| 研究生: |
蔡憲琳 Tsai, Hsien-lin |
|---|---|
| 論文名稱: |
不同德拜厚度對於毛細管電泳中帶電溶質離子運動之模擬研究 The Effect of Different Debye Lengths on Charged Ions Migration in Capillary Zone Electrophoresis |
| 指導教授: |
洪振益
Hung, Chen-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 毛細管電泳 、電雙層 、德拜厚度 、有限元素法 、粒子模擬法 |
| 外文關鍵詞: | Capillary Zone Electrophoresis, PIC Method, Electrical Double Layer, Finite Element Method, Debye length |
| 相關次數: | 點閱:110 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
毛細管電泳(Capillary Zone Electrophoresis,簡稱CZE)為近年來迅速發展的一種分析方法。而在毛細管電泳中,電雙層效應造成靠近管道附近的不同的離子分布密度,此現象吸引與壁面相反電荷的異性離子(Counter-ions)於壁面附近聚集,而同性離子(Co-ions)則會受到排斥的力量而遠離壁面。
本研究將探討不同德拜厚度對於毛細管電泳晶片中帶電溶質離子的遷移現象。因注入管道與分離管道交會處為一圓弧區,為求在圓弧區能有較精準的數值結果,故使用有限元素法(Finite Element Method)來計算並採用粒子模擬法(Particle-In-Cell Method)以瞭解微管道內不同帶電性質溶質離子之運動現象。
由結果中亦發現在較小的德拜厚度下,電雙層影響範圍較小,因此造成離子不論在注入管道或分離管道中,受壁面吸引或排斥的效應不明顯。流場兩側受到的擠壓較小,流線能較往分離管道中兩側擴展,將更多離子帶進分離管道中。負離子在圓弧區無聚集現象,使得訊號輸出時有較好的分析趨勢;正離子在分離過程中,吸附在壁面上的比例較少。
因此可得知在較小的德拜厚度之下,能得到更多的樣品資訊作為分析。
Capillary Zone Electrophoresis (CZE) is a kind of analysis method that develops rapidly in recent years. The effects of EDL cause different ions distribution density near the wall of CZE. Furthermore, the counter-ions will be pulled toward the microchannel wall of opposite charge and the co-ions will be pushed out of the EDL of the same charge.
Therefore, the effect of different Debye lengths on charged ions migration in CZE will be investigated in this study. In order to get the more accurate result for circular-arc in the intersection of injection channel and separation channel, this study uses Finite Element Method (FEM) in the computation and employs the Particle-In-Cell (PIC) method to investigate the migration of negatively and positively charged ions in CZE chip.
The results show that smaller Debye length has smaller effective zone and causes streamlines to expand widely, so many charged ions are pushed in separation channel. Because there is no cluster of negative-charged ions at arc-corner and smaller decreases of positive-charged ions during separation process, we can get more data output for analysis and more precise results.
[1] 李國賓,微流體生醫晶片,行政院國家科學委員會,科學發展,385期,72~77頁,2005。
[2] 李世光及胡毓忠,微機電系統與奈米科技,行政院國家科學委員會,科學發展,378期,56~61頁,2004。
[3] 張志誠,微機電技術,科學新視野32,2002。
[4] Manz, A., Graber, N., and Widmer, H. M., “Miniaturized Total Chemical Analysis Systems: A Novel Concept for Chemical Sensing,” Sensors and Actuators B, Vol.1, pp.244-248, 1990.
[5] Paegel, B. M., Hutt, L. D., Simpson, P. C., and Mathies, R. A., “Turn Geometry for Minimizing Band Broadening in Microfabricated Capillary Electrophoresis Channels,” Analytical Chemistry, Vol.72, No.14, pp.3030-3037, 2000.
[6]
Gravesen, P., Branebjerg, J.and Jensen, O. S., ”Microfluidics-a review,” Journal of Micromechanics and Microengineering, Vol.3, No.4, pp.168-182, 1993.
[7] Seiler, K., Harrison, D. J., and Manz, A., “Planar Glass Chips for Capillary Electrophoresis: Repetitive Sample Injection, Quantization, Separation Efficiency,” Analytical Chemistry, Vol.65, pp.1481-1488, 1993.
[8] Harrison, D. J., Glavina, P. G., and Manz, A., “Towards Miniaturized Electrophoresis and Chemical Analysis System on Silicon: an Alternative to Chemical Sensor,” Sensors and Actuators B, Vol.10, pp.107-116, 1993.
[9] Fan, Z. H. and Harrison, D. J., “Micromachining of Capillary Electrophoresis Injectors and Separators on Glass Chips and Evaluation of Flow at Capillary Intersections,” Analytical Chemistry, Vol.66, No.1, pp.177-184, 1994.
[10] Seiler, K., Fan, Z. H., Fluri, K., and Harrison, D. J., “Electroosmotic Pumping and Valveless Control of Fluid Flow within a Manifold of Capillaries on a Glass Chip,” Analytical Chemistry, Vol.66, pp.3485-3491, 1994.
[11] Helmholtz, H. V., “Studien über Elektrische Grenzschichten,” Wiedemann′s Annual Physical Chemistry, Vol.7, pp.337-382, 1879.
[12] Kohlrausch, F., “Ueber Concentrations-Verschiebungen durch Electrolyse im Inneren von Lösungen und Lösungsgemischen,” Annual Review of Physical Chemistry, Vol.62, pp.209-239, 1897.
[13] Andreev, V. P. and Lisin, E. E., “On the Mathematical Model of Capillary Electrophoresis”, Chromatographia, Vol.37, No.3/4, pp.202-210, 1933.
[14] Tiselius, A., “The Moving Boundary Method of Studying the Electrophoresis of Proteins,” Nova Acta Regia Societatis Scientiarum Upsaliensis Series IV, Vol.7, No.4, 1937.
[15] Rice, C. I. and Whitehead, R., “Electrokinetic Flow in a Narrow Capillary,” The Journal of Physical Chemistry, Vol.69, No.11, pp.4017-4024, 1965.
[16] Virtanen R., ”Zone Electrophoresis in a Narrow-bore Tube Employing Potentiometric Detection,” Acta Polytechnica Scandinavica, Vol. 123, pp. 1-67, 1974.
[17] Mikkers, F. E. P., Everaerts, F. M., and Verheggen, Th. P. E. M., “High-performance Zone Electrophoresis,” Journal of Chromatography, Vol.169, pp.11-20, 1979.
[18] Jorgenson, J. W. and Lukacs, K. D., “Zone Electrophoreisis in Open-Tubular Glass Capillaries,” Analytical Chemistry, Vol.53, pp.1298-1302, 1981.
[19] Harrison, D. J., Manz, A., Fan, Z., and Ludi, H., “Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip,” Analytical Chemistry, Vol.64, No.17, pp.1926-1932, 1992.
[20] Effenhauser, C.S. and Manz, A., “Glass Chip for High-Speed Capillary Electrophoresis Separations with Submicrometer Plate Heights,” Analytical Chemistry, 65, pp. 2637-2642, 1993.
[21] Jacobson, S. C., Hergenroden, R., Koutny L. B., Warmack R. J. and Ramsey J. M., “Effects of Injection Schemes and Column Geometry on the Performance of Microchip Electrophoresis Devices,” Analytical Chemistry, 66, pp. 1107-1113, 1994.
[22] Culbertson, C. T. and Jacobson, S. C., “Dispersion Sources for Compact Geometries on Microchips,” Analytical Chemistry, 70, pp. 3781-3789, 1998.
[23] Yang, C., Li, D., and Masliyah, J. H., “Modeling Forced Liquid Convection in Rectangular Microchannels with Electrokinetic Effects”, International Journal of Heat and Mass Transfer, Vol.41, No.24, pp.4229-4249, 1998.
[24] Patankar, N. A. and Hu, H. H., “Numerical Simulation of Electroosmotic Flow,” Analytical Chemistry, Vol.70, No.9, pp.1870-1881, 1998.
[25] Hu, L., Harrison, J. D., and Masliyah, J. H., “Numerical Model of Electrokinetic Flow for Capillary Electrophoresis,” Journal of Colloid and Interface Science, Vol.215, No.2, pp.300-312, 1999.
[26] Dutta, P. and Beskok, A., “Analytical Solution of Combined Electroosmotic /Pressure Driven Flows in Two-Dimensional Straight Channels: Finite Debye Layer Effects,” Analytical Chemistry, Vol.73, No.9, pp.1979-1986, 2001.
[27] Ren, L. and Li, D., “Electroosmotic Flow in Heterogeneous Microchannels,” Journal of Colloid and Interface Science, Vol.243, No.1, pp.255-261, 2001.
[28] Muzikar, J., Van De Goor, T., GaŠ, B., and Kenndler, E., “Electrophoretic Mobilities of Large Organic Ions in Nonaqueous Solvents: Determination by Capillary Electrophoresis in Propylene Carbonate, N,N-Dimethylformamide, N,N,-Dimethylacetamide, Acetonitrile and Methanol,” Electrophoresis, Vol.23, No.3, pp.375-382, 2002.
[29] Tang, G Y., Yang, C. J., and Gong, H. Q. “Modeling of Electroosmotic Flow and Capillary Electrophoresis with the Joule Heating Effect: The Nernst-Planck Equation versus the Boltzmann Distribution,” Langmuir, Vol.19, 2, pp.10975-10984, 2003.
[30] Hiemenz, P. C., “Principles of Colloid and Surface Chemistry,” Marcel Dekker, New York, 1986.
[31] Hunter, R. J., “Zeta Potential in Colloid Science: Principles and Applications,” Academic Press, New York, 1981.
[32] Chee, G. L. and Wan, T. S. M., “Reproducible and High-speed Separation of Basic Drugs by Capillary Zone Electrophoresis,” Journal of Chromatography, Vol.612, No.1, pp.172-177, 1993.
[33] Attard, P., Antelmi, D., and Larson, I., “Comparison of the Zeta Potential with the Diffuse Layer Potential from Charge Titration,” Langmuir, Vol.16, No.4, pp.1542-1552, 2000.
[34] Courant, R., ”Variational Method for the Solutions of Problems of Equilibrium and Vibrations,” Bull. Amer. Math. Soc., Vol.49, 1943.
[35] Turner, M. J., Clough, R. W., Martin, H. C., and Topp, L. C., ”Stiffness and Deflection Analysis of Complex Structures,” J. Aeronent Sci., Vol.23, No.9, 1956.
[36] Clough, R. W., “The Finite Element Method in Plane Stress Analysis,” Pro. 2nd ASME Conference on Electronic Compution, Pitsburgh, Pa., Sept. 1960.
[37] Besseling, J. F., “The Complete Analogy Between the Matrix Equations and the Continuous Field Equations of Structural Analysis,” International Symposium on Analogue and Digital Techniques Applied to Aeronautics, Liege, Belgium, 1963.
[38] Melosh, R. J., “Basis for Derivation of Matrics for the Direct Stiffness Method,” AIAA., Vol.1, 1963.
[39] Jones, R. E., “A Generalization of the Direct Stiffness Method of Structural Analysis,” AIAAJ., Vol.2, 1964.
[40] Dawson, J. M., “Particle Simulation of Plasma,” Reviews of Modern Physics, Vol.55, No.2, pp.403-447, 1983.
[41] Hockney, R. W. and Eastwood, J. W., “Computer Simulation Using Particles,” Institute of Physics Publishing Ltd., 1988.
[42] Birdsall, C. K. and Langdon, A. B., “Plasma Physics via Computer Simulation,” McGraw-Hill, New York, pp.20-22, 1985.
[43] Spirkin, A. M., “A Three-dimensional Particle-in-Cell Methodology on Unstructured Voronoi Grids with Applications to Plasma Microdevices. Ph.D. Dissertation, Mechanical Engineering,” Worcester Polytechnic Institute, Massachusetts, USA, 2006.
[44] Lewis, R. W., Fundamentals of the Finite Element Method for Heat and Fluid Flow. John Wiley & Sons., 2004.