dry etching of surface textured zinc oxide using a remote argon–hydrogen plasma, Appl. Surf. Sci. Vol. 241, p.p. 321–325, 2005.
    [27]
    J. B. You, X. W. Zhang, P. F. Cai, J. J. Dong, Y. Gao, Z. G. Yin, N. F. Chen, R. Z. Wang, H. Yan, Enhancement of field emission of the ZnO film by the reduced work function and the increased conductivity via hydrogen plasma treatment, Appl. Phys. Lett. Vol. 94, p.p. 262105-1–262105-3, 2009.
    [28]
    S. J. Baik, J. H. Jang, C. H. Lee, W. Y. Cho, K. S. Lim, Highly textured and conductive undoped ZnO film using hydrogen post-treatment, Appl. Phys. Lett. Vol. 70, p.p. 3516-1–3516-3, 1997.
    [29]
    M. Python, O. Madani, D. Domine , F. Meillaud, E. Vallat-Sauvain, C. Ballif, Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells, Sol. Energy Mater. Sol. Cells Vol. 93, p.p. 1714–1720, 2009.
    [30]
    O. Berger, D. Inns, A. G. Aberle, Commercial white paint as back surface reflector for thin-film solar cells, Sol. Energy Mater. Sol. Cells Vol. 91, p.p. 1215–1221, 2007.
    [31]
    X.D. Zhang, Y. Zhao, Y.T. Gao, F. Zhu, C.C. Wei, X.L. Chen, J. Sun, G.F. Hou, X.H. Geng, S.Z. Xiong, Influence of front electrode and back reflector electrode on the performances of microcrystalline silicon solar cells, J. Non-Cryst. Solids Vol. 352, p.p. 1863–1867, 2006.
    [32]
    J. Escarré, F. Villar, J.M. Asensi, J. Bertomeu, J. Andreu, Spectral analysis of the angular distribution function of back reflectors for thin film silicon solar cells, J. Non-Cryst. Solids Vol. 352, p.p. 1896–1899, 2006.
    [33]
    E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F.X. Royer, H. Stiebig, Thin-film silicon solar cells with integrated silver nanoparticles, Thin Solid Films Vol. 516, p.p. 6813–6817, 2008.
    [34]
    H. Sai, M. Kondo, Light trapping effect of patterned back surface reflectors in substrate-type single and tandem junction thin-film silicon solar cells, Sol. Energy Mater. Sol. Cells Vol. 95, p.p. 131–133, 2011.
    [35]
    H. Sai, H. Fujiwara, M. Kondo, Y. Kanamori, Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern, Appl. Phys. Lett. Vol. 93, p.p. 143501-1–143501-3, 2008.
    [36]
    M. Y. Ghannam, A. A. Abouelsaood, A. S. Alomar, J. Poortmans, Analysis of thin-film silicon solar cells with plasma textured front surface and multi-layer porous silicon back reflector, Sol. Energy Mater. Sol. Cells Vol. 94, p.p. 850–856, 2010.
    [37]
    A. Čampa, J. Krč, M. Topič, Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations, J. Appl. Phys. Vol. 105, p.p. 083107-1–083107-5, 2009.
    [38]
    A. Čampa , J. Krč, F. Smole, M. Topič, Potential of diffraction gratings for implementation as a metal back reflector in thin-film silicon solar cells, Thin Solid Films Vol. 516, p.p. 6963–6967, 2008.
    [39]
    K. Söderström, F. J. Haug, J. Escarré, O. Cubero, C. Ballif, Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler, Appl. Phys. Lett. Vol. 96, p.p. 213508-1–213508-3, 2010.
    [40]
    B. Lipovšek, J. Krč, O. Isabella, M. Zeman, M. Topič, Analysis of thin-film silicon solar cells with white paint back reflectors, Phys. Status Solidi C Vol. 7, p.p. 1041–1044, 2010.
    [41]
    B. Lin, Z. Fu, Y. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Appl. Phys. Lett. Vol. 79, p.p. 943–945, 2001.
    [42]
    G. J. Exarhos and S. K. Sharma, Influence of processing variables on the structure and properties of ZnO films, Thin Solis Film Vol. 270, p.p. 27–32, 1995.
    [43]
    D. R. Lide, Handbook of Chemistry and Physics, 71st ed, CRC, Boca Raton, FL, 1991.
    [44]
    Y. Igasaki and H. Saito, The effects of zinc diffusion on the electrical and optical properties of ZnO:Al films prepared by r.f. reactive sputtering, Thin Solid Films Vol. 199, p.p. 223–230, 1991.
    [45]
    Takashi Komaru et al., Optimization of Transparent Conductive Oxide for Improved Resistance to Reactive and/or High Temperature Optoelectronic Device Processing, Jpn. J. Appl. Phys. PartⅠVol. 38, p.p. 5796–5804, 1999.
    [46]
    T. Y. Ma and D. K. Shim, Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In films, Thin Solid Films Vol. 410, p.p. 8–13, 2002.
    [47]
    J. R. Chelikowsky, Solid State Commun, 122, p. 351, 1997.
    [48]
    J. E. Jaff, R. Pandey, and A. D. Kunz, Correlated hartree-fock electronic structure of ZnO and ZnS, J. Phys. Chem. Solid Vol. 52, p.p. 755–760, 1991.
    [49]
    J. W. Tomm, B. Ullrich, X. G. Qiu, Y. Segawa, A. Ohtomo and H. Koinuma, Optical and photoelectrical properties of oriented ZnO films, J. Appl. Phys Vol. 87, p.p. 1844–1848, 2000.
    [50]
    M. S. Wu, W. C. Shin and W. H. Tsai, J. Phys. D: Appl. Phys. Vol. 31, p. 943, 1998.
    [51]
    M. Y. Han and J. H. Jou, Determination of the mechanical properties of r.f.-magnetron-sputtered zinc oxide thin films on substrates, Thin Solid Films Vol. 260, p.p. 58–67, 1995.
    [52]
    G. J. Exarhos and S. K. Sharma, Influence of processing variables on the structure and properties of ZnO films, Thin Solid Films Vol. 270, p.p. 27–32, 1995.
    [53]
    P. Nunes, E. Fortunato and R. Martins, Influence of the post-treatment on the properties of ZnO thin films, Thin Solid Films Vol. 383 (2001) 277–280.
    [54]
    J. L. Vossen, Physics of Thin Films Vol 9, p. 1, 1977.
    [55]
    B. Chapman, Glow discharge processes, John Wiley & Sons, 1980.
    [56]
    W. Luft and Y. S. Tsuo, Hydrogenated amorphous silicon alloy deposition processes, Applied Physics Series. Marcel Dekker, Inc., 1993.
    [57]
    G. Bruno, P. Capezzuto and A. Madam, Plasma deposition of amorphous silicon-basel materials, Plasma-Materials Interactions. Academic Press, Boston , 1995.
    [58]
    J. Perrin, O. Leroy and M. C. Bordage, Cross-sections, rate constants and transport coefficients in silane plasma, Contrib. Plasma Phys. Vol. 36, p.p. 3–495, 1996.
    [59]
    P. Lechner, R. Geyer, H. Schade, B. Rech and J. Müller, Detailed accounting for quantum efficiency and optical losses in a-Si:H based solar cells, In Proc. of the 28th IEEE Photovoltaic Specialists Conference, p.p. 861-864, 2000.
    [60]
    T. Brammer and H. Stiebig, Characterization of microcrystalline silicon thin film solar cells, In Proc. of the 29th IEEE Photovoltaic Specialists Conference, 2002.
    [61]
    T. Wittchen, H. C. Holstenberg, D. Hunerhoff, Z. J. Min and J. Metzdorf, Solar cell calibration and characterization: Simplified DSR apparatus, In Proceedings of the 20th IEEE Photovoltaic Specialists Conference, p.p. 1251-1257, 1988.
    [62]
    J. Metzdorf, Calibration of solar cells. 1: The differential spectral responsivity method, Applied Optics Vol. 26(9), p.p. 1701-1708, 1987.
    [63]
    J. Krč, M. Zeman, F. Smole, M. Topič, Optical modeling of a-Si:H solar cells deposited on textured glass/SnO2 substrates, J. Appl. Phys. Vol. 92, p.p. 749–755, 2002.
    [64]
    Q. B. Ma, Z. Z. Ye, H. P. He, J. R. Wang, L. P. Zhu, B. H. Zhao, Substrate temperature dependence of the properties of Ga-doped ZnO films deposited by DC reactive magnetron sputtering, Vacuum Vol. 82, p.p. 9–14, 2008.
    [65]
    H. Gσomez, M. de la L. Olvera, Ga-doped ZnO thin films: Effect of deposition temperature, dopant concentration, and vacuum-thermal treatment on the electrical, optical, structural and morphological properties, Mater. Sci. Eng. B Vol. 134, p.p. 20–26, 2006.
    [66]
    X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, C. Cheng, H. Ma, Effects of sputtering power on the properties of GZO films deposited by r.f. magnetron-sputtering at low temperature, J. Cryst. Growth Vol. 274, p.p. 474–479, 2005.
    [67]
    Q. B. Ma, Z. Z. Ye, H. P. He, S. H. Hu, J. R. Wang, L. P. Zhu, Y. Z. Zhang, B. H. Zhao, Structural, electrical, and optical properties of transparent conductive GZO films prepared by DC reactive magnetron sputtering, J. Cryst. Growth Vol. 304, p.p. 64–68, 2007.
    [68]
    K. Tao, D. Zhang, L. Wang, J. Zhao, H. Cai, Y. Sui, Z. Qiao, Q. He, Y. Zhang, Y. Sun, Development of textured back reflector for n–i–p flexible silicon thin film solar cells, Sol. Energy Mater. Sol. Cells Vol. 94, p.p. 709–714, 2010.
    [69]
    Y.H. Kim, J. Jeong, K.S. Lee, B. Cheong, T.-Y. Seong, W.M. Kim, Effect of composition and deposition temperature on the characteristics of Ga doped ZnO thin films, Appl. Surf. Sci. Vol. 257, p.p. 109–115, 2010.
    [70]
    H, Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer tracts in modern physics Vol. 111, p.p. 1–136, 1988.
    [71]
    J. Springer, A. Poruba, L. Müllerova, M. Vanecek, Absorption loss at nanorough silver back reflector of thin-film silicon solar cells, J. Appl. Phys. Vol. 95, p.p. 1427–1429, 2004.
    [72]
    I. Tan, D. Lishan, R. Mirin, V. Jayaraman, T. Yasuda, E. Hu, J. Bowers, Systematic observation of strain-induced lateral quantum confinement in GaAs quantum well wires prepared by chemical dry etching, Appl. Phys. Lett. Vol. 59, p.p. 1875–1877, 1991.
    [73]
    L. Macht, J. Weyher, A. Grzegorczyk, P. Larsen, Statistical photoluminescence of dislocations and associated defects in heteroepitaxial GaN grown by metal organic chemical vapor deposition, Phys. Rev. B Vol. 71, p.p. 073309-1–073309-4, 2005.
    [74]
    D. Lee, J. Bang, M. Park, J. Lee, H. Yang, Organic acid-based wet etching behaviors of Ga-doped ZnO films sputter-deposited at different substrate temperatures, Thin Solid Films Vol. 518, p.p. 4046–4051, 2010.
    [75]
    Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices, J. Appl. Phys. Vol. 98, p.p. 041301-1–041301-103, 2005.
    [76]
    L. Zhao, C. Liu, X. Teng, S. Sun, W. Zhang, J. Zhu, Y. Feng, B. Guo, The surface topography of GaN grown on Si (1 1 1) substrate before and after wet chemical etching, Mater. Sci. Semicond. Process. Vol. 9, p.p. 403–406, 2006.
    [77]
    J. Sun, J. Bian, H. Liang, J. Zhao, L. Hu, Z. Zhao, W. Liu, G. Du, Realization of controllable etching for ZnO film by NH4Cl aqueous solution and its influence on optical and electrical properties, Appl. Surf. Sci. Vol. 253, p.p. 5161–5165, 2007.
    [78]
    Y. Kim, K. Lee, T. Lee, B. Cheong, T. Seong, W. Kim, Electrical, structural and etching characteristics of ZnO:Al films prepared by rf magnetron, Curr. Appl. Phys. Vol. 10, p.p. S278–S281, 2010.
    [79]
    W. Jo, S. Kim, D. Kim, Analysis of the etching behavior of ZnO ceramics, Acta Mater. Vol. 53, p.p. 4185–4188, 2005.
    [80]
    T. Ohnishi, A. Ohtomo, M. Kawasaki, K. Takahashi, M. Yoshimoto, H. Koinuma, Determination of surface polarity of c-axis oriented ZnO films by coaxial impact-collision ion scattering spectroscopy, Appl. Phys. Lett. Vol. 72, p.p. 824–826, 1998.
    [81]
    E. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H. Semmelhack, K. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, M. Grundmann, High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition, Appl. Phys. Lett. Vol. 82, p.p. 3901–3903, 2003.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE