簡易檢索 / 詳目顯示

研究生: 許壹登
Hsu, Yi-Deng
論文名稱: 廢輪胎應用於製作水泥質營建材料
Waste Tire Used as a Raw Material in the Production of Cementitious Construction Materials
指導教授: 黃忠信
Huang, Jong-Shin
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 118
中文關鍵詞: 環保碳黑水泥膠結材砂漿預成形泡沫
外文關鍵詞: eco-carbon black, cement, binder, mortar, pre-formed air bubble
相關次數: 點閱:100下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將採用廢輪胎經熱裂解後所生成之環保碳黑,應用於製作水泥質營建材料,將其製成具高抗壓強度與低透水比之廢輪胎環保碳黑水泥質膠結材或砂漿,藉由流度、抗壓強度與透水試驗等一系列量測結果,篩選合宜膠結材與砂漿之配比設計,再將其與預成形泡沫混拌後製成泡沫材料。經流度與抗壓強度試驗結果發現,膠結材配比設計於水灰比0.3與環保碳黑添加量2%時,所製成漿體黏稠度適中且具高抗壓強度。至於砂漿方面,當水灰比0.45與重量比2之細砂量,以及環保碳黑添加量1%時,所製成漿體具適當流動性且細砂含量適中,可降低製作泡沫材料過程中之消泡現象。膠結材與砂漿之透水試驗結果顯示,隨環拓環保碳黑添加量增加,試驗結果越趨於離散,其原因可能為無法控制環保碳黑於試體中均勻分布,一旦於試體內部形成一透水路徑,將導致試體透水量大幅增加。由鹼激發無機聚合膠結材之試驗結果發現,當鹼活化劑中之鹼當量AE%高達18%時,所製成試體之抗壓強度,仍遠低於具備結構工程應用價值之最低抗壓強度18MPa,因此,環拓環保碳黑不適合應用於製作成泡沫鹼激發無機聚合膠結材。將合宜之膠結材與砂漿配比設計,依據不同設計相對密度0.4至0.8,加入不同比例之預成形泡沫製成泡沫材料,藉由一系列試驗結果發現,泡沫材料內部之空氣含量多寡,將大幅影響其工程性質,泡沫材料試體之抗壓強度隨設計密度降低而下降,但其吸水率隨空氣含量增加而上升。

    Environment-friendly carbon black powders containing 7.9% SiO2 are produced by the Enrestec company using a thermal cracking technique from waste tires. In the study, eco-carbon black powders can be first mixed with alkaline activating solution and then alkali-activated to produce inorganic polymers. The compressive strengths of the resulting inorganic polymers, however, are too low to be regarded as construction materials even the equivalent alkaline content in the alkaline activating solution is 18%. At the same time, the eco-carbon black powders are used as raw materials in the production of cementitious binders and mortars with good workability, high compressive strength and low water penetration. Furthermore, the feasibility for the reuse of eco-carbon black as a partial replacement of Portland cement is evaluated by conducting a series of tests on specimens with the introduction of different dosage of eco-carbon black. Once the cementitious binders and mortars with any optimal design of mixture to satisfy the required fresh and hardened properties, they are mixed with various amounts of pre-formed air bubbles to produce foamed specimens with different relative densities. The lightweight foams can be employed in the application of noise absorption and thermal insulation. Based on the experimental results, it is found that the optimal fraction of eco-carbon black introduced in making cementitious binders is 2% of cement weight. When the water/cement ratio is 0.3, the compressive strength of the resulting cementitious binder can reach up to 67.2MPa. To make mortar, the optimal percentage of eco-carbon black is reduced to 1%. When the w/c ratio is increased to 0.45 and the ratio of fine aggregate to cement is 2, the compressive strength of the resulting mortar can reach 64.6MPa. The measurements from viscometer tests indicate that the cementitious binder and mortar with a moderate viscosity are suitable for producing foamed specimens with various relative densities. By conducting a series of compressive strength and water absorption tests, it is verified that the relative density of foamed specimens plays a significant role in determining their physical properties. As the relative density ranging from 0.4 to 0.5 is decreased, the compressive strength declines rapidly but the water absorption increase significantly.

    摘要 I EXTENDED ABSTRACT II 誌謝 X 目錄 XI 表目錄 XV 圖目錄 XVI 第1章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 組織與內容 2 第2章 相關理論與文獻回顧 5 2.1 碳黑 5 2.1.1 環保碳黑 5 2.1.2 奈米級碳黑之應用 6 2.2 鹼激發無機聚合膠結材 7 2.2.1 鹼激發無機聚合膠結材之反應機制 8 2.2.2 鹼激發無機聚合膠結材之組成 8 2.2.2.1 鋁矽酸鹽礦物 9 2.2.2.2 鹼活化劑 10 2.2.3 鹼激發無機聚合膠結材之優缺點 11 2.3 泡沫混凝土 11 2.3.1 泡沫材料製作方法 12 2.3.2 泡沫之消泡機制 14 2.3.3 泡沫鹼激發無機聚合膠結材 15 第3章 試驗材料與方法 21 3.1 試驗規劃 21 3.2 試驗材料與儀器設備 23 3.2.1 試驗材料 23 3.2.2 試驗儀器與設備 24 3.3 試體製作 27 3.3.1 膠結材與砂漿 27 3.3.1.1 膠結材與砂漿配比設計 27 3.3.1.2 膠結材試體製作流程 28 3.3.1.3 砂漿試體製作流程 29 3.3.2 鹼激發無機聚合膠結材 30 3.3.2.1 鹼激發無機聚合膠結材配比設計 30 3.3.2.2 鹼激發無機聚合膠結材試體製作流程 32 3.3.3 泡沫材料 33 3.3.3.1 泡沫材料配比設計 33 3.3.3.2 泡沫膠結材試體製作流程 35 3.3.3.3 泡沫砂漿試體製作流程 36 3.3.3.4 泡沫鹼激發無機聚合膠結材 38 3.3.3.5 調整後泡沫材料製作方式 38 3.4 試驗方法 40 3.4.1 流度試驗 40 3.4.2 抗壓強度試驗 41 3.4.3 透水試驗 41 3.4.4 吸水率試驗 42 第4章 試驗結果與討論 63 4.1 膠結材 63 4.1.1 試驗參數影響 63 4.1.2 流度 64 4.1.3 抗壓強度 65 4.1.4 透水比 66 4.2 砂漿 66 4.2.1 試驗參數影響 67 4.2.2 流度 68 4.2.3 抗壓強度 68 4.2.4 透水比 69 4.3 鹼激發無機聚合膠結材 69 4.3.1 試驗參數影響 70 4.3.2 抗壓強度 70 4.4 泡沫材料 71 4.4.1 試驗參數影響 72 4.4.2 抗壓強度 72 4.4.3 吸水率 75 第5章 結論與建議 112 5.1 結論 112 5.2 建議 114 參考文獻 115

    [1] 行政院環境保護署,https://www.epa.gov.tw/。
    [2] 環拓科技股份有限公司,https://www.enrestec.com.tw/。
    [3] 劉陽生、白慶中、李迎霞、聶永豐,「廢輪胎的熱解及其產物分析」,北京清華大學環境科學與工程系,2000。
    [4] 孫玉海、蓋國勝、張培新,「裂解碳黑作為橡膠填料的應用研究」,北京清華大學材料系粉體工程研究室,2003。
    [5] 綠色貿易資訊網,https://www.greentrade.org.tw/。
    [6] Shi L, Lu Y, Bai Y., “Mechanical and electrical characterisation of steel fiber and carbon black engineered cementitious composites,” Procedia Eng. 188, 325–32, 2017.
    [7] Marius-George Paˆrvan, Georgeta Voicu, Alina-Ioana Ba˘da˘noiu, “Study of hydration and hardening processes of self-sensing cement-based materials with carbon black content,” Journal of Thermal Analysis and Calorimetry, 2019.
    [8] 陳志賢,「含矽質廢棄物之無機聚合物」,國立成功大學土木工程研究所,博士論文,2009。
    [9] 黃元農,「河川淤泥所製成泡沫與無機聚合膠結材之配比與製程研究」,國立成功大學土木工程研究所,碩士論文,2019。
    [10] Krizan, D., B. Zivanovic. “Effect of Dosage and Modulus of Water Glass on Early Hydration of Alkali-Slag Cements.” Cement and Concrete Research, 32(8), pp.1181-1188, 2002.
    [11] 楊昆憲,「含矽質廢棄物之發泡無機聚合物」,國立成功大學土木工程研究所,博士論文,2015。
    [12] Wang, S. D., Pu X. C., Scrivener, K. L., Pratt, P. L., “Alkali-activated slag cement and concrete: a review of properties and problems,” Advances in Cement Research, 7(27), pp.93-105, 1995.
    [13] Purdon, A.O., “The action of alkalis on blast furnace slag,” Journal of the Society of Chemical Industry, vol.59, no.9, pp191-202, 1940.
    [14] Xu, H., Van Deventer, J. S. J., “The geopolymerisation of alumino-silicate minerals,” International Journal of Mineral Processing, 59, 247-266, 2000.
    [15] 王怡雯,「泡沫無機聚合物之物理性質」,國立成功大學土木工程研究所,碩士論文,2009。
    [16] 中國土木水利工程學會,《混凝土工程施工頇知》,科技圖書,PP231-244,18版,1992。
    [17] 閆振甲、何豔君,「泡沫混凝土實用生產技術」,化學工業出版社,2006。
    [18] 張瑜文,「水庫淤泥應用於無機聚合物膠結材」,國立成功大學土木工程研究所,碩士論文,2008。
    [19] 古道,「河川淤泥應用於泡沫與改質無機聚合物之研究」,國立成功大學土木工程研究所,碩士論文,2018。
    [20] 洪塗城,「泡沫無機聚合物之物理性質」,國立成功大學土木工程研究所,博士論文,2012。
    [21] 潘彥仰,「河川淤泥於營建材料再利用之研究」,國立成功大學土木工程研究所,碩士論文,2017。
    [22] 環球水泥股份有限公司,http://www.ucctw.com/m/home.php。
    [23] 行政院公共工程委員會,「公共工程高爐石混凝土使用手冊」,2001。
    [24] 景明化工股份有限公司,「Sodium silicate 矽酸鈉安全資料表」,2017。
    [25] 景明化工股份有限公司,「Sodium hydroxide 氫氧化鈉安全資料表」,2017。
    [26] CNS 15992,「水硬性水泥砂漿流度試驗法」,2017。
    [27] CNS 1010,「水硬性水泥墁料抗壓強度檢驗法」,1993。
    [28] CNS 1230,「試驗室混凝土製作及養護法」,1995。
    [29] CNS 3763,「水泥防水劑」,2009。
    [30] ASTM C642-13, “Standard Test Method for Density, Absorption, and Voids in Hardened Concrete”, 2013.
    [31] Gibson L.J., Ashby M.F., “The mechanics of three-dimensional celluar materials”, Pro. Roy. Soc. Lond. A382, 43-59, 1982.

    下載圖示 校內:2022-08-31公開
    校外:2022-08-31公開
    QR CODE