簡易檢索 / 詳目顯示

研究生: 顏國忠
Yen, Kuo-Chung
論文名稱: 微噴嘴製作與微衝擊冷卻熱傳實驗研究
Fabrication of Micro Nozzle and Micro Impingement cooling heat transfer Experiments
指導教授: 高騏
Gau, Chie
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 116
中文關鍵詞: 微機電技術微衝擊冷卻熱傳
外文關鍵詞: Micro Impingement coolingheat, wet etch, dry etch
相關次數: 點閱:84下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   微衝擊冷卻熱傳模式對於微機電系統或高熱流通量之積體電路系統,對微小面積(如CPU)所產生熱點之散熱問題有極高的散熱能力。  本研究的目是以微機電技術製造寬度5到之25um的微噴嘴,並由微噴嘴提供微噴流流場結構做衝擊冷卻等熱通量加熱晶片之熱傳現象。熱晶片之電路系統則垂直地固定在具有微米級之滑塊與微調鈕的支架上,二者都是固定在水平及防震之光學桌上使得本實驗能夠完成精準之校正與設定,來提供微噴流做微衝擊冷卻熱傳實驗研究。微噴嘴的製作是利用對矽之非等向性濕蝕刻及等向性乾蝕刻機加工方式製作完成出口長4000µm、寬各為25µm、10µm及5µm之三組矩形噴嘴作為實驗量測。
      微衝擊冷卻熱傳實驗研究,其量測包含自由噴流流場觀察,熱晶片表面局部點及流體溫度的量測。流場觀察則以熱阻絲置於噴流前並加熱後滴上油滴,用以產生煙線,觀測高低速的流場現象,再加以影像擷取機拍攝結果。實驗結果發現當噴嘴出口在低速度條件時,微噴流沿下游發展將保持層流結構直到消失。當出口速度提高時,微噴流沿下游發展將會產生崩潰點使得層流結構演化成完全紊流;隨著噴流出口速度繼續提高時其紊流崩潰點與噴嘴出口之距離則會越加縮短。
      實驗是以雷諾數(Reynold number)介於6~80之間的自然噴流,衝擊光滑熱晶片,平板至噴嘴距離Z/B介於4~16000之間。當雷諾數升高時,其最大停滯點與噴嘴出口之距離則會越加縮短。故低雷諾數時,其微衝擊冷卻流最大停滯點產生在壁面與噴嘴出口距離為數千倍噴嘴寬度的位置。且當雷諾數固定時,最大Nu值會隨噴嘴寬度縮小而上升,亦代表最大熱傳係數值隨噴嘴寬度縮小而上升。
      最後,本研究藉由無因次參數(Re、X/B、Z/B及L/B)的引入,很成功的將停滯點、局部點及平均熱傳係數建立經驗關係式,可供微機電系統或CPU散熱設計的參考。

      Micro-scale impingement cooling process has a very high potential application in cooling a micro-thermal or a high heat flux IC circuits system due to its capability of removing a large amount of heat over a small micro-area.
      The objective of this study is to design and fabricate a micro nozzle in a size form 5 um to 25 um. This micro nozzle is then used to blow a micro air jet that can be used to impinge and cool a heated thermal chip. The entire thermal chip system is then placed vertically on an optical holder and can be moved vertically in micro-scale by a precision screw on the holder. The structure of this micro jet and the impingement cooling heat transfer over the thermal chip will be studied. The nozzle is made with Si wafer using wet etch ( TMAH、isotropic ) coupled with dry etch ( Anisotropic ) process. This nozzle is rectangular in shape and has 4000 mm in length. The width of the nozzle has three different sizes, i.e. 25 mm, 10 mm and 5 mm, that can be accurately measured.
      The experimental measurements include flow visualization of the micro jet and impingement cooling heat transfer over the thermal chip. Flow visualization is made by smoke generation that is facilitated by a vertical thin, electrically heated wire coated with oil. The oil is actually supplied by an oil pan on the top of the wire. The jet stream appears to be very stable and maintain its original structure very long until it breaks down on dies out. The breakdown length of the jet becomes shortened when the Reynolds number increases due to the increase in the velocity of the jet.
      During the impingement cooling experiments the Reynolds numbers varies from 6 to 80, and the nozzle-to-spacings (Z/B) ratio from 4 to 16000. The location for the occurrence of maximum stagnation point Nusselt number approaches the nozzle as the Reynolds number increase.When Reynolds number is kept constant, the Nusselt number and the heat transfer coefficient have increasing with decreases the nozzle width.
      An attempt was first made to correlate the stagnation point Nusselt number in terms of relevant nondimensional parameters such as the Reynolds number and Z/B. This is done by first normalizing Z/B by dividing Z/B with L/B, i.e. Z/L. The correlation results show that all the stagnation point Nusselt numbers at the same Reynolds number can collapse approximately into a single curve, and these correlations are very successful. Similar kinds of correlations have also been obtained for both the average Nusselt number and the local Nusselt number.

    目 錄 授權書 簽署人須知 簽名頁 中文摘要 英文摘要 致謝 目錄………………………………….…………………………………Ⅰ 表目錄………………………………….……………………………...Ⅳ 圖目錄………………………………….……………………………...Ⅴ 符號說明………………………………….……………………….….ⅩI 第一章 簡介 1-1 研究動機………………………………….…………………1 1-2 文獻回顧 1-2-1 自由噴流部分……………………………………………2 1-2-2 衝擊冷卻部分……………………………………………4 第二章 實驗理論分析及參數設定 2-1 無因次參數分析……………………...….…………………8 2-1-1 基本假設………………………………….……………..8 2-2 實驗參數設定…………….……………………………..…9 第三章 微噴嘴製程 3-1 微噴嘴製程設備……………………..……………………10 3-2 化學濕式蝕刻………………..……………………………13 3-2-1 濕蝕刻的反應機制……………………….….…………14 3-2-2 TMAH蝕刻液……………………..……….….………….16 3-2-3 KOH蝕刻液……………………………….….………….17 3-2-4 KOH濕蝕刻製程..……………………….….………….18 3-3 陽極結合技術..……………………..……………………19 3-4 感應耦合電將蝕刻(ICP)…………..……………………23 3-4-1 微影技術…………….….………………...….……...…23 3-4-2 氧化製程…………...….………………………..………25 3-4-3 乾式蝕刻…………...….………………………..………27 3-4-4 電感應耦合電漿反應離子蝕刻機.…………………….29 第四章 實驗設備與裝置 4-1 小型風洞…………………………………...………………34 4-2 微移動機構……………………...…………………………35 4-3 氣源供應與控制系統……………………………………36 4-4 微噴嘴………………………………………………………36 4-5 微熱晶片……………………...……………………………36 4-6 實驗模型……………………………...……………………37 4-7 溫度量測與校正…………………..………………………38 4-8 流場觀察………………………………...…………………39 第五章 實驗結果與討論 5-1 微噴流流場結構…………………………..………………41 5-2 微噴流流場結構結果……..……………..………………42 5-3 微噴流衝擊冷卻 5-3-1 局部熱傳效應…………………………………………..43 5-3-2 停滯點熱傳效應………………………………………..46 5-3-3 停滯點熱傳係數之統計複回歸分析…………………..47 第六章 結論………………………………………...………………49 參考文獻…………………………..………………..…………………51 圖表………………………………….…………………………………55 自述………………………………….……………………………..…115 著作權聲明………………………………….………………………116

    1.Martin, H., “Heat and Mass Transfer between Impinging Gas Jet and Solid Surfaces”, Advances in Heat Transfer, Vol. 13, pp. 1-60, 1977.
    2.Wu, S., Mai, J., Tai, Y. C. and C. M. Ho., “Micro Heat Exchange by using MEMS Impinging Jets”, Proceedings of the IEEE Micro Electro Mechanical Systems, pp.171-176, 1999.
    3.Becker, H. and Massaro, T. A., “Vortex Evolution in a Round Jet”, J. Fluid Mech., Vol. 31, Part 3, pp. 435-448, 1968.
    4.S. C. Crow and F. H. Champagne, “Orderly Structure in Jet Turbulence, ” J. F. M. Vol. 48, Part 3, pp. 547-591, 1971.
    5.G. L. Brown and A. Roshko, “On Density Effects and Large Structure in Turbulent Mixing Layers, ” J. F. M. Vol. 64, Part 4, pp. 775-816, 1974.
    6.Michalke, A., “On Spatitally Growing Disturbances in an Invicid Shear Layer”, Journal of Fluid Mechanics, Vol. 23, part3, pp.521-544, 1965.
    7.Becker, H. and Massaro, T. A., “Vortex Evolution in a Round Jet”, J. Fluid Mech., Vol. 31, Part 3, pp. 435-448, 1968.
    8.C. O. Winant and F. K. Browand, “Vortex Pairing : The Mechanism of Turbulent Mixing Layer Growth at Moderate Reynolds Number, ” J. F. M. Vol. 63, Part 2, pp. 237-255 (1974).
    9.蘇 瑞 翔, “水平振動平板上之衝擊冷卻” M. S. thesis, National Cheng Kung University, Taiwan, Republic of China, 2000.
    10.沈志華, “THERMAL CHIP FABRICATION WITH ARRAYS OF SENSORS AND HEATERS WITH ANALYSIS AND MEASUREMENTS OF MICRO SCALE IMPINGEMENT COOLING FLOW AND HEAT TRANSFER,” Ph. D. thesis, National Cheng Kung University, Taiwan, Republic of China, 2003.
    11.H. Martin, “Heat and mass transfer between impinging gas jet and solid sursaces,” Advances in Heat Transfer. Vol.13, pp. 1-60, 1977.
    12.Y. Becko, “Impingement cooling - a review,” Von karman institute for fluid dynamic, lecture series 83, turbine blade cooling , 1976.
    13.C. D. Donaldson and R. S. Snedeker, “ A study of free jet impingement. Part 2. Free jet turbulence structure and impingement heat transfer,” J. Fluid Mech. Vol. 45, Part 3, pp. 477-512, 1971.
    14.R. Gardon and J. Cobonpue, “Heat transfer between a flat plate and jets of air impinging on it” ASME Int. Developments in Heat Transfer. pp. 454-460, 1962.
    15.R. Gardon and J. C. Akfirat, “Heat transfer characteristics of Impinging two dimension air jets”, ASEM J. Heat Transfer. Vol. 88, pp. 101-108, 1966.
    16.R. Gardon and J. C. Akfirat, “The role of turbulence in determining the heat transfer characteristics of impinging jets,” Int. J. Heat Mass Transfer. Vol. 8, pp. 1261-1272, 1965.
    17.C. J. Hoogendoorn, “The effect of turbulence on heat transfer at a stag- nation point,” Int. J. Heat Mass Transfer. Vol. 20, pp. 1333-1338, 1977.
    18.C. Gau and C. M. Chung, “Surface Curvature Effect on Slot-air-jet Impingement Coiling Flow and Heat Transfer Process,” ASME J. Heat Transfer. Vol. 113, pp. 858-864, 1991.
    19.Sparrow E. M., and Wang T. C., “Impingement Transfer Coefficients Due to Initially Laminar Slot Jets”, International Journal of Heat and Mass Transfer, Vol. 18, pp. 597-605, 1975.
    20.Robbins, H. and Schwartz, B., “Chemical etching of silicon-I. The system, HF, HNO3 and H2O”, Journal of the Electrochemical Society, Vol. 106, pp. 505-508, 1959.

    21.Frank, F. C. and Ives, M. B., “Orientation-dependent dissolution of germanium”, Journal of Applied Physics, Vol. 31, No. 11, pp. 1996-1999, 1960.

    22.Kendall, D. L., “On etching very narrow grooves in silicon”, Applied Physics Letters, Vol. 26, pp. 195-198, 1975.

    23.Bassous, E., “Fabrication of novel three-dimensional microstructures by the anisotropic etching of (100) and (110) silicon”, IEEE Transactions on Electron Devices, Vol. ED-25, No. 10, pp. 1178-1185, 1978.

    24.Tabata, O., Asahi, R., Funabashi, H. and Sugiyama, S., “Anisotropic etching of silicon in TMAH solutions”, Sensors and Actuators A, Vol. A34, pp. 51-57, 1992.

    25.Thong, L. T. L., Choi, W. K. and Chong, C. W., “TMAH etching of silicon and the interaction of etching parameters”, Sensors and Actuators A, Vol. A63, pp. 243-249, 1997.

    26.Bhatnagar, Y. K. and Nathan, A., “On pyramidal protrusions in anisotropic etching of <100> silicon”, Sensors and Actuators A, Vol. A36, pp. 233-240, 1993.

    27.Merlos, A., Acero, M., Bao, M. H., Bausells, J. and Esteve, J., “TMAH/IPA anisotropic etching characteristics”, Sensors and Actuators A, Vol. A37-A38, pp. 737-743, 1993.

    28.謝嘉銘, “TMAH非等向性濕蝕刻特性之應用與研究,” M. S. thesis, National Taiwan University, Taiwan, Republic of China, 2000.

    29.Sato, K., Shikida, M., Matsushima, Y., Yamashiro, T., Asaumi, K., Iriye, Y. and Yamamoto, M., “Characterization of Orientation-Dependent Etching Properties of Single-Crystal Silicon: Effects of KOH Concentration”, Sens. Actuators A 64, pp. 87-93, 1998.

    30.Sato, K., Shikida, M., Yamashiro, T., Asaumi, K., Iriye, Y. and Yamamoto, M., “Anisotropic Etching Rates of Single-Crystal Silicon for TMAH Water Solution as A Function of Crystallographic Orientation”, IEEE, pp.556-561, 1998.

    31.莊達人, “VLSI 製造技術,” 高立圖書, 臺北市, pp. 146-367, 1998.

    32.Zubel I., and Kramkowska M., “The Effect of Isopropyl Alcohol on Etching Rate and Roughness of (100) Si Surface Etched in KOH and TMAH Solutions”, Sensors and Actuators A93, pp.138-147, 2001.

    下載圖示 校內:立即公開
    校外:2004-08-24公開
    QR CODE