簡易檢索 / 詳目顯示

研究生: 吳冠廷
Wu, Kuan-Ting
論文名稱: 人類泛素E3連接酶SHPRH在複製後修復的功能
The function of human ubiquitin E3 ligase SHPRH in post-replication repair
指導教授: 廖泓鈞
Liaw, Hung-Jiun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 37
中文關鍵詞: 複製後修復連接酶泛素損傷修復
外文關鍵詞: SHPRH, template switching, fork reversal, sister chromatid exchange
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • DNA受到損傷後細胞會啟動後複製修復(post-replication repair, PRR) 機制來越過損傷,避免傷害加劇,而後複製修復下游又可以分為兩條子路徑,分別為跨損傷修復 (translesion synthesis, TLS)以及模板置換(template switching, TS)修復,其中TS路徑能藉由複製叉反轉 (fork reversal)來越過損傷。 在哺乳類動物中,HLTF與SHPRH被發現與酵母中參與TS路徑的Rad5互為同源基因並具有E3連接酶的活性,此前實驗室發表HLTF會參與在TS路徑中,但SHPRH的功能以及是否參與在TS路徑中目前尚未明瞭,因此本篇實驗的目標為確認SHPRH在TS路徑上的功能。
    我們的研究結果發現,SHPRH能與TS修復路徑中的蛋白PARP1和BARD1進行交互作用,與先前實驗室研究的HLTF具有相似的功能。 我們進一步用免疫共沉澱實驗 (Co-IP)發現SHPRH (2-606)片段就能與PARP1有很好的交互作用。 在鼻咽癌細胞HONE1中將SHPRH表現量降低發現其對抗癌藥物4NQO的敏感度顯著提升。我們接著在HONE1細胞使用CRISPR-Cas9技術建立HLTF基因剔除的細胞株,在此細胞中抑制SHPRH的表現量對藥物的敏感度有更為顯著的提升。
    染色體互換需要有雙股斷裂的發生以及Rad51參與股的入侵 (strand invasion),根據實驗室先前研究發現HLTF缺失的細胞株會降低Rad51聚集在復製叉上的能力,造成姊妹染色分體互換 (SCE)的數量減少,在抑制SHPRH表現的細胞株中我們同樣發現SCE的數量減少,我們總結實驗後確認SHPRH在TS路徑中與HLTF具有相似的功能。

    Post-replication repair (PRR) is a lesion bypass mechanism during DNA replication. One subpathway of PRR, known as template switching, bypasses DNA lesions by using the fork reversal mechanism. Previous studies have demonstrated that HLTF can promote the fork reversal structure in response to replication stress. SHPRH is a homologous gene of HLTF, which shares similar protein domain structure and E3 ligase activity. However, it remains unclear whether SHPRH has functions similar to HLTF in the TS pathway. Therefore, we aim to characterize the function of SHPRH in the TS pathway in this study. Here, we found that SHPRH interacts with PARP1 and BARD1, similar to the biochemical function of HLTF. We further map the N-terminal domain of SHPRH (2-606) interacts with PARP1. The depletion of SHPRH sensitizes cells to DNA damaging agent 4NQO. We also generated the HLTF knockout cells by using the CRISPR gene knockout strategy. The depletion of SHPRH further sensitizes the HLTF knockout cells to DNA damaging agents. Previously, we found that the depletion of HLTF decreases the level of RAD51 at stalled forks and the frequency of sister chromatid exchange (SCE). Similarly, we found the depletion of SHPRH also deceases the frequency of SCE. We conclude that SHPRH has functions similar to HLTF in the TS pathway.

    中文摘要 I The function of human ubiquitin E3 ligase SHPRH in post-replication repair II 誌謝 VIII 圖目錄 XI 縮寫表 XII 壹、緒論 1 第一節 前言 1 1-1. DNA損傷反應機制 (DNA damage response, DDR) 1 1-2. 複製叉停滯與DNA損傷耐受機制 (DNA damage tolerance pathway, DDT) 2 1-3. 複製後修復機制(PRR)中的兩條子路徑TLS路徑與TS路徑 2 1-4. SNF2 Histone Linker PHD RING Helicase (SHPRH)蛋白的功能 3 1-5. PARP1及ADP核醣基化修飾 (ADP-ribosylation)的功能 4 1-6. 近期發現與複製叉反轉(fork reversal)及跨越損傷修復相關之蛋白 4 第二節 研究動機與目的 5 貳、實驗材料與方法 6 第一節 實驗材料 6 2-1-1. 人類細胞株 6 2-1-2. 細胞損傷藥物 6 第二節 實驗方法 7 2-2-1. 細胞培養 7 2-2-2. Lentiviral 製備 (Lentiviral production) 7 2-2-3. viral titer 測試 9 2-2-4. Lentiviral 感染 10 2-2-5. 西方墨點法 (Western Blot) 10 2-2-6. RNA萃取 (RNA isolation) 11 2-2-7. RNA轉cDNA 12 2-2-8. 定量即時聚合酶鏈鎖反應 (Quantitative real time polymerase chain reaction, qRT-PCR) 13 2-2-9. 細胞存活率測定(cell survival): 14 2-2-10. 共免疫沉澱法 (Co-immunoprecipitation, Co-IP) 14 2-2-11. 染色分體交換率(SCE) 15 2-2-12. CRISPR-Cas9基因剔除技術 16 参、結果 17 3-1. SHPRH與模板置換修復途徑(TS pathway)之相關蛋白具有交互作用情形 17 3-2. SHPRH(2-606)片段與PARP1有高度的交互作用 17 3-3. 降低HLTF、SHPRH蛋白表現量後HONE1細胞株對DNA損傷藥物4NQO的敏感度提高 18 3-4. 降低HLTF、SHPRH蛋白表現量後HONE1細胞株的姊妹染色分體互換(sister chromatid exchange, SCE)率明顯下降 18 3-5. 在HLTF基因剔除的HONE1細胞株抑制SHPRH表現量更顯著的增加其對4NQO和Cisplatin的敏感性 19 肆、討論 20 伍、參考文獻 22 陸、圖目錄 22

    Abraham, R.T., 2001. Cell cycle checkpoint signaling through the atm and atr kinases. Genes & development, 15(17): 2177-2196. DOI 10.1101/gad.914401.
    Bansbach, C.E., R. Betous, C.A. Lovejoy, G.G. Glick and D. Cortez, 2009. The annealing helicase smarcal1 maintains genome integrity at stalled replication forks. Genes & development, 23(20): 2405-2414. DOI 10.1101/gad.1839909.
    Betous, R., A.C. Mason, R.P. Rambo, C.E. Bansbach, A. Badu-Nkansah, B.M. Sirbu, B.F. Eichman and D. Cortez, 2012. Smarcal1 catalyzes fork regression and holliday junction migration to maintain genome stability during DNA replication. Genes & development, 26(2): 151-162. DOI 10.1101/gad.178459.111.
    Bhat, K.P. and D. Cortez, 2018. Rpa and rad51: Fork reversal, fork protection, and genome stability. Nature structural & molecular biology, 25(6): 446-453. DOI 10.1038/s41594-018-0075-z.
    Blastyák, A., I. Hajdú, I. Unk and L. Haracska, 2010. Role of double-stranded DNA translocase activity of human hltf in replication of damaged DNA. Molecular and Cellular Biology, 30(3): 684. DOI 10.1128/MCB.00863-09.
    Branzei, D. and M. Foiani, 2010. Maintaining genome stability at the replication fork. Nature reviews. Molecular cell biology, 11(3): 208-219. DOI 10.1038/nrm2852.
    Burkovics, P., M. Sebesta, D. Balogh, L. Haracska and L. Krejci, 2014. Strand invasion by hltf as a mechanism for template switch in fork rescue. Nucleic Acids Res, 42(3): 1711-1720. DOI 10.1093/nar/gkt1040.
    Ciccia, A., A.L. Bredemeyer, M.E. Sowa, M.E. Terret, P.V. Jallepalli, J.W. Harper and S.J. Elledge, 2009. The siod disorder protein smarcal1 is an rpa-interacting protein involved in replication fork restart. Genes & development, 23(20): 2415-2425. DOI 10.1101/gad.1832309.
    Ciccia, A. and S.J. Elledge, 2010. The DNA damage response: Making it safe to play with knives. Molecular cell, 40(2): 179-204. DOI 10.1016/j.molcel.2010.09.019.
    Ciccia, A., A.V. Nimonkar, Y. Hu, I. Hajdu, Y.J. Achar, L. Izhar, S.A. Petit, B. Adamson, J.C. Yoon, S.C. Kowalczykowski, D.M. Livingston, L. Haracska and S.J. Elledge, 2012. Polyubiquitinated pcna recruits the zranb3 translocase to maintain genomic integrity after replication stress. Molecular cell, 47(3): 396-409. DOI 10.1016/j.molcel.2012.05.024.
    Elserafy, M., A.A. Abugable, R. Atteya and S.F. El-Khamisy, 2018. Rad5, hltf, and shprh: A fresh view of an old story. Trends in genetics : TIG, 34(8): 574-577. DOI 10.1016/j.tig.2018.04.006.
    Gibson, B.A. and W.L. Kraus, 2012. New insights into the molecular and cellular functions of poly(adp-ribose) and parps. Nature reviews. Molecular cell biology, 13(7): 411-424. DOI 10.1038/nrm3376.
    Hassa, P.O. and M.O. Hottiger, 2008. The diverse biological roles of mammalian parps, a small but powerful family of poly-adp-ribose polymerases. Frontiers in bioscience : a journal and virtual library, 13: 3046-3082.
    Heller, R.C. and K.J. Marians, 2006. Replisome assembly and the direct restart of stalled replication forks. Nature reviews. Molecular cell biology, 7(12): 932-943. DOI 10.1038/nrm2058.
    Kannouche, P., B.C. Broughton, M. Volker, F. Hanaoka, L.H. Mullenders and A.R. Lehmann, 2001. Domain structure, localization, and function of DNA polymerase eta, defective in xeroderma pigmentosum variant cells. Genes & development, 15(2): 158-172. DOI 10.1101/gad.187501.
    Kannouche, P.L., J. Wing and A.R. Lehmann, 2004. Interaction of human DNA polymerase eta with monoubiquitinated pcna: A possible mechanism for the polymerase switch in response to DNA damage. Molecular cell, 14(4): 491-500.
    Morales, J., L. Li, F.J. Fattah, Y. Dong, E.A. Bey, M. Patel, J. Gao and D.A. Boothman, 2014. Review of poly (adp-ribose) polymerase (parp) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr, 24(1): 15-28.
    Motegi, A., H.-J. Liaw, K.-Y. Lee, H.P. Roest, A. Maas, X. Wu, H. Moinova, S.D. Markowitz, H. Ding, J.H.J. Hoeijmakers and K. Myung, 2008. Polyubiquitination of proliferating cell nuclear antigen by hltf and shprh prevents genomic instability from stalled replication forks. Proc Natl Acad Sci U S A, 105(34): 12411-12416. DOI 10.1073/pnas.0805685105.
    Motegi, A., R. Sood, H. Moinova, S.D. Markowitz, P.P. Liu and K. Myung, 2006. Human shprh suppresses genomic instability through proliferating cell nuclear antigen polyubiquitination. The Journal of cell biology, 175(5): 703-708. DOI 10.1083/jcb.200606145.
    Muvarak, N.E., K. Chowdhury, L. Xia, C. Robert, E.Y. Choi, Y. Cai, M. Bellani, Y. Zou, Z.N. Singh, V.H. Duong, T. Rutherford, P. Nagaria, S.M. Bentzen, M.M. Seidman, M.R. Baer, R.G. Lapidus, S.B. Baylin and F.V. Rassool, 2016. Enhancing the cytotoxic effects of parp inhibitors with DNA demethylating agents - a potential therapy for cancer. Cancer cell, 30(4): 637-650. DOI 10.1016/j.ccell.2016.09.002.
    Nyberg, K.A., R.J. Michelson, C.W. Putnam and T.A. Weinert, 2002. Toward maintaining the genome: DNA damage and replication checkpoints. Annual review of genetics, 36: 617-656. DOI 10.1146/annurev.genet.36.060402.113540.
    Patel, A.G., J.N. Sarkaria and S.H. Kaufmann, 2011. Nonhomologous end joining drives poly(adp-ribose) polymerase (parp) inhibitor lethality in homologous recombination-deficient cells. Proc Natl Acad Sci U S A, 108(8): 3406-3411. DOI 10.1073/pnas.1013715108.
    Petermann, E. and T. Helleday, 2010. Pathways of mammalian replication fork restart. Nature reviews. Molecular cell biology, 11(10): 683-687. DOI 10.1038/nrm2974.
    Petrini, J.H. and T.H. Stracker, 2003. The cellular response to DNA double-strand breaks: Defining the sensors and mediators. Trends in cell biology, 13(9): 458-462.
    Taglialatela, A., S. Alvarez, G. Leuzzi, V. Sannino, L. Ranjha, J.W. Huang, C. Madubata, R. Anand, B. Levy, R. Rabadan, P. Cejka, V. Costanzo and A. Ciccia, 2017. Restoration of replication fork stability in brca1- and brca2-deficient cells by inactivation of snf2-family fork remodelers. Molecular cell, 68(2): 414-430.e418. DOI 10.1016/j.molcel.2017.09.036.
    Ulrich, H.D., 2005. The rad6 pathway: Control of DNA damage bypass and mutagenesis by ubiquitin and sumo. Chembiochem : a European journal of chemical biology, 6(10): 1735-1743. DOI 10.1002/cbic.200500139.
    Unk, I., I. Hajdú, K. Fátyol, B. Szakál, A. Blastyák, V. Bermudez, J. Hurwitz, L. Prakash, S. Prakash and L. Haracska, 2006. Human shprh is a ubiquitin ligase for mms2-ubc13-dependent polyubiquitylation of proliferating cell nuclear antigen. Proc Natl Acad Sci U S A, 103(48): 18107-18112. DOI 10.1073/pnas.0608595103.
    Unk, I., I. Hajdu, A. Blastyak and L. Haracska, 2010. Role of yeast rad5 and its human orthologs, hltf and shprh in DNA damage tolerance. DNA repair, 9(3): 257-267. DOI 10.1016/j.dnarep.2009.12.013.
    Unk, I., I. Hajdu, K. Fatyol, J. Hurwitz, J.H. Yoon, L. Prakash, S. Prakash and L. Haracska, 2008. Human hltf functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination. Proc Natl Acad Sci U S A, 105(10): 3768-3773. DOI 10.1073/pnas.0800563105.
    Vujanovic, M., J. Krietsch, M.C. Raso, N. Terraneo, R. Zellweger, J.A. Schmid, A. Taglialatela, J.W. Huang, C.L. Holland, K. Zwicky, R. Herrador, H. Jacobs, D. Cortez, A. Ciccia, L. Penengo and M. Lopes, 2017. Replication fork slowing and reversal upon DNA damage require pcna polyubiquitination and zranb3 DNA translocase activity. Molecular cell, 67(5): 882-890.e885. DOI 10.1016/j.molcel.2017.08.010.
    Yuan, J., G. Ghosal and J. Chen, 2012. The harp-like domain-containing protein ah2/zranb3 binds to pcna and participates in cellular response to replication stress. Molecular cell, 47(3): 410-421. DOI 10.1016/j.molcel.2012.05.025.

    下載圖示 校內:2024-08-15公開
    校外:2024-08-15公開
    QR CODE