| 研究生: |
張惇喆 Chang, Tun-Che |
|---|---|
| 論文名稱: |
壓電制動無閥式微泵浦並聯之分析及優化 The Simulation and Optimization of a Piezoelectrically Actuated Valveless Parallel Micropump |
| 指導教授: |
賴新一
Lai, Hsin-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 無閥微泵浦 、並聯微泵浦 、數值方法 、壓電致動器 |
| 外文關鍵詞: | Valveless micropumps, Parallel micropumps, Numerical method, Piezoelectric actuator |
| 相關次數: | 點閱:168 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇研究為利用數值模擬分析軟體ANSYS探討壓電制動無閥式微泵浦在不同邊界條件及操作條件下的效能變化;其幾何及操作變量包含泵浦的並聯配置、彈性薄膜的厚度、壓電制動器的配置、腔體之幾何外型以及驅動相位角的變化。分析模型包含了流體域及固體域,因此採用雙向流固耦合作為分析方法,藉由流體固體交界面(FSI)做為資訊交換媒介,將固體之變形量傳遞至流體,並將流體域的壓力變化傳遞至固體域,作為彼此之邊界條件後進行迭代運算。
本研究首先探討了無閥式微泵浦的傳統模型與並聯模型之間的效能差異,包括泵浦流量以及可承受之最大背壓;在操作電壓為100V之交流電時,並聯模型的最大流量為3.18(ml/min),其為傳統模型最大流量的1.64倍,並將泵浦之水動力提升32%;而背壓方面,由於漸擴管/漸縮管的截面積變為兩倍,導致其流量受壓力影響增加,比起傳統模型下降了25%。在薄膜厚度的研究方面,探討了厚度在0.25mm-0.6mm區間內對流量的影響,結果顯示0.35mm時會有最大的流量表現;而雙壓電制動器的配置也成功的提升了流量22%與背壓112.5%的表現,之後將上述之優化條件整合為一並聯模型後,研究不同的驅動相位角對流量、背壓之影響,其結果顯示相位角為 時具有最佳流量及背壓表現,與相位角為 時相比,提升了流量63.56%與背壓22.5%。再比較了腔體內部流線分布後,以增加腔內渦流區範圍及密度為目標,引入仿生魟型腔體結構,提高合成射流現象,增加流量效率30%。
This study is to use the numerical simulation analysis software ANSYS to investigate the performance changes of the piezoelectric brake valveless micropump under different boundary conditions and operating conditions; its geometric and operating variables include the parallel configuration of the pump, the thickness of the elastic film, and the piezoelectric The configuration of the brake, the geometric shape of the cavity and the change of the driving phase angle. The analysis model includes the fluid domain and the solid domain. Therefore, the two-way fluid-solid coupling is used as the analysis method. The fluid-solid interface (FSI) is used as the information exchange medium to transfer the deformation of the solid to the fluid and the pressure in the fluid domain The changes are transferred to the solid domain and used as boundary conditions for each other to perform iterative operations.
This research first explores the performance difference between the traditional valveless micropump model and the parallel model, including the pump flow rate and the maximum tolerable back pressure; when the operating voltage is 100V AC, the maximum flow rate of the parallel model is 3.18 (ml/min), which is 1.64 times the maximum flow rate of the traditional model, and increases the hydraulic power of the pump by 32%. In terms of back pressure, the cross-sectional area of the diffuser/nozel doubles, resulting in The flow rate is increased by pressure, which is 25% lower than the traditional model. In the study of film thickness, the effect of thickness on the flow rate in the range of 0.25mm-0.6mm was discussed. The results showed that the maximum flow performance was at 0.35mm; and the configuration of the dual piezoelectric brake also successfully increased the flow by 22% The performance of 112.5% and the back pressure. After integrating the above optimization conditions into a parallel model, the effect of different driving phase angles on flow and back pressure was studied. The results showed that the best flow and back pressure performance was obtained when the phase angle was long. Compared with the phase angle, the flow rate is 63.56% and the back pressure is 22.5%. After comparing the streamline distribution inside the cavity, aiming to increase the range and density of the vortex zone in the cavity, the bionic stingray cavity structure is introduced to improve the synthetic jet phenomenon and increase the flow efficiency by 30%.
[1] Morris, C. J., and Fred K. F. "Low-order modeling of resonance for fixed-valve micropumps based on first principles." Journal of Microelectromechanical Systems 12.3 (2003): 325-334.
[2] Kim, Y. S. "Experimental and numerical studies on the performance of a polydimethylsiloxane valveless micropump." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 219.10 (2005): 1139-1145.
[3] Stemme, E., and Stemme, G.,"A valveless diffuser/nozzle-based fluid pump." Sensors and Actuators A: physical 39.2 (1993): 159-167.
[4] Olsson, A., Stemme, G., and Stemme, E., "A valve-less planar fluid pump with two pump chambers." Sensors and Actuators A: Physical 47.1-3 (1995): 549-556.
[5] Izzo, I., "Modeling and experimental validation of a piezoelectric micropump with novel no-moving-part valves." Sensors and Actuators A: Physical 133.1 (2007): 128-140.
[6] Wang, A. B., and Ming-Che H., "Unveiling the missing transport mechanism inside the valveless micropump." Lab on a Chip 12.17 (2012): 3024-3027.
[7] Nisar, A., et al. "Multifield analysis of a piezoelectrically actuated valveless micropump." Sensors Transducers J 94 (2008): 176-95.
[8] Singh, S., et al. "Analytical modeling, simulations and experimental studies of a PZT actuated planar valveless PDMS micropump." Sensors and Actuators A: Physical 225 (2015): 81-94.
[9] Guo, Li, et al. "Valveless piezoelectric micropump of parallel double chambers." International Journal of Precision Engineering and Manufacturing 13.5 (2012): 771-776.
[10] ANSYS 17.0 Help:Mechanical APDL
[11] 李輝煌. ANSYS 工程分析基礎與觀念. 高立圖書有限公司 2005 年.
[12] Gerlach, T, and Helmut W., "Working principle and performance of the dynamic micropump." Sensors and Actuators A: Physical 50.1-2 (1995): 135-140.
[13] Olsson, A., et al. "Valve-less diffuser micropumps fabricated using thermoplastic replication." Sensors and Actuators A: Physical 64.1 (1998): 63-68.
[14] Tsui, Y. Y. and Lu, S. L., "Evaluation of the performance of a valveless micropump by CFD and lumped-system analyses." Sensors and Actuators A: Physical 148.1 (2008): 138-148..
[15] Azarbadegan, A., et al. "Analysis of double-chamber parallel valveless micropumps." Microfluidics and Nanofluidics 9.2-3 (2010): 171-180.
[16] Hsu, Y. C. "Optimum design and investigation on diffuser polymethylmethacrylate (PMMA) peristaltic micropumps." 2009 IEEE International Conference on Robotics and Automation. IEEE, 2009.
[17] Eames, I., Azarbadegan, A., and Zangeneh, M., "Analytical model of valveless micropumps." Journal of Microelectromechanical Systems 18.4 (2009): 878-883.
[18] Yang, C. C., et al. "The performance analysis of valveless micropump with contoured nozzle/diffuser." International Journal of Mechanical and Mechatronics Engineering 5.2 (2011): 508-513.
[19] Ashraf, M. W., et al. "Simulation of piezoelectric actuator and investigation of flow rate using PZT infusion pump for wearable artificial kidney." Energy Procedia 13 (2011): 5016-5021.
[20] Ullmann, A., and Yehuda T., "The piezoelectric valve-less pump: series and parallel connections." Journal of Fluids Engineering 137.2 (2015).
[21] Zhang, J. H., Wang, Y., and Huang, J., "Advances in valveless piezoelectric pump with cone-shaped tubes." Chinese Journal of Mechanical Engineering 30.4 (2017): 766-781.
[22] Guan, Y. F., and Li, X., "Analysis of vibrational performance of a piezoelectric micropump with Diffuse/Nozzle microchannel." Nanotechnology and Precision Engineering 1.2 (2018): 138-144.
[23] Wang, T., et al. "Study of the vortex based virtual valve micropump." Journal of Micromechanics and Microengineering 28.12 (2018): 125007.
[24] Yazdi, F., Fouad, S. A., Corigliano, A., and Ardito, R., "3-D design and simulation of a piezoelectric micropump." Micromachines 10.4 (2019): 259.
[25] Tang, M., et al. "Design and Experimental Verification of a PZT Pump with Streamlined Flow Tubes." Applied Sciences 9.18 (2019): 3881..
[26] Timoshenko, S. P., and Sergius, W. K. Theory of Plates and Shells. McGraw-hill, 1959.
[27] Yamahata, C., Lacharme, F., and Martin, A. G., "Glass valveless micropump using electromagnetic actuation." Microelectronic Engineering 78 (2005): 132-137.
[28] Nguyen, N. T., and Huang, X., "Miniature valveless pumps based on printed circuit board technique." Sensors and Actuators A: Physical 88.2 (2001): 104-111.
[29] Guu, Y. H., Hocheng, H., and Chang, C. H., "Study of piezoelectrically actuated micropumps with multiple parallel chambers." Materials and Manufacturing Processes 23.2 (2008): 209-214.
[30] 衛部醫器輸字第 030344 號 “Medtronic” MiniMed 640G Pump System