| 研究生: |
陳佩汶 Chan, Pooi-Mun |
|---|---|
| 論文名稱: |
新一代磷硫四芽配位基的開發:合成與鑒定 Development of tetradendate thiolatophosphine ligands: Syntheses and characterization of dithiolate-diphosphine ligands |
| 指導教授: |
許鏵芬
Hsu, Hua-Fen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 多硫配位基 、P2S2配位基 |
| 外文關鍵詞: | sulfur-rich ligand, P2S2 ligand |
| 相關次數: | 點閱:50 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多硫配位環境在許多金屬催化酵素,例如固氮酵素, 氫化酶和CO脫氫酶的活化中心中皆扮演重要的角色。於是,化學家合成具有多硫配位環境的低分子量生物模擬化合物來瞭解金屬在金屬催化酵素中所扮演的角色。有一些研究着重在探討可以鍵結及活化一些小分子如酵素的基質,中間體或產物的含硫金屬化合物。
我們實驗室也根據這種研究背景,利用硫磷配位基,例如PS3配位基合成生物模擬化合物。在這個研究中,我們設計及合成新的四配位硫磷配位基,P2S2配位基,並且利用各種物理方法,如x-ray結晶學,光譜學,元素分析法和電噴灑游離質譜去做鑒定。
與PS3配位基相比,P2S2配位基具有兩個相同取代基的不對稱中心磷原子,可以產生(R,R), (S,S)和內消旋化合物[meso(R,S or S,R)]三種結構異構物。經由x-ray結構測定,所得之P2S2和P2S2’配位基皆是內消旋化合物(meso)。而P2S2’’配位基,尚未得到其X-ray結構,但是我們利用核磁共振光譜,紅外光光譜和電噴灑游離質譜去做鑒定。
Sulfur-dominated coordination sphere plays a key role in the active sites of many metalloenzymes such as nitrogenase, hydrogenase and CO dehydrogenase. This inspires chemists to synthesize low-molecular-weight model complexes with the sulfur-rich ligating environment for the purpose of elucidating the roles of metals in these metalloenzymes. In particular, some of the research has been emphasized on explore metal-sulfur complexes that bind and activate small molecules, such as substrates, intermediates and products of enzymes.
Based on this background, our laboratory has utilized hybrid P/S ligand, such as tris(benzenethiolato)phosphine ligands (PS3) to develop biomimetic complexes. At this work, a new type of tetradendate hybrid P/S ligand, dithiolate-diphosphine ligand (P2S2) has been designed, synthesized and characterized by various physical methods such as X-ray crystallography, spectroscopies, elemental analysis and ESI-Mass analysis.
Compared to PS3 ligand system, P2S2 ligands possess two stereogenic P atoms which have equivalent substituents and can form a mixture of three types of stereoisomers: (R,R), (S,S) and meso isomers (R,S or S,R forms). The isolated P2S2 and P2S2’ ligand are identified as meso isomers by the X-ray structural analysis at this work. For the case of P2S2’’ ligand, the X-ray structure has not been determined, however, other analysis (NMR, IR and ESI-Mass analysis) has been taken.
[1] a)D. Sellmann, J. Sutter, Acc. Chem. Res. 1997, 36, 460-469; b)D. Sellmann, J. Utz, N. Blum, F. W. Heinemann, Coord. Chem. Rev. 1999, 190-192, 607-627.
[2] D. Sellmann, T. Becker, F. Knoch, Chem. Ber. 1996, 129, 509-519.
[3] D. Sellmann, D. C. F. Blum, F. W. Heinemann, J. Sutter, Eur. J. Inorg. Chem. 2003, 418-426.
[4] D. Sellmann, D. C.F. Blum, F. W. Heinemann, Inorg. Chim. Acta 2002, 337, 1-10.
[5] a)D. Sellmann, A. Hennige, Angew. Chem. Int. Ed. Engl. 1997, 36, 276-278; b)D. Sellmann , A. Hennige, F. W. Heinemann, Inorg. Chim. Acta 1998, 280, 39-49.
[6] D. Sellmann, W. Soglowek, a. F. Knoch, a. G. Ritter, J. Dengler, Inorg. Chem. 1992, 31, 3711-3717.
[7] D. Sellmann, J. Utz, F. W. Heinemann, Inorg. Chem. 1999, 38, 459-466.
[8] D. Sellmann, J. Utz, F. W. Heinemann, Eur. J. Inorg. Chem. 1999, 341-348.
[9] a)D. Sellmann, J. Utz, F. W. Heinmann, Inorg. Chem. 1999, 38, 5314-5322; b)D. Sellmann, K. Engl, F. W. Heinemann, Eur. J. Inorg. Chem. 2000, 423-429; c)D. Sellmann, K. Hein, F. W. Heinemann, Eur. J. Inorg. Chem. 2004, 2004, 3136-3146.
[10] D. Sellmann, K. P. Peters, F. W. Heinemann, Eur. J. Inorg. Chem. 2004, 2004, 581-590.
[11] D. Sellmann, S. Y. Shaban, F. W. Heinemann, Eur. J. Inorg. Chem. 2004, 2004, 4591-4601.
[12] a)D. Sellmann, R. Ruf, F. Knoch, M. Moll, Z. Naturforsh., B: Chem. Sci. 1995, 50, 791-801; b)D. Sellmann, R. Ruf, F. Knoch, M. Moll, Inorg. Chem. 1995, 34, 4745-4755.
[13] a)A. Bruce, J. L. Corbin, P. L. Dahlstrom, J. R. Hyde, M. Minelli, E. I. Stiefel, J. T. Spence, J. Zubieta, Inorg. Chem. 1982, 21, 917-926; b)K. R. Barnard, M.Bruck, S. Huber, C. Grittini, J. H. Enemark, R. W. Gable, a. A. G. Wedd, Inorg. Chem. 1997, 36, 637-649; c)M. L. Mader, M. D. Carducci, J. H. Enemark, Inorg. Chem. 2000, 39, 525-531.
[14] D. Sellmann, W. Prechtel, F. Knoch, M. Moll, Z. Naturforsch., B: Chem. Sci. 1992, 47, 1411-1423.
[15] D. Sellmann, S. Emig, F. W. Heinemann, Angew. Chem. Int. Ed. Engl. 1997, 36, 1734-1736.
[16] S. Y. Shaban, Inorg. Chim. Acta 2011, 367, 212-216.
[17] W. Tsagkalidis, a. D. Rodewald, D. Rehder, Inorg. Chem. 1995, 34, 1943-1945.
[18] D.Y.Chi, S. R. Wilson, J. A. Katzenellenbogenh, Inorg. Chem. 1995, 34, 1624-1625.
[19] D. Sellmann, A. Hille, A. Rosler, F. W. Heinemann, M. Moll, G. Brehm, S. Schneider, M. Reiher, B. A. Hess, W. Bauer, Chem. Eur. J. 2004, 10, 820-830.
[20] D. Sellmann, B. Hautsch, A. Rösler, F. W. Heinemann, Angew. Chem. Int. Ed. Engl. 2001, 40, 8.
[21] D. Sellmann, A. Hille, F. W. Heinemann, M. Moll, A. Rosler, J. Sutter, G. Brehm, M. Reiher, B. A. Hess, S. Schneider, Inorg. Chim. Acta 2003, 348, 194-198.
[22] S. C. Davies, D. L. Hughes, R. L. Richards, J. R. Sanders, J. Chem. Soc., Dalton Trans. 2000, 719-725.
[23] a)S. C. Davies, D. L. Hughes, Z. Janas, L. Jerzykiewicz, R. L. Richards, J. R. Sanders, P. Sobota, Chem. Commun. 1997, 1261-1262; b)S. C. Davies, D. L. Hughes, Z. Janas, L. B. Jerzykiewicz, R. L. Richards, J. R. Sanders, J. E. Silverston, P. Sobota, Inorg.Chem. 2000, 39, 3485-3498.
[24] a)S. C. Davies, D.L. Hughes, R. L. Richards, J. R. Sanders, Chem. Commun. 1998, 2699-2700; b)S. C. Davies, M. C. Durrant, D. L. Hughes, R. L. Richards, J. R. Sanders, J. Chem. Soc., Dalton Trans. 2000, 4694-4701; c)S. C. Davies, D. L. Hughes, R. L. Richards, J. R. Sanders, J. Chem. Soc., Dalton Trans. 2002, 1442-1447; d)S. C. Davies, D. J. Evans, D. L. Hughes, M. Konkol, R. L. Richards, J. R. Sanders, P. Sobota, J. Chem. Soc., Dalton Trans. 2002, 2473-2482.
[25] L. D. Field, R. W. Guest, P. Turner, Inorg. Chem. 2010, 49, 9086-9093.
[26] S. Komiya, M. Akita, A. Yoza, N. Kasuga, A. Fukuoka, Y. Kai, J. Chem. Soc., Chem. Commun. 1993, 787.
[27] L. D. Field, H. L. Li, S. J. Dalgarno, P. Turner, Chem. Commun. 2008, 1680-1682.
[28] Justin L. Crossland, Lev N. Zakharov, D. R. Tyler, Inorg. Chem. 2007, 46, 10476-10478.
[29] A. Takaoka, N. P. Mankad, J. C. Peters, J. Am. Chem. Soc. 2011, 133, 8440-8443.
[30] S. F. Ye, F. Neese, A. Ozarowski, D. Smirnov, J. Krzystek, J. Telser, J. H. Liao, C. H. Hung, W. C. Chu, Y. F. Tsai, R. C. Wang, K. Y. Chen, H. F. Hsu, Inorg. Chem. 2010, 49, 977-988.
[31] C. Wei-Cheng, W. Chi-Chin, H. Hua-Fen, Inorg.Chem. 2006, 45, 3164-3166.
[32] H. Hua-Fen, C. Wei-Cheng, H. Chen-Hsiung, L. Ju-Hsiou, Inorg. Chem. 2003, 42, 7369-7371.
[33] K. Issleib, W. Gans, Z. Anorg. Allg. Chem 1982, 491, 163-174.
[34] R. Schmelzer, D. Schwarzenbach, Cryst. Struct. Commun. 1981, 10, 1317-1321.
[35] T. Kitagawa, M. Kita, K. Kashiwabara, J. Fujita, Bull. Chem. Soc. Jpn. 1991, 64, 2942-2947.
[36] K. Kashiwabara, Y. Ito, M. Kita, J. Fujita, K. Nakajima, J. Chem. Soc., Dalton Trans. 1997, 39-45.
[37] R. J. Long, D. J. Jones, V.C. Gibson, A. J. P. White, Organometallics 2008, 27, 5960-5967.