研究生: |
王凱平 Wang, Kai-ping |
---|---|
論文名稱: |
二氧化鈦膜結構設計以增進染料敏化太陽能電池的電子傳遞 Structure Design for the TiO2 Films of Dye-Sensitized Solar Cells to Improve Electron Transport |
指導教授: |
鄧熙聖
Teng, Hsi-sheng |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 170 |
中文關鍵詞: | 電子傳遞 、奈米結晶二氧化鈦 、動態調控光電流電壓光譜 、染料敏化太陽能電池 、電子補抓 |
外文關鍵詞: | Electron-trapping and Intensity-modulated photoc, Electron transport, Dye-sensitized solar cell, Nanocrystalline TiO2 |
相關次數: | 點閱:84 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在很多方面的應用都需要使用二氧化鈦,而一般最常利用溶膠凝膠法來合成此二氧化鈦奈米顆粒。在溶膠凝膠法合成過程中,晶粒成長的晶相是競爭的而不是獨一的,因此常會形成銳鈦礦、金紅石和板鈦礦等相,要得到純相銳鈦礦二氧化鈦是很困難的一件事情。為了合成出高純相銳鈦礦二氧化鈦,我們研發一個獨特的方法來取代溶膠凝膠法,此二氧化鈦可促進電子傳遞,並減少電荷再結合的速度,適合當作染料敏化太陽能電池的工作電極。這個方法是利用鈦酸鹽結構TiO6八面體的排列和銳鈦礦二氧化鈦是一樣的,這表示此鈦酸鹽可以拿來當作一個製造純相銳鈦礦的中間產物。拉曼光譜亦顯示出此方法合成的二氧化鈦是純相的銳鈦礦,而溶膠凝膠法雖然主要也是銳鈦礦,但是卻含有少量的金紅石和板鈦礦。
雖然由鈦酸鹽合成與溶膠凝膠法合成的二氧化鈦顆粒,第一層氧的配位數皆約為5.7,但在奈米顆粒燒結成膜後,相較於鈦酸鹽合成二氧化鈦的配位數幾乎沒有降低,溶膠凝膠法的二氧化鈦配位數卻降低到約4.9,這顯示出鈦酸鹽導出的二氧化鈦是適合用來傳遞電子的。當顆粒中含有雜相,這會造成顆粒在燒結成膜的同時,晶粒邊緣會有嚴重的晶格扭曲。而我們證明了純相的二氧化鈦在成膜時會減少邊緣晶格扭曲的程度。這個高純相的銳鈦礦可以建構出一個中孔洞的二氧化鈦薄膜,這將有助於電子傳遞,進而使染料敏化太陽能電池擁有高光電流和高光電轉換效率。
在染料敏化太陽能電池中,一個均勻分散摻雜鋅的二氧化鈦能夠有效地傳遞電子。利用水熱處理和鍛燒,鋅離子可進入層狀鈦酸鹽結構內,進而合成出摻雜鋅的二氧化鈦。這個摻雜鋅的二氧化鈦薄膜擁有較高的電子費米能階,這可以增加能帶的彎曲,以減少空的捕抓陷阱。在電池效能方面,在降低光源強度時,摻雜鋅能有效的減輕光電轉換效率的降低。光譜分析合理的闡明增進電子傳遞是由於減少了能帶間的捕抓陷阱,使得摻雜鋅的電池在低光源強度時依舊能擁有高效率。在光源強度低到11 mW cm-2時,摻雜鋅含量在0.4 at%的電池比沒有摻雜鋅的增加了23%的光電轉換效率。這個科技將可以大幅擴展染料敏化太陽能電池在室內的應用。
TiO2 nanoparticles used in numerous applications are generally prepared from the sol–gel method. Because of the competitive, rather than exclusive, formation of the three TiO2 polymorphs, anatase, brookite and rutile, in the sol–gel synthesis, phase-pure nanoparticles can hardly be obtained. We developed a unique route, alternative to the conventional sol–gel method, for the synthesis of high-purity anatase TiO2 colloids, which can be deposited as electrodes for dye-sensitized solar cells (DSSCs) to facilitate electron transport and avoid charge recombination. In this developed route, a titanate with its TiO6 octahedra arranged in a zigzag configuration, which is also a characteristic feature of anatase TiO2, is produced as an intermediate. Raman analysis shows that a phase-pure anatase TiO2 colloid is prepared from the developed route, while the TiO2 derived from the sol–gel at the same temperature is predominantly composed of anatase with the presence of a minute amount of rutile and brookite.
Although both specimens had similar first shell Ti4+ coordination numbers (CNs) of ca. 5.7, the titanate-derivative TiO2 was shown to be phase-pure anatase and the sol–gel TiO2 contained a minute amount of brookite impurity. After nanoparticle necking into films, the former TiO2 exhibited a negligible decrease in the CN, whereas the latter showed a significant decrease to a value of ca. 4.9. As a result, the titanate-derivative film is more efficient than the sol–gel one in transmitting electrons injected from a photoexcited dye. Significant lattice distortion near the grain boundaries of films are believed to occur during necking of the nanoparticles containing impurities. We have demonstrated that the synthesis of phase-pure nanoparticles is essentially important in fabricating films with a minimal degree of lattice disorder. Because of the high-purity in anatase phase, the TiO2 colloid derived from the titanate-directed route is shown to constitute a mesoporous film exhibiting high photocurrent and performance in a DSSC.
A nanocrystalline TiO2 film with highly dispersed Zn-doping shows its capability for efficient electron transport in DSSCs. The Zn-doping is conducted via Zn2+ introduction into a layered titanate followed by hydrothermal treatment and calcination. The Zn-doped films exhibit an elevated electron Fermi level, which may enhance band bending to lower the density of empty trap states. Because of this Zn-doping, the consequent DSSCs can alleviate the decay of light-to-electric energy conversion efficiency due to light intensity reduction. Intensity-modulated spectroscopic analysis elucidates that enhanced transport of photogenerated electron as a result of the trap density minimization is responsible for the high cell performance under low-intensity illumination. A Zn-doping content of ca. 0.4 at% Zn/Ti can enhance the light conversion efficiency by 23% at solar light intensity as low as 11 mW cm-2. This technique can significantly extend the indoor application of DSSCs.
1 http://tfc-charts.com/chart/QM/W (TFC Commodity Charts, Light Crude Oil EmiNY (QM, NYMEX) Daily Commodity Futures Price Chart).
2 Renewable energy policy network for the 21st century, Renewables 2007 global status report 2007, pp. 9.
3 J. T. Kiehl, and K. E. Trenberth, Bull. Amer. Met. Soc., 1997, 78, 197.
4 O. Morton, Nature, 2006, 443, 19.
5 Basic Research Needs for Solar Energy Utilization, U.S. Department of Energy, 2005.
6 C. Schittich, Building in existing fabric :refurbishment, extensions, new design, Birkhäuser, Munchen, 2003, pp. 14.
7 K. Butti, and J. Perlin, A golden thread: 2500 years of solar architecture and technology, 技報堂, Tokyo, 1981, pp. 4, 159.
8 B. D. Chiaro, Solar Water Heating, Environment California Research & Policy Center, 2007.
9 R. M. Swanson, Prog. Photovolt: Res. Appl., 2006, 14, 443.
10 http://www.nrel.gov/ (National Renewable Energy Laboratory Web).
11 A. E. Becquerel, C. R. Acad. Sci., 1839, 9, 561.
12 W. West, Photogr. Sci. Eng., 1974, 18, 35.
13 J. Moser, Monatsh. Chem., 1887, 8, 373.
14 S. Namba, and Y. Hishiki, J. Phys. Chem., 1965, 69, 774.
15 H. Gerischer, and H. Tributsch, Ber. Bunsenges. Phys. Chem., 1968, 72, 437.
16 R. C. Nelson, J. Phys. Chem., 1965, 69, 714.
17 B. O’Regan, and M. Grätzel, Nature, 1991, 353, 737.
18 http://www.sciencedaily.com/releases/2008/06/080629130741.htm (Science News, New Efficiency Benchmark For Dye-sensitized Solar Cells).
19 M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel, J. Am. Chem. Soc., 1993, 115, 6382.
20 S. Pelet, J.-E. Moser, and M. Grätzel, J. Phys. Chem. B, 2000, 104, 1791.
21 P. Wang, S. M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker, and M. Grätzel, J. Phys. Chem. B, 2003, 107, 14336.
22 M. Grätzel, J. Photochem. Photobiol. C, 2003, 4, 145.
23 G. Schlichthörl, S. Y. Huan, J. Sprague, and A. J. Frank, J. Phys. Chem. B, 1997, 101, 8141.
24 L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw, and I. Uhlendor, J. Phys. Chem. B, 1997, 101, 10281.
25 B. A. Gregg, F. Pichot, S. Ferrere, and C. L. Fields, J. Phys. Chem. B, 2001, 105, 1422.
26 C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Grätzel, J. Am. Ceram. Soc., 1997, 80, 3157.
27 K. Kalyanasundaram, and M. Grätzel, Coord. Chem. Rev., 1998, 177, 347.
28 M. Zukalova, A. Zukal, L. Kavan, M. K. Nazeeruddin, P. Liska, and M. Grätzel, Nano Lett., 2005, 5, 1789.
29 J. van de Lagemaat, N.-G. Park, and A. J. Frank, J. Phys. Chem. B, 2000, 104, 2044.
30 K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. J. Frank, J. Phys. Chem. B, 2003, 107, 7759.
31 Z. S.Wang, C. H. Huang, Y. Y. Huang, Y. J. Hou, P. H. Xie, B. W. Zhang, and H. M. Cheng, Chem. Mater., 2001, 13, 678.
32 L. M. Peter, N. W. Duffy, R. L. Wang, and K. G. U. Wijayantha, J. Electroanal. Chem., 2002, 524, 127.
33 R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, and M. Tachiya, J. Phys. Chem. B, 2004, 108, 4818.
34 M. Adachi, Y. Murata, J. Takao, J. T. Jiu, M. Sakamoto, and F. M.Wang, J. Am. Chem. Soc., 2004, 126, 14943.
35 J. T. Jiu, F. M.Wang, S. Isoda, and M. Adachi, Chem. Lett., 2005, 34, 1506.
36 N.-G. Park, J. van de Lagemaat, and A. J. Frank, J. Phys. Chem. B, 2000, 104, 8989.
37 S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, and A. J. Frank, J. Phys. Chem. B, 1997, 101, 2576.
38 M. Grätzel, J. Sol-gel Sci. Technol., 2001, 22, 7.
39 M. Grätzel, J. Photochem. Photobiol. A, 2004, 164, 3.
40 M. Lazzeri, A. Vittadini, and A. Selloni, Phys. Rev. B, 2001, 63, 155409.
41 A. S. Barnard, and L. A. Curtiss, Nano Lett., 2005, 5, 1261.
42 B. L. Bischoff, and M. A. Anderson, Chem. Mater., 1995, 7, 1772.
43 A. Zaban, S. T. Aruna, S. Tirosh, B. A. Gregg, and Y. Mastai, J. Phys. Chem. B, 2000, 104, 4130.
44 G. J. Wilson, G. D. Will, R. L. Frost, and S. A. Montgomery, J. Mater. Chem., 2002, 12, 1787.
45 S. Musić, M. Gotić, M. Ivanda, S. Popović, A. Turković, R. Trojko, A. Sekulić, and K. Furić, Mater. Sci. Eng. B, 1997, 47, 33.
46 J. N. Nian, and H. Teng, J. Phys. Chem. B, 2006, 110, 4193.
47 J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, Climate Change 2001: The Scientific Basis book, Cambridge University Press, New York, 2001.
48 M. F. Naylor, and K. C. Farmer, Sun damage and prevention, The Electronic Textbook of Dermatology.
49 Jamieson, and G. M. Barrie, Reproductive Biology and Phylogeny of Birds, University of Virginia, Charlottesville VA, 2007, pp. 128.
50 Reusch, and William, Infrared Spectroscop, 1999.
51 R. Memming, Semiconductor Electrochemistry, Marcel Dekker, New York, 1979, pp. 4.
52 J. I. Pankove, Optical processes in Semiconductors, Dover Publications Inc., New York, 1971.
53 A. P. Sutton, Electronic structure of Materials, Oxford Science Publications Inc., New York, 1971.
54 H. Gerischer, Advances in Electrochemistry and Electrochemical Engineering, Vol. 1, Interscience Publishers, New York, 1961, pp. 139-232.
55 H. Gerischer, Physical Chemistry: An Advanced Treatise, Vol. 9A, Academic Press, New York, 1970, pp. 463-542.
56 S. R. Morrison, Electrochemistry at semiconductor and Oxidized Metal Electrodes, Plenum Press, New York, 1980, pp. 31.
57 H. O. Finklea, Semiconductor electrodes, Elsevier, New York, 1988.
58 R. A. Smith, Semiconductors, 2nd ed. Cambridge University Press, London 1979.
59 A. J. Bard, and M. Stratmann, Semiconductor Electrodes and Photoelectrochemistry, Vol. 6, Wiley-VCH, Weinheim, 2002.
60 M. X Tan, P. E. Laibinis, S. T. Nguyen J. M. Kesselman, C. E. Stanton, and N. S. Lewis, Prog. Inorg. Chem., 1994, 41, 21.
61 A. Hamnett, Comprehensive Chemical Kinetics, Vol. 27, Elsevier, Amsterdam, 1987, pp. 61.
62 Y. V. Pleskov, and Y. Y. Gurevich, Semiconductor Photoelectrochemistry, Consultants Bureau, New York, 1986.
63 H. Gerischer, Adv. Electrochem. Eng., 1961, 1, 139.
64 S. R. Morrison, The Chemical Physics of Surfaces, Plenum, New York and London, 1977.
65 J. S. Newman, Electrochemical Systems, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1991, p. 496.
66 P. Singh, R. Singh, R. Gale, K. Rajeshwar, and J. DuBow, J. Appl. Phys., 1980, 51, 6286.
67 K. Rajeshwar, Molten Salt Techniques, Vol. 2, Plenum, New York and London, 1984, pp. 221-252.
68 R. Thapar, and K. Rajeshwar, Electrochim. Acta, 1983, 28, 198.
69 M. Grätzel, Nature, 2001, 414, 338.
70 W. H. Brattain, and C. G. B. Garret, Semiconductor surface phenomena in Semiconducting materials, Proc. Conf. Univ. Reading, England, 1951, pp. 37.
71 W. H. Brattain, and C. G. B. Garrett, Phys. Rev., 1955, 99, 376.
72 A. Fujishima, and K. Honda, Nature, 1972, 238, 37.
73 M. Sharon, P. Veluchamy, C. Natrajan, and C. D. Kumar, Electrochim. Acta, 1991, 36, 1107.
74 S. Licht, G. Hodes, R. Tenne, and J. Manassen, Nature, 1987, 326, 863.
75 S. Licht, B. Wang, T. Soga, and M. Umeno, Appl. Phys. Lett., 1999, 74, 4055.
76 A. J. Nozik, Photoelectrochemical devices for solar energy conversion,Vol. 69, Plenum press, New York, 1981, p. 280.
77 D. M. Roundhill, Photochemistry and Photophysics of Metal Complexes, Plenum Press, New York, 1994.
78 C. Klein, K. Nazeeruddin, D. Di Censo, P. Liska, and M. Grätzel, Inorg. Chem., 2004, 43, 4216.
79 A. Burke, L. Schmidt-Mende, S. Ito, and M. Grätzel, Chem. Commun., 2007, 234.
80 L. Schmidt-Mende, W. M. Campbell, Q. Wang, K. W. Jolley, D. L. Officer, M. K. Nazeeruddin, and M. Grätzel, ChemPhysChem, 2005, 6, 1253.
81 S. Ferrere, A. Zaben, and B. A. Gregg, J. Phys. Chem. B, 1997, 101, 4490.
82 G. K. R. Senadeera, P. V. V. Jayaweera, V. P. S. Perera, and K. Tennakone, Sol. Energy Mater. Sol. Cells, 2002, 73, 103.
83 K. Sayama, K. Tsukagoshi, T. Mori, K. Hara, Y. Ohga, A. Shinpou, Y. Abe, S. Suga, and H. Arakwa, Sol. Energy Mater. Sol. Cells, 2003, 80, 47.
84 Z.-S. Wang, F.-Y. Li, and C.-H. Huang, J. Phys. Chem. B, 2001, 105, 9210.
85 K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, Chem. Commun., 2001, 569.
86 A. Olea, G. Ponce, and P. J. Sebastian, Sol. Energy Mater. Sol. Cells, 1999, 59, 137.
87 H. J. Snaith, L. Schmidt-Mende, Adv. Mater., 2007, 19, 3187.
88 Y. Tachibana, S. A. Haque, I. P. Mercer, J. R. Durrant, and D. R. Klug, J. Phys. Chem. B, 2000, 104, 1198.
89 A. Hagfeld, and M. Grätzel, Chem. Rev., 1995, 95, 49.
90 Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Grätzel, J. Phys. Chem. B, 2003, 107, 8981.
91 N. J. Cherepy, G. P. Smestad, M. Grätzel, and J. Z. Zhang, J. Phys. Chem. B, 1997, 101, 9342.
92 V. Schklover, M.-K. Nazeeruddin, S. M. Zakeeruddin, C. Barbé, A. Kay, T. Haibach, W. Steurer, R. Hermann, H.-U. Nissen, and M. Grätzel, Chem. Mater., 1997, 9, 430.
93 J. van de Lagemaat, and A. J. Frank, J. Phys. Chem. B, 2001, 105, 11194.
94 N. Kopidakis, E. A. Schiff, N.-G. Park, J. van de Lagemaat, and A. J. Frank, J. Phys. Chem. B, 2000, 104, 3930.
95 A. Solbrand, H. Lindström, H. Rensmo, A. Hagfeldt, and S.-E. Lindquist, J. Phys. Chem. B., 1997, 101, 2514.
96 A. Zaban, A. Meier, and B. Gregg, J. Phys. Chem. B, 1997, 101, 7985.
97 D. Nistér, K. Keis, S.-E. Lindquist, and A. Hagfeldt, Sol. Energy Mater. Sol. Cells, 2002, 73, 411.
98 J.-F. Dufrêche, O. Bernard, and O. Turq, J. Chem. Phys., 2002, 116, 2085.
99 S. M. Sze, Semiconductor Devices. Physics and Technology, Wiley, New York, 1985.
100 W. van Roosbroeck, Phys. Rev., 1953, 91, 282.
101 G. Schlichthöl, N.-G. Park, and A. J. Frank, J. Phys. Chem. B, 1999, 103, 782.
102 J. R. Haynes, and W. Shockley, Phys. Rev., 1951, 81, 835.
103 M.J. Cass, F. L. Qiu, A. B. Walker, A. C. Fisher, and L. M. Peter, J. Phys. Chem. B, 2003, 107, 113.
104 J. van de Lagemaat, K. D. Benkstein, and A. J. Frank, J. Phys. Chem. B, 2001, 105, 12433.
105 A. Hauch, R. Kern, J. Ferber, A. Georg, and J. Luther, Characterization of the electrolyte-solid interfaces of dye-sensitized solar cells by means of impedance spectroscopy, 2nd World Conference on Photovoltaic Solar Energy Conversion, Vienna, European Communities, 1998.
106 N. Papageorgiou, M. Grätzel, and P. P. Infelta, Sol. Energy Mater. Sol. Cells, 1996, 44, 405.
107 Z. Kebede, and S. E. Lindquist, Sol Energy Mater. and Sol. cells, 1998, 51, 291.
108 P. M. Sommeling, H. C. Rieffe, and J. M. Kroon, Spectral response and response time of nanocrystalline dye-sensitized TiO2 solar cells, 14th European Photovoltaic Solar Energy Conference, Barcelona, H. S. Stephens and Associates, 1997.
109 B. O’Regan, and D. T. Schwartz, J. Appl. Phys., 1996, 80, 4749.
110 K. Tennakone, G. R. R. A. Kumara, A. R. Kumarasinghe, K. G. U. Wijayantha and P. M. Sirimanne, Semicond. Sci. Technol., 1995, 10, 1689.
111 A. J. Frank, N. Kopidakis, and J. van de Lagemaat, Coord. Chem. Rev., 2004, 248, 1165.
112 B. O’Regan, J. Moser, M. Anderson, and M. Grätzel, J. Phys. Chem., 1990, 94, 8720.
113 M. Shur, Physics of Semiconductor Devices, Prentice-Hall, Englewood Cliffs, 1990, pp. 86-102.
114 M. Lundstrom, Fundamentals of Carrier Transport, Addison Wesley, Wokingham, 1990.
115 S. J. Fonash, Solar Cell Device Physics, Academic Press, New York, 1981.
116 J. Nelson, Phys. Rev. B, 1999, 59, 15374.
117 J. Bisquert, J. Phys. Chem. B, 2004, 108, 2323.
118 J. Orenstein, and M. Kastner, Phys. Rev. Lett., 1981, 46, 1421.
119 T. Tiedje, and A. Rose, Solid State Commun., 1981, 37, 49.
120 J. Bisquert, and V. S. Vikhrenko, J. Phys. Chem. B, 2004, 108, 2313.
121 D. Vanmaekelbergh, and P. E. de Jongh, Phys. Rev. B, 2000, 61, 4699.
122 G. Boschloo, and A. Hagfeldt, J. Phys. Chem. B, 2005, 109, 12093.
123 B. O’Regan, and J. R. Durrant, J. Phys. Chem. B, 2006, 110, 8544.
124 L. M. Peter, A. B. Walker, G. Boschloo, and A. Hagfeldt, J. Phys. Chem. B, 2006, 110, 13694.
125 J. Nissfolk, K. Fredin, A. Hagfeldt, and G. Boschloo, J. Phys. Chem. B, 2006, 110, 17715.
126 D. Kuang, C. Klein, H. J. Snaith, J. E. Moser, R. Humphry-Baker, P. Comte, S. M. Zakeeruddin, and M. Grätzel, Nano Lett., 2006, 6, 769.
127 S. A. Haque, Y. Tachibana, R. L. Willis, J. E. Moser, M. Grätzel, D. R. Klug, and J. R. Durrant, J. Phys. Chem. B, 2000, 104, 538.
128 S. A. Haque, Y. Tachibana, D. R. Klug, and J. D. Durrant, J. Phys. Chem. B, 1998, 102, 1745.
129 N. W. Duffy, L. M. Peter, R. M. G. Rajapakse, and K. G. U. Wijayantha, Electrochem. Commun., 2000, 2, 658.
130 J. Krüger, R. Plass, M. Grätzel, P. J. Cameron, and L. M. Peter, J. Phys. Chem. B, 2003, 107, 7536.
131 J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, and U. Bach, Appl. Phys. Lett., 2001, 79, 2085.
132 H. J. Snaith, S. M. Zakeeruddin, L. Schmidt-Mende, C. Klein, and M. Grätzel, Angew. Chem. Int. Ed., 2005, 44, 6413.
133 L. Schmidt-Mende, J. E. Kroeze, J. R. Durrant, M. K. Nazeeruddin, and M. Grätzel, Nano Lett., 2005, 5, 1315.
134 J. E. Kroeze, N. Hirata, S. Koops, M. K. Nazeeruddin, L. Schmidt-Mende, M. Grätzel, and J. R. Durrant, J. Am. Chem. Soc., 2006, 128, 16376.
135 M. L. Rosenblut, and N. S. Lewis, J. Phys. Chem., 1989, 93, 3735.
136 A. Kumer, P. G. Santangelo, and N. S. Lewis, J. Phys, Chem. 1992, 96, 835.
137 N. Kopidakis, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, J. Phys. Chem. B, 2003, 107, 11307.
138 J. Nelson, S. A. Haque, D. R. Klug, and J. R. Durrant, Phys. Rev. B, 2001, 63, 205321.
139 L. M. Peter, and K. G. U. Wijayantha, Electrochem. Commun., 1999, 1, 576.
140 A. E. Goresy, M. Chen, L. Dubrovinsky, P. Gillet, and G. Graup, Science, 2001, 293, 1467.
141 N. N. Greenwood, and A. Earnshaw, Chemistry of the Elements, Oxford: Pergamon, 1984, pp. 1117-1119.
142 R. Marchand, L. Brohan, and M. Tournoux, Materials Research Bulletin, 1980, 15, 1129.
143 M. Latroche, L. Brohan, R. Marchand, and Tournoux, J. Solid State Chem., 1989, 81, 78.
144 J. Akimoto, Y. Gotoh, Y. Oosawa, N. Nonose, T. Kumagai, K. Aoki, and H. Takei, J. Solid State Chem., 1994, 113, 27.
145 P. Y. Simons, and F. Dachille, Acta Crystallographica, 1967, 23, 334.
146 H. Sato, S. Endo, M. Sugiyama, T. Kikegawa, O. Shimomura, and K. Kusaba, Science, 1991, 251, 786.
147 N. A. Dubrovinskaia, L. S. Dubrovinsky, R. Ahuja, V. B. Prokopenko, V. Dmitriev, H.-P. Weber, J. M. Osorio-Guillen, and B. Johansson, Phys. Rev. Lett., 2001, 87, 275501.
148 M. Mattesini, J. S. de Almeida, L. Dubrovinsky, L. Dubrovinskaia, B. Johansson, and R. Ahuja, Phys. Rev. B, 2004, 70, 212101.
149 L. S. Dubrovinsky, N. A. Dubrovinskaia, V. Swamy, J. Muscat, N. M. Harrison, R. Ahuja, B. Holm, and B. Johansson, Nature, 2001, 410, 653.
150 I. Bedja, S. Hotchandani, and P. V. Kamat, J. Phys. Chem., 1994, 98, 4133.
151 G. Redmond, D. Fitzmaurice, and M. Grätzel, Chem. Mater., 1994, 6, 686.
152 H. Rensmo, K. Keis, H. Lindström, S. Södergren, A. Solbrand, A. Hagfeldt, S.-E. Lindquist, L. N. Wang, and M. Muhammed, J. Phys. Chem. B, 1997, 101, 2598.
153 T. N. Rao, and L. Bahadur, J. Electrochem. Soc., 1997, 144, 179.
154 K. Keis, L. Vayssieres, S.-E. Lindquist, and A. Hagfeldt, Nanostruct. Mater., 1999, 12, 487.
155 K. Sayama, H. Sugihara, and H. Arakawa, Chem. Mater., 1998, 10, 3825.
156 P. Guo, and M. A. Aegerter, Thin Solid Films, 1999, 351, 290.
157 A. Turkovic, and Z. Crnjak Orel, Sol. Energy Mater. Sol. Cells, 1997, 45, 275.
158 M. Y. El Zayat, A. O. Saed, and M. S. El-Dessouki, Int. J. Hydrogen Energy, 1998, 23, 259.
159 M. O'Donoghue, A guide to Man-made Gemstones. Great Britain, Van Nostrand Reinhold Company, 1983, pp. 40–44.
160 T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Langmuir, 1998, 14, 3160.
161 T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Adv. Mater., 1999, 11, 1307.
162 D. S. Seo, J. K. Lee, and H. Kim, J. Cryst. Growth, 2001, 229, 428.
163 Q. Zhang, L. Gao, J. Sun, and S. Zheng, Chem. Lett., 2002, 226.
164 Y. Q. Wang, G. Q. Hu, X. F. Duan, H. L. Sun, and Q. K. Xue, Chem. Phys. Lett., 2002, 365, 427.
165 B. D. Yao, Y. F. Chan, X. Y. Zhang, W. F. Zhang, Z. T. Yan, and N. Wang, Appl. Phys. Lett., 2003, 82, 281.
166 C. C. Tsai, and H. Teng, Chem. Mater., 2004, 16, 4352.
167 W. Wang, O. K. Varghese, M. Paulose, and C. A. Grimes, J. Mater. Res., 2004, 19, 417.
168 Y. Zhu, H. Li, Y. Koltypin,Y. R. Hacohen, and A. Gedanken, Chem. Commun., 2001, 2616.
169 J. Yang, Z. Jin, X. Wang, W. Li, J. Zhang, S. Zhang, X. Guo, and Z. Zhang, J. Chem. Soc., Dalton Trans. 2003, 3898.
170 M. Zhang, Z. Jin, J. Zhang, X. Guo, J. Yang, W. Li, X. Wang, and Z. Zhang, J. Mol. Catal. A: Chem., 2004, 217, 203.
171 G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan, and L.-M. Peng, Appl. Phys. Lett., 2001, 79, 3702.
172 Q. Chen, G. H. Du, S. Zhang, and L.-M. Peng, Acta Crystallogr. Sect. B, 2002, 58, 587.
173 Q. Chen, W. Z. Zhou, G. H. Du, and L.-M. Peng, Adv. Mater., 2002, 14, 1208.
174 Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, and H. Xu, J. Am. Chem. Soc., 2003, 125, 12384.
175 S. Zhang, L.-M. Peng, Q. Chen, G. H. Du, G. Dawson, and W. Z. Zhou, Phys. Rev. Lett., 2003, 91, 256103.
176 X. Sun, and Y. Li, Chem.-Eur. J., 2003, 9, 2229.
177 Z.-Y. Yuan, and B.-L. Su, Colloids Surf., A, 2004, 241, 173.
178 A. Thorne, A. Kruth, D. Tunstall, J. T. S. Irvine, and W. Zhou, J. Phys. Chem. B, 2005, 109, 5439.
179 S. Zhang, Q. Chen, and L.-M. Peng, Phys. Rev. B, 2005, 71, 014104.
180 A. Nakahira, W. Kato, M. Tamai, T. Isshiki, and K. Nishio, J. Mater. Sci., 2004, 39, 4239.
181 R. Ma, Y. Bando, and T. Sasaki, Chem. Phys. Lett., 2003, 380, 577.
182 R. Ma, K. Fukuda, T. Sasaki, M. Osada, and Y. Bando, J. Phys. Chem. B, 2005, 109, 6210.
183 M. Sugita, M. Tsuji, and M. Abe, Bull. Chem. Soc. Jpn., 1990, 63, 1978.
184 P. T. Hsiao, K. P. Wang, C. W. Cheng, and H. Teng, J. Photochem. Photobiol. A, 2007, 188, 19.
185 K. P. Wang, and H. Teng, Appl. Phys. Lett., 2007, 91, 173102.
186 C.C. Tsai, and H. Teng, Chem. Mater., 2006, 18, 367.
187 J. N. Nian, S. A. Chen, C. C. Tsai, and H. Teng, J. Phys. Chem. B, 2006, 110, 25817.
188 C. C. Tsai, and H. Teng, Langmuir, 2008, 24, 3434.
189 E. A. Stern, M. Newville, B. Ravel, Y. Yacoby, and D. Haskel, Phys. B, 1995, 208–9, 117.
190 B.D. Cullity, and S.R. Stock., Elements of X-ray Diffraction, Prentice Hall, Upper Saddle River, New Jersey, 3rd ed., 2001, pp. 193.
191 E. Barsoukov, and J. Ross Macdonald, Impedance spectroscopy :theory, experiment, and applications, Wiley-Interscience, Hoboken, N.J., 2005.
192 A. J. Bard, and L. R. Faulkner, Electrochemical methods :fundamentals and applications, John Wiley, New York, 2001.
193 L. M. Peter, and D. Vanmaekelbergh, Advances in Electrochemical Science and Engineering, Vol. 6, Wiley-VCH: Weinheim, Germany, 1999.
194 S. Södergren, A. Hagfeldt, J. Olsson, and S. E. Lindquist, J. Phys. Chem., 1994, 95, 5522.
195 D. Vanmaekelbergh, and P. de Jongh, J. Phys. Chem. B, 1999, 103, 747.
196 T. Oekermann, D. Zhang, T. Yoshida, and H. Minoura, J. Phys. Chem. B, 2004, 108, 2227.
197 G. Franco, J. Gehring, L. M. Peter, E. A. Ponomarev, and I. Uhlendorf, J. Phys. Chem. B, 1999, 103, 692.
198 A. C. Fisher, L. M. Peter, E. A. Ponomarev, A. B. Walker, and K. G. U. Wijayantha, J. Phys. Chem. B, 2000, 104, 949.
199 http://www.srrc.gov.tw/chi/about/index.html.
200 Powder Diffraction Files of the Joint Committee on Powder Diffraction Standards, Card No. 47-0124, International Center for Diffraction Data.
201 H. Zhu, X. Gao, Y. Lan, D. Song, Y. Xi, and J. Zhao, J. Am. Chem. Soc., 2004, 126, 8380.
202 D. V. Bavykin, V. N. Parmon, A. A. Lapkin, and F. C. Walsh, J. Mater. Chem., 2004, 14, 3370.
203 D. V. Bavykin, J. M. Friedrich, and F. C. Walsh, Adv. Mater., 2006, 18, 2807.
204 H. Y. Zhu, Y. Lan, X. P. Gao, S. P. Ringer, Z. F. Zheng, D. Y. Song, and J. C. Zhao, J. Am. Chem. Soc., 2005, 127, 6730.
205 C. A. Melendres, A. Narayanasamy, V. A. Maroni, and R. W. Seigel, J. Mater. Res., 1989, 4, 1246.
206 J. C. Parker, and R. W. Seigel, J. Mater. Res., 1990, 5, 1246.
207 M. Gotić, M. Ivanda, S. Popović, S. Musić, A. Sekulić, A. Turković, and K. J. Furić, J. Raman Spectrosc., 1997, 28, 555.
208 Z. Y. Wu, G. Ouvrard, P. Gressier, and C. R. Natoli, Phys. Rev. B, 1997, 55, 10382.
209 F. Farges, Am. Mineral., 1997, 82, 44.
210 F. Farges, G. E. Brown Jr., and J. J. Rehr, Geochim. Cosmochim. Acta, 1996, 60, 3023.
211 T. L. Hanley, V. Luca, I. Pickering, and R. F. Howe, J. Phys. Chem. B, 2002, 106, 1153.
212 L. X. Chen, T. Rajh, Z. Wang, and M. C. Thurnauer, J. Phys. Chem. B, 1997, 101, 10688.
213 H. Yamashita, Y. Ichihashi, M. Anpo, M. Hashimoto, C. Louis, and M. Che, J. Phys. Chem., 1996, 100, 16041.
214 F. Chen, T. Zhao, Y. Y. Fei, H. Lu, Z. Chen, G. Yang, and X. D. Zhu, Appl. Phys. Lett., 2002, 80, 2889.
215 X. D. Zhu, Y. Y. Fei, H. B. Lu, and G. Z. Yang, Appl. Phys. Lett., 2005, 87, 051903
216 R. F. Klie and N. D. Browning, Appl. Phys. Lett., 2000, 77, 3737.
217 K. H. Chang, C. C. Hu, and C. Y. Chou, Chem. Mater., 2007, 19, 2112.
218 P. Salvador, M. G. Hidalgo, A. Zaban, and J. Bisquert, J. Phys. Chem. B, 2005, 109, 15915.
219 L. M. Peter, J. Phys. Chem. C, 2007, 111, 6601.
220 N.-G. Park, G. Schlichthörl, J. van de Lagematt, H. M. Cheong, A. Mascarenhas, and A. J. Frank, J. Phys. Chem. B, 1999, 103, 3308.
221 S. Ngamsinlapasathian, S. Sakulkhaemaruethai, S. Pavasupree, A. Kitiyanan, T. Sreethawong, Y. Suzuki, and S. Yoshikawa, J. Photochem. Photobiol. A, 2004, 164, 145.
222 S. Ngamsinlapasathian, T. Sreethawong, Y. Suzuki, and S. Yoshikawa, Sol. Energy Mater. Sol. Cells, 2005, 86, 269.
223 P. I. Gouma, and M. J. Mills, J. Am. Ceram. Soc., 2001, 84, 619.
224 L. M. Peter, and K. G. U. Wijayantha, Electrochim. Acta, 2000, 45, 4543.
225 P. E. de Jongh, and D. Vanmaekelbergh, Phys. Rev. Lett., 1996, 77, 3427.
226 Powder Diffraction Files of the Joint Committee on Powder Diffraction Standards, Card No. 21-1272, International Center for Diffraction Data. 2001.
227 H. Y. Xu, Y. C. Liu, C. S. Xu, Y. X. Liu, C. L. Shao, and R. Mu, Appl. Phys. Lett., 2006, 88, 242502.
228 S. Okamoto, and H. Yamamoto, Appl. Phys. Lett., 2001, 78, 655.
229 D. F. Watson, A. Marton, A. M. Stux, and G. J. Meyer, J. Phys. Chem. B, 2003, 107, 10971.
230 P. S. Li, and H. Teng, J. Chin. Inst. Chem. Engrs., 2007, 38, 267.
231 Y. Lu, D. J. Choi, J. Nelson, O. B. Yang, and B. A. Parkinson, J. Electrochem. Soc., 2006, 153, E131.
232 P. T. Hsiao, and H. Teng, J. Am. Ceram. Soc., 2009, 92, 888.
233 J. R. Jennings, and L. M. Peter, J. Phys. Chem. C, 2007, 111, 16100.
234 P. R. F. Barnes, A. Y. Anderson, S. E. Koops, J. R. Durrant, and B. C. O’Regan, J. Phys. Chem. C, 2009, 113, 1126.
235 F. Febregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S. M. Zakeeruddin, and M. Grätzel, J. Phys. Chem. C, 2007, 111, 6550.
236 M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, and S. Isoda, J. Phys. Chem. B, 2006, 110, 13872.
237 R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, Electrochim. Acta, 2002, 47, 4213.
238 A. B. F. Martinson, J. E. McGarrah, M. O. K. Parpia, and J. T. Hupp, Phys. Chem. Chem. Phys., 2006, 8, 4655.
239 J. Bisquert, J. Phys. Chem. B, 2002, 106, 325.
240 J. Bisquert, Phys. Chem. Chem. Phys., 2003, 5, 5360.
241 J. Bisquert, A. Zaban, M. Greenshtein, and I. Mora-Seró, J. Am. Chem. Soc., 2004, 126, 13550.
242 M. Büttiker, H. Thomas, and A. Prêtre, Phys. Lett. A, 1993, 180, 364.