| 研究生: |
王皇仁 Wang, Haung-Jen |
|---|---|
| 論文名稱: |
分歧管內氣流之數值研究 Numerical Study of Gas Flow in Bifurcating Tubes |
| 指導教授: |
黃啟鐘
Hwang, Chii-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 分歧管 、二次流 、歧管曲率 、彎管流效應 |
| 外文關鍵詞: | bifurcation tubes, secondary flow, bifurcation tubes curvature, Dean flow effect |
| 相關次數: | 點閱:130 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據衛生署調查台灣約有200萬的氣喘人口,也就是說有將近十分之ㄧ的台灣人患有氣喘。人類肺部的呼吸道是由許多微小支氣管組成(如同網路),系統越接近終端其呼吸道就越細且分支增加。為解決呼吸道相關疾病,了解氣體在分歧管中之流動情形是一重要之工作。計算流體力學近年來已廣泛應用在醫學工程上,例如人體血管流及氣管流的模擬等。本文利用FLUENT商業軟體探討人體肺部在穩態吸氣模式下雷諾數範圍從200-2000,模擬三維二級、三級與四級分歧管之流場現象。SIMPLEC是被採用來求解不可壓縮流三維尤拉/納維史托克方程式及能量方程式。除了上述數值法外,本研究也採用Roe通量差分分離法求解可壓縮流。為探討上述方法之精確性,將求解噴嘴及分歧管無黏性流場和圓管黏性層流場,並與相關解析解比較。最後利用FLUENT軟體求解分歧管黏性層流場,並將二級與三級分歧管流場的解與相關文獻比較。此計算結果發現如速度分佈、流量分佈、壓差與二次流等,會受雷諾數、歧管曲率、彎管流效應、歧管脊處和歧管上游及不同的入流邊界條件皆會影響分歧管的流場狀態。此外,每個接合處皆會影響到下一級歧管的流場狀態,而採用均勻入流邊界,所得之壓力係數會比其他入流邊界條件來的高。
關鍵字:分歧管、二次流、歧管曲率、彎管流效應
According to the investigation of the Department of Health, approximately 2,000,000 people have asthma and it is about 10 percent of the populations in Taiwan. The human lung airways are composed of many bronchial. When the system close to the terminal, the airway becomes smaller and the branches increase. To solve the disease related to the respiratory system, understanding the gas behavior in bifurcating tube is an important work. In recent years, the computational fluid dynamics is widely applied in the biomechanical engineering, such as numerical simulation of coronary artery flow and human pulmonary artery flow. On this study, the FLUENT commercial software is used to investigate the inspiratory steady flow Reynolds number is about 200-2000 in the second, third, fourth generation bifurcation tubes. SIMPLEC algorithm is adopted to solve the incompressible three-dimensional Euler/Navier-Stokes equation and energy equation. Besides the above numerical simulations, Roe flux-splitting method is also utilized to study the compressible flow. To evaluate this approach, the inviscid nozzle and bifurcating tubes flow and viscous pipe flow are solved and the numerical results are compared with the related analytical solutions. Finally, the FLUENT code is used to simulation second-generation and third-generation bifurcation tubes flow, and the results are compare with the solutions in the other literature. From these results such as velocity distribution, mass flow rate distribution and secondary flow phenomena, the Reynolds number, Dean flow effect, carina ridge effect, upstream flow field and different boundary inlet condition will affect bifurcation tubes flows. Also, each junction will affect the flow field of next bronchial, and the pressure coefficient which is obtained by using the uniform inlet flow condition is high than that of other inlet boundary treatment.
Keywords:bifurcation tubes, secondary flow, bifurcation tubes curvature, Dean flow effect
【1】 Schroter, R.C., and Sudlow, M.F., “Flow Pattern in Models of the Human Bronchial Airways.” Respiratory Physiology, Vol. 7, 1969, pp. 341-355.
【2】 Pedley, T.J., “Pulmonary Fluid Dynamics.” Annual Review of Fluid Mechanics, Vol. 9, 1977, pp. 229-274.
【3】 Slutsky, A., and Berdine, G., and Dresen, J., “Steady Flow in A Model of Human Central Airways.” Journal of Applied Physiology, Vol. 49, 1980, pp. 417-423.
【4】 Isabey, D., and Chang, H.K., “Steady and Unsteady Pressure-Flow Relationships in Central Airways.” Journal of Applied Phisiology, Vol.51, 1981, pp. 1338-1348.
【5】 Snyder, B., and Olson, D.E., “Flow Development in A Model Airway Bronchus.” Journal of Fluid Mechanics, Vol.207, 1989, pp. 378-392.
【6】 Lee, J.W., and Goo, I.H., “Numerical Simulation of Air Flow and Inertial Deposition of Particles in A Bifurcating Channel of Square Cross Section.” Journal of Aerosol Medicine, Vol.5, 1992, pp. 136-154.
【7】 Asgharian, B., and Anjivel, S., “Inertial and Gravitational Deposition of Particles in A Square Cross Section Bifurcating Airway. ”Aerosol Science and Technology, Vol.20, 1994, pp. 177-193.
【8】 Zhao, Y., and Lieber, B.B., “Steady Inspiratory Flow in A Model Symmetric Bifurcation.” ASME Journal of Biomechanical Engineering, Vol.116, 1994, pp. 488-496.
【9】 Zhao, Y., and Brunskill, C.T., and Lieber, B.B., “Inspiratory and Expiratory Steady Flow Analysis in A Model Symmetrically Bifurcating Airways.” ASME Journal of Biomechanical Engineering, Vol.119, 1997, pp. 52-58.
【10】 Wilquem, F., and Degrez, G., “Numerical Modeling of Steady Inspiratory Airflow through a Three-Generation Model of the Human Central Airways.” ASME Journal of Biomechanical Engineering, Vol.119, 1997, pp. 59-65.
【11】 Comer, J.K., and Kleinstreuer, C., and Zhang, Z., “Flow Structures and Particle Deposition Pattern in Double-Bifurcation Airway Models Part1. Air Flow Field.” Journal of Fluid Mechanics, Vol.435, 2001, pp. 25-54.
【12】 Zhang, Z., and Kleinstreuer, C., “Species Heat and Mass Transfer in a Human Upper Airway Model.” International Journal of Heat and Mass Transfer, Vol.46, 2003, pp. 4755-4768
【13】 Fresconi, F.E., and Prasad, A.K., “Secondary Velocity Field in the Conducting Airways of the Human Lung.” Journal of Biomechanical Engineering, Vol.129, 2007, pp. 722
【14】 Leong, F.Y., and Smith, K.A., and Wang, C.H., “Secondary Flow Behavior in A Double Bifurcation.” Physics of Fluid, 21., 2009, pp. 043601-1
【15】 FLUENT User Guide Ver.6.3.16, FLUENT Inc.
【16】 Patanker, S.V., and Spalding, D.B., “A Calculation Procedure for Heat Mass and Momentum Transfer in Three-Dimensional Parabolic Flows.” Int. J Heat Mass Transfer, Vol.15, 1972, pp. 1787-1806.
【17】 Van Doormaal, J.P., and Raithby, G.D., “Enhancements of the SIMPLE Methods for Predicting Incompressible Fluid Flows.” Num. Heat Mass Transfer, 1984, Vol.7, pp. 147-163
【18】 Rossow, C.C., “A Flux-Splitting Scheme for Compressible and Incompressible Flows.” J. Compt. Phys., 164, 2000, pp. 104-122.
【19】 Liu, C.Y., and Hwang C.J., “New strategy for Unstructured Mesh Generation.” AIAA Journal, Vol.39, No.6, 2001, pp. 1078-1085.
【20】 John, J.E.A., “ Gas dynamics ”, Second edition
【21】 Currie, I.G., “ Fundamental Mechanical of Fluids ”
【22】 Yang, X.L., and Liu, Y., and So, R.M.C., and Yang, J.M., “The Effect of Inlet Velocity Profile on the Bifurcation COPD Airway Flow.” Computers in Biology and Medicine, 36., 2006, pp. 181-194.
【23】 曾臆璁 “在四面體與稜鏡型網格上探討低馬赫數流”國立成功大學航太所碩士論文,2008年7月
【24】 “CATIA Documentation ”, DASSUALT SYSTEM, 2002
【25】 賴建文 “動態四面體/稜鏡型網格之建立”國立成功大學太所碩士論文,2004年6月
【26】 Weibel, E.R., “Morphometry of the Human Lung.” Academic Press, 1963, New York, Springer, Berlin.
【27】 Mochizuki, S., “Convective Mass Transport during Ventilation in a Model of Branched Airways of Human Lungs.” Proceedings of Pacific Symposium on Flow Visualization and Image Processing 4, 2003, Chamonix Mont-Blanc, France.
【28】 Dean, W.R., “Note on the Motion of Fluid in a Curved Pipe.” Philosophical Magazine 4(Suppl. 7), 1927, pp. 208-223.
【29】 Liu, Y., and So, R.M.C., and Zhang, C.H., “Modeling the Bifurcating Flow in A Human Lung Airway.” Journal of Biomechanical, Vol.35, 2002, pp. 465-473.