| 研究生: |
帥致剛 Shuai, Chih-Kang |
|---|---|
| 論文名稱: |
釤鈷磁鐵切削廢汙泥資源化之研究 Recycling of Samarium Cobalt Magnet Cutting Waste Sludge |
| 指導教授: |
申永輝
Shen, Yun-Hwei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 永久磁鐵 、釤鈷磁鐵 、釤 、鈷 、銅 、鐵 、田口法 、浸漬 、離子交換 、IRC748 、資源化 |
| 外文關鍵詞: | Hydrometallurgy, Ion Exchange, Samarium, Cobalt, Recycling |
| 相關次數: | 點閱:117 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的發展、綠色能源生產的需求上升與技術的提升,人們對於一些相關產業,如半導體、能源、醫療、航太領域的要求日益升高,而永久磁鐵中的釤鈷磁鐵作為本研究之主角可以應用在上路領域中,故其切削廢汙泥之資源化處理是相當重要的。本研究將針對釤鈷磁鐵之切削廢汙泥進行三個部分之處理,首先,第一部分將針對廢料進行乾燥並使用50目之篩網過篩後進行特性分析,並同時進行王水消化分析比對廢料中所含金屬之主要成分為含有釤:28.57%;鈷:54.33%;銅:3.73%;鐵:13.38%。
本研究之第二部分為酸溶浸漬分析,第一步驟利用田口方法設計酸溶參數之變動水準並利用直交表來進行實驗,經過計算與變異數分析可得知每個因子之變動對各參數之影響狀況並可得到初步酸溶浸漬參數,而後經過第二步驟參數之優化後可得浸漬階段最佳參數為為浸漬液使用硫酸、溫度設定在90度、固液比10g/L、時間設定為15分鐘、酸濃度為0.25M、過氧化氫添加量為2 vol %,釤之浸漬效率可達96.84%;鈷之浸漬效率可達97.61%;銅之浸漬效率可達98.65%;鐵之浸漬效率可達93.72%。
本研究之第三部分是將浸漬後之金屬離子分離,首先針對稀土金屬釤,由於晶體的類似故添加硫酸鈉可單獨將釤離子以硫酸釤鈉的形式沉澱分離出來,沉澱效率達99.9%,純度可達99.4%。去除釤之後之溶液使用離子交換樹脂IRC748進行離子交換,將銅、鐵離子吸附並收集含鈷之尾液達到初步分離,並利用添加氨水調整pH值等方式來分離銅、鐵離子。最後,含鈷之離子交換尾液使用草酸進行化學沉澱法,將鈷離子以草酸鈷的形式沉澱出來,沉澱效率可達99.5%,純度可達99.4%。
This study provides a complete recycling process of samarium cobalt magnet cutting waste sludge. First, Taguchi method and acid are used to do leaching, samarium, cobalt, copper and iron metals to explore the optimal parameters. Next, chemical precipitation is performed on the samarium, and it is precipitated as sodium samarium sulfate using sodium sulfate. Then use ion exchange resin IRC748 to absorb copper and iron ions in the solution, and collect the cobalt-containing exchange tail liquid, then cobalt and ions are precipitated as cobalt oxalate using oxalic acid. Finally, sulfuric acid is used to desorb the copper and iron ions on the adsorbed resin, and then the copper and iron ions are separated by using ammonia water and adjusting the pH value to form iron hydroxide and copper ammonia solution.
1. Nayak, A. K.; Behera, B.; Sarangi, K.; Ghosh, M. K.; Basu, S., Process Flowsheet Development for Separation of Sm, Co, Cu, and Fe from Magnet Scrap. ACS Omega 2021, 6 (1), 188-196.
2. Yoon, H.-S.; Kim, C.-J.; Chung, K. W.; Lee, S.-J.; Joe, A. R.; Shin, Y.-H.; Lee, S.-I.; Yoo, S.-J.; Kim, J.-G., Leaching kinetics of neodymium in sulfuric acid from E-scrap of NdFeB permanent magnet. Korean Journal of Chemical Engineering 2014, 31 (4), 706-711.
3. Li, X.; Li, Z.; Orefice, M.; Binnemans, K., Metal Recovery from Spent Samarium–Cobalt Magnets Using a Trichloride Ionic Liquid. ACS Sustainable Chemistry & Engineering 2019, 7 (2), 2578-2584.
4. Onoda, H.; Kurioka, Y., Recovery of samarium from cobalt–samarium solution using phosphoric acid. Journal of Environmental Chemical Engineering 2015, 3 (4, Part A), 2825-2828.
5. Onoda, H.; Kurioka, Y., Selective removal and recovery of samarium from mixed transition metal solution using phosphoric acid. Journal of Environmental Chemical Engineering 2016, 4 (4, Part A), 4536-4539.
6. Zhou, K.; Wang, A.; Zhang, D.; Zhang, X.; Yang, T., Sulfuric acid leaching of SmCo alloy waste and separation of samarium from cobalt. Hydrometallurgy 2017, 174, 66-70.
7. Hwang, H.-S.; Lee, K.-H., Intrusion of overerupted molars by corticotomy and magnets. Am. J. Orthod. Dentofacial Orthop. 2001, 120 (2), 209-216.
8. Prodius, D.; Gandha, K.; Mudring, A.-V.; Nlebedim, I. C., Sustainable Urban Mining of Critical Elements from Magnet and Electronic Wastes. ACS Sustainable Chemistry & Engineering 2020, 8 (3), 1455-1463.
9. Mineral commodity summaries 2021; Reston, VA, 2021; p 200.
10. Eldosouky, A.; Škulj, I., Recycling of SmCo5 magnets by HD process. Journal of Magnetism and Magnetic Materials 2018, 454, 249-253.
11. Orefice, M.; Audoor, H.; Li, Z.; Binnemans, K., Solvometallurgical route for the recovery of Sm, Co, Cu and Fe from SmCo permanent magnets. Separation and Purification Technology 2019, 219, 281-289.
12. Zhou, X.; Chen, Y.; Yin, J.; Xia, W.; Yuan, X.; Xiang, X., Leaching kinetics of cobalt from the scraps of spent aerospace magnetic materials. Waste Management 2018, 76, 663-670.
13. Su, X.; Wang, Y.; Guo, X.; Dong, Y.; Gao, Y.; Sun, X., Recovery of Sm(III), Co(II) and Cu(II) from waste SmCo magnet by ionic liquid-based selective precipitation process. Waste Management 2018, 78, 992-1000.
14. Cheramin, M.; Saha, A. K.; Cheng, J.; Paul, S. K.; Jin, H., Resilient NdFeB magnet recycling under the impacts of COVID-19 pandemic: Stochastic programming and Benders decomposition. Transportation Research Part E: Logistics and Transportation Review 2021, 155, 102505.
15. Trump, D., A federal strategy to ensure secure and reliable supplies of critical minerals. Donald Trump, Washington, DC, accessed Apr 2018, 3, 2018.
16. Hadjipanayis, G. C.; Liu, J.-f.; Gabay, A.; Marinescu, M., Current Status of Rare-Earth Permanent Magnet Research in USA. Journal of Iron and Steel Research, International 2006, 13, 12-22.
17. Ni, S.; Su, J.; Zhang, H.; Zeng, Z.; Zhi, H.; Sun, X., A cleaner strategy for comprehensive recovery of waste SmCo magnets based on deep eutectic solvents. Chemical Engineering Journal 2021, 412, 128602.
18. Campos, M. F. d.; Landgraf, F. J. G.; Saito, N. H.; Romero, S. A.; Neiva, A. C.; Missell, F. P.; Morais, E. d.; Gama, S.; Obrucheva, E. V.; Jalnin, B. V., Chemical composition and coercivity of SmCo5 magnets. Journal of Applied Physics 1998, 84 (1), 368-373.
19. Gutfleisch, O., High-Temperature Samarium Cobalt Permanent Magnets. In Nanoscale Magnetic Materials and Applications, Liu, J. P.; Fullerton, E.; Gutfleisch, O.; Sellmyer, D. J., Eds. Springer US: Boston, MA, 2009; pp 337-372.
20. Bian, L.-p.; Li, Y.; Han, X.-h.; Cheng, J.-y.; Qin, X.-n.; Zhao, Y.-q.; Sun, J.-b., Effect of multi-element addition of Alnico alloying elements on structure and magnetic properties of SmCo5-based ribbons. Physica B: Condensed Matter 2018, 531, 1-8.
21. Rabenberg, L.; Mishra, R. K.; Thomas, G. In Development of the cellular microstructure in the Sm Cosub(74)-type magnets, Proceedings of the sixth international workshop on rare earth-cobalt permanent magnets and their applications, August 31 - September 2, 1982, and third international symposium on magnetic anisotropy and coercivity in rare earth-transition metal alloys, September 3, 1982, Austria, Technical University: Austria, 1982; p 802.
22. Rabenberg, L.; Mishra, R. K.; Thomas, G., Microstructures of precipitation‐hardened SmCo permanent magnets. Journal of Applied Physics 1982, 53 (3), 2389-2391.
23. Zhang, W.; Zhao, R.; Fang, Y.; Zhou, M.; Zhu, M.; Li, W., Effect of Sm-rich liquid phase on magnetic properties and microstructures of sintered 2:17-type Sm-Co magnet. Journal of Rare Earths 2011, 29 (10), 934-938.
24. Song, X.; Liu, Y.; Xiao, A.; Yuan, T.; Ma, T., Cell-boundary-structure controlled magnetic-domain-wall-pinning in 2:17-type Sm-Co-Fe-Cu-Zr permanent magnets. Materials Characterization 2020, 169, 110575.
25. Fidler, J.; Schrefl, T.; Hoefinger, S.; Hajduga, M., Recent developments in hard magnetic bulk materials. Journal of Physics: Condensed Matter 2004, 16 (5), S455-S470.
26. Zhou, X.; Huang, A.; Cui, B.; Sutherland, J. W., Techno-economic Assessment of a Novel SmCo Permanent Magnet Manufacturing Method. Procedia CIRP 2021, 98, 127-132.
27. Binnemans, K.; Jones, P. T., Rare Earths and the Balance Problem. Journal of Sustainable Metallurgy 2015, 1 (1), 29-38.
28. Yan, A.; Bollero, A.; Gutfleisch, O.; Müller, K.-H., Microstructure and magnetization reversal in nanocomposite SmCo5/Sm2Co17 magnets. Journal of Applied Physics 2002, 91 (4), 2192-2196.
29. Meija, J.; Coplen, T. B.; Berglund, M.; Brand, W. A.; Bièvre, P. D.; Gröning, M.; Holden, N. E.; Irrgeher, J.; Loss, R. D.; Walczyk, T.; Prohaska, T., Atomic weights of the elements 2013 (IUPAC Technical Report). Pure Appl. Chem. 2016, 88 (3), 265-291.
30. Education, T. J. N. A. F.-O. o. S., The Element Samarium. 2021.
31. Education, T. J. N. A. F.-O. o. S., Isotopes of the Element Samarium. 2021.
32. Britannica, T. E. o. E. samarium. https://www.britannica.com/science/samarium (accessed 10/30).
33. Information, N. C. f. B., PubChem Compound Summary for CID 104730, Cobalt. 2021.
34. Information, N. C. f. B., PubChem Annotation Record for Cobalt, elemental, Source: Hazardous Substances Data Bank (HSDB). 2021.
35. Britannica, T. E. o. E. cobalt. https://www.britannica.com/science/cobalt-chemical-element (accessed 1/18).
36. (HSDB), H. S. D. B., Cobalt, elemental. 2021.
37. Szymczak, H., Magnetic Materials and Applications. In Encyclopedia of Condensed Matter Physics, Bassani, F.; Liedl, G. L.; Wyder, P., Eds. Elsevier: Oxford, 2005; pp 204-211.
38. Kim, D.; Kim, J.; Jo, S.; Lee, T. S., Colorimetric detection of Co ions by a poly(vinyl alcohol)-based hydrogel using color coordinate. Dyes and Pigments 2022, 197, 109894.
39. Information, N. C. f. B. Copper. https://pubchem.ncbi.nlm.nih.gov/compound/Copper (accessed 1/17).
40. Britannica, T. E. o. E. copper. https://www.britannica.com/science/coppe (accessed 2/8).
41. Britannica, T. E. o. E. iron. https://www.britannica.com/science/iron-chemical-element (accessed 2/8).
42. Souza Filho, I. R.; Springer, H.; Ma, Y.; Mahajan, A.; da Silva, C. C.; Kulse, M.; Raabe, D., Green steel at its crossroads: Hybrid hydrogen-based reduction of iron ores. Journal of Cleaner Production 2022, 130805.
43. Hk, T.; Hossiney, N., A short review on environmental impacts and application of iron ore tailings in development of sustainable eco-friendly bricks. Materials Today: Proceedings 2021.
44. Monhemius, J., Precipitation diagrams for metal hydroxides, sulphides, arsenates and phosphates. Transactions Institution of Mining & Metallurgy 1977, 86, C202-C206.
45. Sinha, M. K.; Pramanik, S.; Kumari, A.; Sahu, S. K.; Prasad, L. B.; Jha, M. K.; Yoo, K.; Pandey, B. D., Recovery of value added products of Sm and Co from waste SmCo magnet by hydrometallurgical route. Separation and Purification Technology 2017, 179, 1-12.
46. Sahoo, K.; Nayak, A. K.; Ghosh, M. K.; Sarangi, K., Preparation of Sm2O3 and Co3O4 from SmCo magnet swarf by hydrometallurgical processing in chloride media. Journal of Rare Earths 2018, 36 (7), 725-732.
47. 王晶晶; 许涛; 马莹; 张弓; 王东杰, 一种钐钴磁性废料的回收利用方法.
48. 张杜超; 王安; 张新望; 肖庆凯; 杨天足; 刘伟锋; 陈霖, 一种处理钐钴合金的方法. 2017.
49. Ji, B.; Li, Q.; Zhang, W., Leaching Recovery of Rare Earth Elements from Calcination Product of a Coal Coarse Refuse Using Organic Acids. Journal of Rare Earths 2020.
50. Swain, N.; Mishra, S.; Acharya, M. R., Hydrometallurgical route for recovery and separation of samarium (III) and cobalt (II) from simulated waste solution using tri-n-octyl phosphine oxide – A novel pathway for synthesis of samarium and cobalt oxides nanoparticles. Journal of Alloys and Compounds 2020, 815, 152423.
51. Mishra, B. B.; Devi, N., D2EHPA is a potential extractant for extraction of europium and samarium from chloride medium. Materials Today: Proceedings 2020, 30, 254-257.
52. Torkaman, R.; Safdari, J.; Torab-Mostaedi, M.; Moosavian, M. A., A kinetic study on solvent extraction of samarium from nitrate solution with D2EHPA and Cyanex 301 by the single drop technique. Hydrometallurgy 2014, 150, 123-129.
53. Torkaman, R.; Moosavian, M. A.; Torab-Mostaedi, M.; Safdari, J., Solvent extraction of samarium from aqueous nitrate solution by Cyanex301 and D2EHPA. Hydrometallurgy 2013, 137, 101-107.
54. Bezzina, J. P.; Robshaw, T.; Dawson, R.; Ogden, M. D., Single metal isotherm study of the ion exchange removal of Cu(II), Fe(II), Pb(II) and Zn(II) from synthetic acetic acid leachate. Chemical Engineering Journal 2020, 394, 124862.
55. Lv, Y.; Zong, L.; Liu, Z.; Du, J.; Wang, F.; Zhang, Y.; Ling, C.; Liu, F., Sequential separation of Cu(II)/Ni(II)/Fe(II) from strong-acidic pickling wastewater with a two-stage process based on a bi-pyridine chelating resin. Chinese Chemical Letters 2021, 32 (9), 2792-2796.
56. Janin, A.; Blais, J.-F.; Mercier, G.; Drogui, P., Selective recovery of Cr and Cu in leachate from chromated copper arsenate treated wood using chelating and acidic ion exchange resins. J. Hazard. Mater. 2009, 169 (1), 1099-1105.
57. Lin, L.-C.; Li, J.-K.; Juang, R.-S., Removal of Cu(II) and Ni(II) from aqueous solutions using batch and fixed-bed ion exchange processes. Desalination 2008, 225 (1), 249-259.
58. Mendes, F. D.; Martins, A. H., Selective sorption of nickel and cobalt from sulphate solutions using chelating resins. International Journal of Mineral Processing 2004, 74 (1), 359-371.
59. Ni'am, A. C.; Wang, Y.-F.; Chen, S.-W.; You, S.-J., Recovery of rare earth elements from waste permanent magnet (WPMs) via selective leaching using the Taguchi method. Journal of the Taiwan Institute of Chemical Engineers 2019, 97, 137-145.
60. Dasgupta, K.; Singh, D. K.; Sahoo, D. K.; Anitha, M.; Awasthi, A.; Singh, H., Application of Taguchi method for optimization of process parameters in decalcification of samarium–cobalt intermetallic powder. Separation and Purification Technology 2014, 124, 74-80.
61. 许涛; 王东杰; 王晶晶; 于晓征, 钐钴磁性废料的资源特性研究. 2022, (5).
62. Feng, Y.; Lee, P.-H.; Wu, D.; Zhou, Z.; Li, H.; Shih, K., Degradation of contaminants by Cu+-activated molecular oxygen in aqueous solutions: Evidence for cupryl species (Cu3+). J. Hazard. Mater. 2017, 331, 81-87.
63. Littlejohn, P.; Vaughan, J., Selective elution of nickel and cobalt from iminodiacetic acid cation exchange resin using ammoniacal solutions. Hydrometallurgy 2014, 141, 24-30.
64. Littlejohn, P.; Vaughan, J., Recovery of nickel and cobalt from laterite leach tailings through resin-in-pulp scavenging and selective ammoniacal elution. Minerals Engineering 2013, 54, 14-20.
65. Li, J.-R.; Wang, X.; Yuan, B.; Fu, M.-L., Layered chalcogenide for Cu2+ removal by ion-exchange from wastewater. J. Mol. Liq. 2014, 200, 205-212.
66. Fu, L.; Shuang, C.; Liu, F.; Li, A.; Li, Y.; Zhou, Y.; Song, H., Rapid removal of copper with magnetic poly-acrylic weak acid resin: Quantitative role of bead radius on ion exchange. J. Hazard. Mater. 2014, 272, 102-111.