| 研究生: |
黃翊瑋 Huang, Yi-Wei |
|---|---|
| 論文名稱: |
受壓旋轉複合疊層圓柱殼基本振頻對纖維角度之最佳化分析 Maximization of the Fundamental Frequencies of Axially Compressed Rotating Laminated Cylindrical Shells |
| 指導教授: |
胡宣德
Hu, Hsuan-Teh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 157 |
| 中文關鍵詞: | 複合材料 、軸壓力 、旋轉 、基本振動頻率 |
| 外文關鍵詞: | composites, axial compression, rotate, fundamental frequency |
| 相關次數: | 點閱:87 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於複合材料具有高強度、高勁度、質量輕、低導電、低導熱及抗酸鹹腐蝕等優越特性,現今已被廣泛應用在各大先進工業工程結構中。為避免外在環境之振動對結構體產生的激振頻率與結構體本身的自然頻率相近而造成共振現象,使結構物超過容許限度產生大變形進而破壞。因此結構物自然頻率的分析乃是很重要的課題之一。
本文利用有限元軟體ABAQUS分析,在不同的軸力、轉速、幾何形狀、邊界條件、開孔大小、纖維角度等條件下,對複合疊層圓柱殼基本振動頻率所產生的影響。並利用黃金分割法搜尋出複合疊層圓柱殼最佳纖維排列角度及其對應之最高基本振動頻率。
研究成果可供業界參考,於設計受壓旋轉複合疊層圓柱殼時,可選擇適當的幾何形狀與纖維排列角度,以提高複合疊層圓柱殼最高基本振動頻率,進而降低共振發生的機率。
Because of the composites possess excellent characteristics such as high strength, high stiffness, lightweight, low thermal conductivity, low conductivity, acid and alkali resistance, they have been widely used in advanced industrial engineering structures now. To avoid structures producing resonance phenomenon and to avoid materials exceeding the allowable limits, the natural frequency analysis of composites structures becomes one of important issues.
In this study, the finite element software ABAQUS is used to obtain the fundamental frequencies of composite laminated cylindrical shells. The Golden section method is employed to find the optimal fiber orientations and its corresponding maximum fundamental frequency in the composite laminated cylindrical shells. Finally, the influence of axial compression, rotating speed, geometric shapes, boundary conditions, hole size, and fiber orientations on the maximum fundamental frequency of the composite laminated cylindrical shells are investigated.
Research results obtained in this study can be used by the industry, for the design of axially compressed rotating composite laminated cylindrical shell. As the results, suitable geometry and proper angles of laminates fiber can be selected to maximize the fundamental frequency of the composite laminated cylindrical shells and then reduce the probability of occurrence of resonance, for the composite laminated cylindrical shells.
王國龍,“旋轉複合疊層圓柱殼基本振頻對纖維角度之最佳化分析,” 國立成功學土木工程研究所,碩士論文,民國93年6月.
侯明輝,“幾何形狀及邊界條件對複合層板基本振動頻率及其纖維角度的影響,”國立成功大學土木工程研究所,碩士論文, 民國83年6月.
莊欽登,“對稱複合疊層曲面板之基本振動頻率及其纖維角度受幾何形狀及邊界條件之影響,”國立成功大學土木工程研究所,碩士論文,民國84年6月.
陳培仁,“複合疊層圓錐殼受軸壓的最佳化自然振動分析,”國立成功大學土木工程研究所,碩士論文,民國100年6月.
陳俊銘,“複合疊層曲面板受軸壓的最佳化自然振動分析,”國立成功大學土木工程研究所,碩士論文,民國93年6月.
陳獻墀,“圓錐截柱殼之最佳化挫曲分析,” 國立成功大學土木工程研究所,碩士論文,民國90年6月.
彭竑維,“開孔複合疊層曲面板受軸壓的最佳化自振分析,” 國立成功大學土木 工程研究所,碩士論文,民國99年6月.
楊景森, “受壓複合疊層曲面板之最佳挫屈強度及其纖維角度受幾何形狀界條件之影響,” 國立成功大學土木工程研究所,碩士論文,民國88年6月.
蔡文魁,“複合疊層板受單軸壓力的最佳化自振分析,” 國立成功大學土木工程研究所,碩士論文,民國90年1月.
蔡振裕,“對稱複合疊層圓柱殼之基本振動頻率及纖維角度受幾何邊界形狀及邊界條件之影響,” 國立成功大學土木工程研究所,碩士論文,民國85年6月.
歐勝昌,“對稱複合疊層圓錐截柱殼之基本振動頻率及其纖維角度受幾何形狀及邊界條件之影響,” 國立成功大學土木工程研究所,碩士論文,民國88年6月
Abaqus Inc., ABAQUS User and Theory Manuals, Version 6.12, Providence, RI., 2012.
Abrate, S., “Optimal Design of Laminated Plates and Shells,” Composite Structures, Vol. 29, No. 3, pp. 269-286, 1994.
Baharlou, B., and Leissa, A. W., “Vibration and Buckling of Generally Laminated Composite Plates with Arbitrary Edge Conditions,” International Journal of Mechanical Sciences, Vol. 29, pp. 545-555, 1993.
Bathe, K. K., and Wilson, E. J., “Large Eigenvalue Problems in Dynamic Analysis,” Journal of Engineering Mechanics Division, ASCE, Vol. 98, pp. 1471-1485, 1972.
Bert, C. W., “Optimal Design of a composite Material Plate to Maximize,” Vol. 50, No. 2, pp. 229-237, 1977.
Bert, C. W., “Literature Review-Research on Dynamic Behavior of Composite and Sandwich Plates-V : Part II,” The shock and Composite and Vibration Digest, Vol. 23, No. 7, pp. 9-21, 1991.
Bhagwan, D. A., and Lawrence J. B., “Analysis and Performance of Fiber Composite,” Second Edition, Wiley, New York, 1990.
Braus, J., Baureis, H. P., Bickle, W., “Composite Material for Sliding Surface Bearings” United States Patent Office NO. 4,847,135, 1989.
Cairns, J. W., Hill, C., “Composite Bearings,” United States Patent Office NO. 3,909,087, 1975.
Chai, G. B., “Free Vibration of Generally Laminated Composite Plates with Various Edge Support Condition,” Composite Structures, Vol. 29, No. 3, pp. 249-258, 1994.
Chakrabarti, A., Topdar, P., and Sheikh, A. H., “Vibration of Pre-Stressed Laminated Sandwich Plates with Interlaminar Imperfections,”Journal of Vibration and Acoustics, Vol.128, No. 6, pp. 673-681, 2006.
Chandrashekhara, K., “Free Vibration of Anisotropic Laminated Doubly Curved Shells,” Computers and Structures, Vol. 33, pp. 435-440, 1989.
Chen, C.S., Cheng, W.S., Chien, R.D., and Doong, J.L., “Large Amplitude Vibration of an Initially Stressed Cross Ply Laminated Plates,” Applied Acoustics, Vol. 63, No.9, pp. 939-956, 2002.
Chen, L. W., and Peng, W. K., “The stability behavior of rotating composite shafts under axial compressive loads,”Composite Structures, Vol.41, No.3-4, pp. 253-263, 1998.
Chen, L. W., and Peng, W. K.,“Dynamic stability of rotating composite shafts under periodic axial compressive loads,” Journal of Sound and Vibration, Vol. 212 , No. 2, pp.215-230, 1998
Chun, L., and Lam, K. Y., “Dynamic Analysis of Clamped Laminated Curved Panels,” Composite Structures, Vol. 30, pp. 389-398, 1995.
Cook, R. D., Malkus, D. S., and Plesha, M. E., Concepts and Applications of Finite Element Analysis, Third Edition, Chapter 13, Wiley, New York, 1989.
Crawley, E. F., “The Natural Modes of Graphite/Epoxy Cantilever Plates and Shells,” Journal of Composite Materials, Vol. 13, No.3, pp. 195-205, 1979.
Deolasi, P. J., and Datta, P. K., “Parametric instability Characteristics of Rectangular Plates Subjected to Localized Edge Loading (Tension or Compression),” Computer & Structures, Vol. 54, No. 1, pp. 73-82, 1995.
Dhanaraj, R., and Palaninathan, “Free Vibration of Stressed Composite Composite Laminates,” Journal of Sound and Vibration, Vol. 142, No. 3, pp. 365-378, 1990.
Dickinson, S. M., “Lateral Vibration of Rectangular Plates Subject to In-plane Forces,” Journal of Sound and Vibration, Vol. 16, No. 4, pp. 465-472, 1971.
Duffy, K. J., and Adali, S., “Optimal Fiber of Antisymmetric Hybrid Laminates for Maximum Fundamental Frequency and Frequency Separation ,” Journal of Sound and Vibration, Vol. 146, No. 2, pp. 181-190, 1991.
Fisher, C. A., Ewing, M. S., and Leissa A. W., “Vibration of Unsymmetrically Laminated Subjected to In-plane Initially Stressed,” Composite Structures 4, Proceedings of the 4th International Conference, pp. 1461-1475, 1987.
Fukunaga, H., Sekine, H., and Sato, M., “Optimal Design of Symmetric Laminated Plates for Fundamental Frequency,” Journal of Sound and Vibration, Vol. 171, No. 2, pp. 219-229, 1994.
Gutierrez, R. H., Laura, P. A. A., and Rossit, C. A., “Fundamental Frequency of Transverse Vibration of a Clamped Rectangular Orthotropic Plate with a Free-Edge Hole,” Journal of Sound and Vibration, Vol. 235, No. 4, pp. 697-701, 2000.
H.P. Lee., “Dynamic Stability of Spinning Pre-Twisted Beams Subject to Axial Pulsating Loads,” Computer Methods in Applied Mechanics Engineering. Vol. 127 , pp. 115-126 , 1995.
Hu, H. T., and Wang, S. S., “Optimization for Buckling Resistance of Fiber-Composite Laminate Shells with and without Cutouts,” Composite Structures, Vol. 22, pp. 3-13, 1992.
Hu, H. T., Theory of Plates, Department of Civil Engineering National Cheng Kung University Tainan Taiwan, 2011.
Hu, H. T., and Tasi, J. Y., “Maximization Of The Fundamental Frequencies Of Laminated Cylindrical Shells With Respect To Fiber Orientations,” Journal of Sound and Vibration, Vol. 225, No. 4, pp. 723-740, 1999.
Irons, B. M., “The Semi-Loof Shell Element,” In: Ashwell, D. G.; Gallagher, R. H. (ed.) Finite Elements for Thin Shells and Curved Members, Wiley, New York, pp. 197-222, 1976.
Jawad, M. H., “Theory and design of plate and shell structures,” First Edition, Chapter 11-12, p. 300-349, 1994.
Kolman, B., and Beck, R. E., Elementary Linear Programming with Applications, Academic Press, Orlando, pp. 59-142, 1980.
Leissa, A. W., and Kadi, A. S., “Curvature Effects on Shallow
Shell Vibrations,” Journal of Sound Vibration, Vol. 16, No.2, pp.
173-183, 1971.
Leissa, A. W., and Ayoub, E. F., “Vibration and Buckling of A Simply Supported Rectangular Plate Subjected to a Pair of In-plane Concentrated Forces,” Journal of Sound and Vibration, Vol. 127, No. 1, pp. 155-171, 1988.
Leiw, K. M., Ng, T. Y., and Zhao, X., “Vibration of Axially Loaded Rotating Cross-Ply Laminated Cylindrical Shells Via Ritz method,” Journal of Engineering Mechanics, Vol. 128, No. 9, pp. 1001-1007, 2002.
Leissa, A. W., and Narita, Y., “Vibration Studies for simply Supported Symmetrically Laminated Rectangular Plates,” Composite Structures, Vol. 12, pp. 113-132, 1989.
Liu, H. W., and Hung, C. C., “Free Vibrations of Thick Cantilever Laminated Plates with Step-Change of Thickness,” Journal of Sound and Vibration, Vol. 169, No. 5, pp. 601 - 618, 1994.
Lou, K. A., and Yaniv, G., “Buckling of Circular Cylindrical Composite Shells Under Axial Compression and Bending Loads,” Journal of Composite Materials, Vol. 25. No. 2, p. 162-187,1991.
Narita, Y., and Leissa, A. W., “Frequency And Mode Shapes Of Cantilevered Laminated Composite Plates,” Journal of Sound and Vibration, Vol. 154, No. 1, pp. 161-172, 1992.
Narita, Y., and Leissa, A. W., “Frequency And Mode Shapes Of Cantilevered Laminated Composite Plates,” Journal of Sound and Vibration, Vol. 154, No. 1, pp. 161-172, 1992.
Nayak, A. K., Moy, S. S. J., and Shenoi, R. A., “A Higher Order Finite Element Theory for Buckling and Vibration Analysis of Initially Stressed Composite Sandwich Plates,” Journal of Sound and Vibration, Vol. 286, No. 4-5, pp. 763-780, 2005.
Noor, A. K., and Burton, W. S., “Three-Dimensional Solutions for the Free Vibrations and Buckling of Thermally Stressed Multilayered Angle-Ply Composite Plates,” Journal of Applied Mechanics, Vol. 59, No. 4,pp. 868-877 ,1992.
O'Neil, P. V., Advanced Engineering Mathematics, Second Edition, Chapter 10, 1987.
Onoda, J., “Optimal Laminate Configurations of Cylindrical Shells for Axial Buckling,” AIAA Journal, Vol. 23, pp 1093-1098, 1985.
Qatu, M. S., and Leissa, A. W., “Natural Frequencies for Cantilevered Doubly Curved Laminated Composite Shallows Shells,” Composite Structures, Vol. 17, pp. 227-255, 1991.
Ramakrishna, S., and Rao, N. S., “Free Vibration Analysis of Laminates with Circular Cutout by Hybrid Stress Finite Element,” Composite Structures, Vol. 21, pp. 177-185, 1992.
Raouf, A. R., “Tailoring the Dynamic Characteristics of Composite Panels Using Fiber Orientation,” Composite Structures, Vol. 29, pp. 259-267, 1994.
Reddy, J. N., “Free Vibration Of Antisymmetric Angle-ply Laminated Plates Including Transverse Shear Deformation By The Finite Element Method ,” Journal of Sound and Vibration, Vol. 66, No. 4, pp. 565-576, 1979.
Robert, M. J., Mechanics of Composite Materials, Chapter 2, pp. 45-51, 1975.
Sharma, C. B., and Darvizeh, M., “Free Vibration of Specially Orthotropic, Multilayered, Thin Cylindrical Shells with Various End Condition,” Composite Structures, Vol. 7, No. 2, pp. 123-138 , 1987.
Sun, G., “A Practical Approach to Optimal Design of Laminated Cylindrical Shells for Buckling,” Composites Science and Technology, Vol. 36. No.3, p. 243-253, 1989.
Topal, U., and Uzman, U., “Optimal Design of Laminated Composite Plates to Maximise Fundamental Frequency Using MFD Method,” Structural Engineering and Mechanics, Vol. 24, No. 4, pp. 479-491, 2006.
Topal, U., and Uzman, U., “Maximization of Buckling Load of Laminated Composite Plates with Central Circular Holes Using MFD method,” struct Multidisc Optim, Vol. 35, No.2, pp. 131-139, 2008.
Topal, U., and Uzman, U., “Frequency Optimization of Laminated Composite Angle-Ply Plates with Circular Hole,” Materials and Design, Vol. 29, No.8, pp. 1512-1517, 2008.
Vanderplaats, G. N., “Numerical Optimization Techniques for Engineering Design with Applications,” McGraw-Hill, New York, pp. 155-157, 1984.
Watter, M., “Composite Missile Structure,” United States Patent Office NO. 3,066,822, 1962.
Whitney, J. M., “Free Vibration of Anisotropic Rectangular Plates,” Journal of the Acoustical Society of America, Vol. 52, No.1B, pp. 448-449, 1972.
Whitney, J. M., “Shear Correction Factors for Orthotropic Laminates Under Static Load,” Journal of Applied Mechanics, Vol. 40, No.1, pp. 302-304, 1973.
Whitney, J. M., “The Effect of Boundary Conditions on the Response of Laminates Under Static Load,” Journal of Applied Mechanics, Vol. 4, No.2, pp. 192-203, 1970.
Williams, C. W., “Composite Propeller Shaft Construction and Method of Making,” United States Patent Office NO. 3,553,978, 1971.
校內:立即公開