簡易檢索 / 詳目顯示

研究生: 張意翎
Chang, Yi-Ling
論文名稱: 快速熱處理熱鍛6082鋁合金再結晶及微觀組織演變對拉伸性質效應研究
Studies of Recrystallization and Microstructural Evolution on Tensile Properties of Rapid Heated Hot Forging 6082 Aluminum Alloy
指導教授: 呂傳盛
Lui, Truan-Sheng
洪飛義
Hung, Fei-Yi
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 130
中文關鍵詞: 6082鋁合金鍛造快速熱處理紅外線熱處理鑄鍛
外文關鍵詞: 6082 aluminum alloy, forging, rapid heating, infrared heat treatment, cast-forging
相關次數: 點閱:72下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 6082鋁合金在使用前須透過熱處理將材料提升至所需機械強度,為了避免熱處理後的粗大晶粒 (二次再結晶)、符合未來高強度鋁合金的需求以及在熱處理製程上達到縮短時間、節能減碳的目的,本研究使用新式熱處理進行探討。鹽浴與紅外線熱處理較傳統電阻加熱熱處理具有可使材料快速加熱、能量轉換效率高等優勢,因此本研究使用之新式熱處理製程分別為鹽浴熱處理製程 (Salt Bath) 與紅外線熱處理製程 (Infrared Heating)。對照組為傳統電阻加熱爐熱處理製程。為了更符合工業上的運用性,以及欲對快速熱處理製程對6082鋁合金顯微組織與機械性質之影響進行了解,本研究所使用之6082鋁合金包含了做為結構用件之熱擠型材以及熱鍛造之實體鍛件進行探討。
    研究結果發現,藉以鹽浴快速熱處理可提升材料達固溶溫度前之升溫速率,縮短材料固溶化熱處理所需時間。在Portevin-Lechatelier (PL) 效應所引起之拉伸鋸齒流的臨界應變研究上發現,鹽浴快速加熱試片在拉伸鋸齒流中具有較大的臨界起始應變 (ɛc),顯示快速加熱可提供更高濃度的溶質效果,使用SEM與TEM對快速熱處理試片進行觀察,證實臨界起始應變 (ɛc) 增加之現象與基地內之鎂、矽原子濃度有關。高濃度的固溶原子亦使得材料於後續人工熱處理中達峰值時效所需時間縮短,且材料延性相當並具有較佳之抗拉強度 (> 400MPa)。與傳統熱處理相比,藉以紅外線熱處理亦可使材料具有更大之ɛc,顯示快速熱處理可提高材料之固溶效果,並且這也在後續人工時效中增強了材料之機械強度。
    在晶粒大小方面,由於在晶粒粗大化前即完成固溶熱處理,因此可使得材料維持在較小之晶粒大小尺度。除此之外,藉紅外線快速熱處理可縮小質量大小不同之熱鍛造材料在熱處理後之機械性質差異,並且在金屬流紋因晶粒成長而消失前即完成固溶,使得以紅外線熱處理之材料析出行為有別於傳統電阻加熱爐熱處理者進而可具有較高之材料楊氏模數。
    另本研究亦導入鑄鍛製程,以鑄造材直接鍛造之6082鋁合金在傳統熱處理後並無粗大晶粒產生,且具有較高之硬度值; 材料在相同紅外線熱處理條件下亦仍保持無粗大晶粒且硬度值較高之特性,雖鑄鍛材之拉伸強度略低於擠鍛材,但鑄鍛材具有較佳之拉伸延性,此乃因鑄鍛與擠鍛材內部析出強化效能有所差異以及AlFe(MnCr)Si相之分布差異所導致。

    Secondary recrystallization has been a serious problem for 6082 forgings, in this study, rapid heating methods (salt-bath and infrared heating) and cast-forging process are proposed to inhibit this phenomenon. Rapid heating can provide a better heating efficacy, shortening the heating time of solutionizing treatment. As a result, it can inhibit the re-precipitate of β-Mg2Si during the heating process. Moreover, the duration of solution treatment can be shortening. Because of the solutionizing duration shortened, the secondary recrystallization phenomenon was inhibited. Rapid heating method provides a higher concentration of Mg and Si solutes after the solution treatment. And the high concentration of Mg and Si solutes provide a better aging efficiency during the artificial aging process. As a result, the precipitates are smaller and denser than the resistance heating method after the T6 treatment. And these smaller and denser precipitates provide high tensile strength. Besides, using infrared rapid heating will shorten the difference of different size 6082 forgings after the same heat treatment. On the other hand, more β-AlFeSi phases remained after the cast-forging process, and these β-AlFeSi phases inhibits the secondary recrystallization phenomenon during the solution heat treatment process.

    中文摘要 I 誌謝 XI 總目錄 XIV 表目錄 XVII 圖目錄 XVIII 第一章 前言 1 第二章 文獻回顧 3 2. 1 Al-Mg-Si 合金 3 2. 1. 1 6xxx系Al-Mg-Si鋁合金介紹 3 2. 1. 2 6082鋁合金添加元素介紹 4 2. 2 6082鋁合金析出強化機制介紹 5 2. 3 金屬加工成形方法介紹 6 2. 4 Al-Mg-Si鋁合金熱處理 9 2. 4. 1 鑄造過後的均質化熱處理 9 2. 4. 2 塑性加工成形前的預熱處理 10 2. 4. 3 固溶化熱處理 11 2. 4. 4 時效熱處理 12 2. 4. 5 快速熱處理 13 2. 5 6082鋁合金二次再結晶現象 17 2. 6 動態應變時效現象 19 2. 7 研究動機與主題 21 第三章 鹽浴熱處理對熱擠型6082鋁合金材料特性 之影響 26 3. 1 概述 26 3. 2 實驗方法 26 3. 3 實驗結果與討論 28 3. 3. 1 顯微組織觀察 28 3. 3. 2 鹽浴快速固溶化熱處理對拉伸鋸齒流臨界應變影響 29 3. 3. 3 鹽浴快速固溶熱處理對人工時效的影響 30 3. 4 小結 32 第四章 紅外線熱處理對6082實體汽車懸臂鍛件微觀組織與拉伸性質探討 48 4. 1 概述 48 4. 2 實驗方法 48 4. 3 實驗結果與討論 50 4. 3. 1 紅外線快速熱處理對固溶化效果之影響 50 4. 3. 2 紅外線快速熱處理對於人工時效之影響 53 4. 3. 3 紅外線快速熱處理對拉伸斷裂特徵的影響 54 4. 4 小結 55 第五章 藉紅外線熱處理探討6082實體鍛件之質量效應與楊氏模數研究 76 5. 1 概述 76 5. 2 實驗方法 77 5. 3 實驗結果與討論 78 5. 3. 1 硬度試驗與顯微組織觀察 78 5. 3. 2 拉伸機械性質與破斷面解析 81 5. 3. 3 楊氏模數提升效應 82 5. 4 小結 83 第六章 紅外線熱處理製程對鑄鍛6082鋁合金微觀組織與拉伸性質研究 102 6. 1 概述 102 6. 2 實驗方法 102 6. 3 實驗結果與討論 104 6. 4 小結 108 第七章 總結論 123 第八章 參考文獻 124

    [1] S.K. Das, Designing aluminium alloys for a recycling friendly world, Mater. Sci. Forum., Trans. Tech. Publ., 2006, 1239-1244.
    [2] Y. Birol, Effect of extrusion press exit temperature and chromium on grain structure of EN AW 6082 alloy forgings, Mater. Sci. Technol. 31, 207-211 (2015).
    [3] J. Zhang, Z. Fan, Y. Wang, B. Zhou, Equilibrium pseudobinary Al-Mg2Si phase diagram, Mater. Sci. Technol. 17, 494-496 (2001).
    [4] D. Hanson, M.L. Gayler, The constitution and age-hardening of the alloys of aluminium with magnesium and silicon, J. Inst. Met. 26, 321-359 (1921).
    [5] L. Zhen, W. D FEI, S. Kang, H. Kim, Precipitation behaviour of Al-Mg-Si alloys with high silicon content, J. Mater. Sci. 32, 1895-1902 (1997).
    [6] A.K. Gupta, D.J. Lloyd, S.A. Court, Precipitation hardening in Al-Mg-Si alloys with and without excess Si, Mater. Sci. Eng. A-Struct. Mater. 316, 11-17 (2001).
    [7] M. Warmuzek, G. Mrówka, J. Sieniawski, Influence of the heat treatment on the precipitation of the intermetallic phases in commercial AlMn1FeSi alloy, J. Mater. Process. Technol. 157, 624-632 (2004).
    [8] J.E. Hatch, Aluminum properties and physical metallurgy, ASM, 224-240 (1984).
    [9] G. Mrówka-Nowotnik, J. Sieniawski, M. Wierzbińska, Analysis of intermetallic particles in AlSi1MgMn aluminium alloy, J. Achieve. Mater. Manuf. Eng. 20, 155-158 (2007).
    [10] R.A. Siddiqui, H.A. Abdullah, K.R. Al-Belushi, Influence of aging parameters on the mechanical properties of 6063 aluminium alloy, J. Mater. Process. Technol. 102, 234-240 (2000).
    [11] Y. Birol, The effect of processing and Mn content on the T5 and T6 properties of AA6082 profiles, J. Mater. Process. Technol. 173, 84-91 (2006).
    [12] N.C.W. Kuijpers, F.J. Vermolen, C. Vuik, P.T.G. Koenis, K.E. Nilsen, S.v.d. Zwaag, The dependence of the β-AlFeSi to α-Al (FeMn) Si transformation kinetics in Al-Mg-Si alloys on the alloying elements, Mater. Sci. Eng. A-Struct. Mater. 394, 9-19 (2005).
    [13] Y. Birol, Effect of Cr and Zr on the grain structure of extruded EN AW 6082 alloy, Met. Mater. Int. 20, 727-732 (2014).
    [14] R. Jeniski Jr, Effects of Cr addition on the microstructure and mechanical behavior of 6061-T6 continuously cast and rolled redraw rod, Mater. Sci. Eng. A-Struct. Mater. 237, 52-64 (1997).
    [15] S. Claves, D. Elias, W.Z. Misiolek, Analysis of the intermetallic phase transformation occurring during homogenization of 6xxx aluminum alloys, Mater. Sci. Forum., Trans. Tech. Publ., 2002, 667-674.
    [16] L. Lodgaard, N. Ryum, Precipitation of chromium containing dispersoids in Al–Mg–Si alloys, Mater. Sci. Technol. 16, 599-604 (2000).
    [17] J. Zhang, Z. Fan, Y. Wang, B. Zhou, Microstructural development of Al-15wt.% Mg2Si in situ composite with mischmetal addition, Mater. Sci. Eng. A-Struct. Mater. 281, 104-112 (2000).
    [18] M. Emamy, S.V. Yeganeh, A. Razaghian, K. Tavighi, Microstructures and tensile properties of hot-extruded Al matrix composites containing different amounts of Mg2Si, Mater. Sci. Eng. A-Struct. Mater. 586, 190-196 (2013).
    [19] C. Marioara, S. Andersen, J. Jansen, H. Zandbergen, The influence of temperature and storage time at RT on nucleation of the β' phase in a 6082 Al-Mg-Si alloy, Acta Mater. 51, 789-796 (2003).
    [20] C. Marioara, S. Andersen, J. Jansen, H. Zandbergen, Atomic model for GP-zones in a 6082 Al-Mg-Si system, Acta Mater. 49, 321-328 (2001).
    [21] M. Van Huis, J. Chen, H. Zandbergen, M. Sluiter, Phase stability and structural relations of nanometer-sized, matrix-embedded precipitate phases in Al-Mg-Si alloys in the late stages of evolution, Acta Mater. 54, 2945-2955 (2006).
    [22] R. Vissers, M. Van Huis, J. Jansen, H. Zandbergen, C. Marioara, S. Andersen, The crystal structure of the β' phase in Al-Mg-Si alloys, Acta Mater. 55, 3815-3823 (2007).
    [23] S. Andersen, H. Zandbergen, J. Jansen, C. Traeholt, U. Tundal, O. Reiso, The crystal structure of the β' phase in Al-Mg-Si alloys, Acta Mater. 46, 3283-3298 (1998).
    [24] Y. Birol, O. Ilgaz, Effect of cast and extruded stock on grain structure of EN AW 6082 alloy forgings, Mater. Sci. Technol. 30, 860-866 (2014).
    [25] Y. Birol, E. Gokcil, M.A. Guvenc, S. Akdi, Processing of high strength EN AW 6082 forgings without a solution heat treatment, Mater. Sci. Eng. A-Struct. Mater. 674, 25-32 (2016).
    [26] Y. Birol, O. Ilgaz, S. Akdi, E. Unuvar, Comparison of cast and extruded stock for the forging of AA6082 alloy suspension parts, Adv. Mat. Res., Trans. Tech. Publ., 2014, 299-304.
    [27] E. Tan, The effect of hot-deformation on mechanical properties and age hardening characteristics of Al-Mg-Si based wrought aluminum alloys, Middle east technical university, 2006.
    [28] A. Lise Dons, The Alstruc homogenization model for industrial aluminum alloys, J. Light Met. 1, 133-149 (2001).
    [29] H. Lu, P. B Kadolkar, T. Ando, C. Blue, R. Mayer, Control of grain size and age hardening in AA2618 forgings processed by rapid infrared radiant heating, 2004.
    [30] G. Mrówka-Nowotnik, J. Sieniawski, A. Nowotnik, Effect of heat treatment on tensile and fracture toughness properties of 6082 alloy, J. Achieve. Mater. Manuf. Eng. 32, 162-170 (2009).
    [31] G. Mrówka-Nowotnik, Influence of chemical composition variation and heat treatment on microstructure and mechanical properties of 6xxx alloys, Arch. Mater. Sci. Eng. 46, 98-107 (2010).
    [32] B.C. Shang, Z.M. Yin, G. Wang, B. Liu, Z.Q. Huang, Investigation of quench sensitivity and transformation kinetics during isothermal treatment in 6082 aluminum alloy, Mater. Des. 32, 3818-3822 (2011).
    [33] S. Dadbakhsh, A.K. Taheri, Study on static strain aging of 6082 aluminium alloy, Mater. Sci. Technol. 26, 169-175 (2010).
    [34] H. Long, J. Chen, C. Liu, D. Li, Y. Li, The negative effect of solution treatment on the age hardening of A356 alloy, Mater. Sci. Eng. A-Struct. Mater. 566, 112-118 (2013).
    [35] D. Zhang, L. Zheng, D. StJohn, Effect of a short solution treatment time on microstructure and mechanical properties of modified Al-7wt.% Si-0.3 wt.% Mg alloy, J. Light Met. 2, 27-36 (2002).
    [36] J. Osten, B. Milkereit, C. Schick, O. Kessler, Dissolution and precipitation behaviour during continuous heating of Al-Mg-Si alloys in a wide range of heating rates, Materials 8, 2830-2848 (2015).
    [37] A. Cuniberti, A. Tolley, M.V.C. Riglos, R. Giovachini, Influence of natural aging on the precipitation hardening of an AlMgSi alloy, Mater. Sci. Eng. A-Struct. Mater. 527, 5307-5311 (2010).
    [38] A. Prabhukhot, Effect of heat treatment on hardness and corrosion behavior of 6082-T6 aluminium alloy in artificial sea water, Int. J. of Mater. Sci. and Eng. 3, 287-294 (2015).
    [39] A. Reeb, M. Merzkirch, V. Schulze, K.A. Weidenmann, Heat treatment during composite extruded spring steel wire reinforced EN AW-6082, J. Mater. Process. Technol. 229, 1-8 (2016).
    [40] J. Keist, C. Bergman, Short cycle heat treating with fluidized beds: optimizing mechanical properties, AFS International Conference on Structural Aluminum Castings: Recent Advancements for the Design and prnufacturing of Reliable Structural Aluminum Castings, 2003, 297-304.
    [41] S. Chaudhury, D. Apelian, Fluidized bed heat treatment of cast Al-Si-Cu-Mg alloys, Metall. Mater. Trans. 37, 2295-2311 (2006).
    [42] P.B. Kadolkar, H. Lu, C.A. Blue, T. Ando, R. Mayer, Application of rapid infrared heating to aluminum forgings, Proceedings of the 25th Forging Industry Technical Conference of the Forging Industry Association and the Forging Industry Educational and Research Foundation, 2004, 19-21.
    [43] G. Vamadevan, F. Kraft, P. Kadolkar, H.R. Mayer, Application of rapid infrared heating for processing of aluminum forgings, The James Morris Honorary Symposium on Aluminum Wrought Products for Automotive, Packing, and Other Applications, Citeseer, 2006.
    [44] S. Pogatscher, H. Antrekowitsch, P.J. Uggowitzer, Influence of starting temperature on differential scanning calorimetry measurements of an Al-Mg-Si alloy, Mater. Lett. 100, 163-165 (2013).
    [45] V. Ocenasek, P. Sedlacek, The effect of surface recrystallized layers on properties of extrusions and forgings from high strength aluminium alloys, Metal, 2011, 1-7.
    [46] A. Hayoune, Thermal analysis of the impact of RT storage time on the strengthening of an Al-Mg-Si alloy, MSA 3, 460 (2012).
    [47] S.Y. Chang, C.C. Chang, J.Y. Ho, C.Y. Lu, H.C. Liao, T.S. Chou, A study of forging process on the microstructure and mechanical properties of AA6082 aluminum alloy, Chinese Institute of Mining and Metallurgy 240, 77-88 (2017).
    [48] Z. Jiang, Q. Zhang, H. Jiang, Z. Chen, X. Wu, Spatial characteristics of the Portevin-Le Chatelier deformation bands in Al-4 at% Cu polycrystals, Mater. Sci. Eng. A-Struct. Mater. 403, 154-164 (2005).
    [49] Y.N. Kwon, Y.S. Lee, J.H. Lee, Thermomechanical behavior of Al-Mg-Si Alloys at the elevated temperature, Mater. Sci. Forum., Trans. Tech. Publ., 2004, 581-584.
    [50] K. Chihab, Y. Estrin, L. Kubin, J. Vergnol, The kinetics of the Portevin-Le Chatelier bands in an Al-5at% Mg alloy, Scr. Mater. 21, 203-208 (1987).
    [51] R. Mulford, U. Kocks, New observations on the mechanisms of dynamic strain aging and of jerky flow, Acta Metall. 27, 1125-1134 (1979).
    [52] Y. Bergström, W. Roberts, A dislocation model for dynamical strain ageing of α-iron in the jerky-flow region, Acta Metall. 19, 1243-1251 (1971).
    [53] D. Dingley, D. McLean, Components of the flow stress of iron, Acta Metall. 15, 885-901 (1967).
    [54] J. Kang, R.K. Mishra, D.S. Wilkinson, O.S. Hopperstad, Effect of Mg content on Portevin-Le Chatelier band strain in Al-Mg sheet alloys, Phil. Mag. Lett. 92, 647-655 (2012).
    [55] A. Portevin, F. Le Chatelier, Sur un phénomène observé lors de l'essai de traction d'alliages en cours de transformation, Comptes Rendus de l'Académie des Sciences Paris 176, 507-510 (1923).
    [56] W. Wen, J. Morris, An investigation of serrated yielding in 5000 series aluminum alloys, Mater. Sci. Eng. A-Struct. Mater. 354, 279-285 (2003).
    [57] A. Le Chatelier, Influence du temps et de la température sur les essais au choc, Revue de métallurgie 6, 914-917 (1909).
    [58] J.M. Robinson, Serrated flow in aluminium base alloys, International Materials Reviews 39, 217-227 (1994).
    [59] D.M. Riley, P.G. McCormick, The effect of precipitation hardening on the portevin-le chatelier effect in an Al-Mg-Si alloy, Acta Metall. 25, 181-185 (1977).
    [60] H. Zhong, P.A. Rometsch, Q. Zhu, L. Cao, Y. Estrin, Effect of pre-ageing on dynamic strain ageing in Al-Mg-Si alloys, Mater. Sci. Eng. A-Struct. Mater. 687, 323-331 (2017).
    [61] C. KS, Portevin-LeChatelier effect of Al-7 mass% Si-Mg cast alloys, Mater. Trans. 36, 615-619 (1995).
    [62] M. Kolar, K.O. Pedersen, S. Gulbrandsen-Dahl, K. Marthinsen, Combined effect of deformation and artificial aging on mechanical properties of Al-Mg-Si Alloy, T. Nonferr. Metal. Soc. 22, 1824-1830 (2012).
    [63] J. Banhart, C.S.T. Chang, Z. Liang, N. Wanderka, M.D. Lay, A.J. Hill, Natural aging in Al‐Mg‐Si alloys- a process of unexpected complexity, Advanced engineering materials 12, 559-571 (2010).
    [64] W. Wen, J.G. Morris, An investigation of serrated yielding in 5000 series aluminum alloys, Mater. Sci. Eng. A-Struct. Mater. 354, 279-285 (2003).
    [65] Y. Estrin, M.A. Lebyodkin, The influence of dispersion particles on the Portevin–Le Chatelier effect: from average particle characteristics to particle arrangement, Mater. Sci. Eng. A-Struct. Mater. 387, 195-198 (2004).
    [66] G. Mrówka-Nowotnik, J. Sieniawski, Influence of heat treatment on the microstructure and mechanical properties of 6005 and 6082 aluminium alloys, J. Mater. Process. Technol. 162, 367-372 (2005).
    [67] G. Sha, K. O'Reilly, B. Cantor, J. Worth, R. Hamerton, Growth related metastable phase selection in a 6xxx series wrought Al alloy, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 304, 612-616 (2001).
    [68] M. Meredith, J. Worth, R. Hamerton, Intermetallic phase selection during solidification of Al-Fe-Si (-Mg) alloys, Mater. Sci. Forum., Trans. Tech. Publ., 2002, 107-112.
    [69] S. Zajac, B. Bengtsson, C. Jönsson, Influence of cooling after homogenisation and reheating to extrusion on extrudability and final properties of AA 6063 and AA6082 alloys, Mater. Sci. Forum., Trans. Tech. Publ., 2002, 399-404.
    [70] P.G. McCormigk, A model for the portevin-lechatelier effect in substitutional alloys, Acta Metall. 20, 351-354 (1972).
    [71] J.G. Morris, Dynamic strain aging in aluminum alloys, Mater. Sci. Eng. 13, 101-108 (1974).
    [72] L. Sun, Q. Zhang, H. Jiang, Effect of solute concentration on portevin-le chatelier effect in Al-Cu alloys, Front. Mater. Sci. China 1, 173-176 (2007).
    [73] K.S. Chan, T.S. Lui, L.H. Chen, Portevin-lechatelier effect of Al-7 mass% Si-Mg cast alloys, Mater. Trans. 36, 615-619 (1995).
    [74] K.S. Chan, T.S. Lui, L.H. Chen, Temperature dependence of the tensile behavior of cast and extruded Al-7Si-0.3 Mg alloys in 213-673 K, Mater. Trans. 36, 743-748 (1995).
    [75] K. Li, M. Song, Y. Du, X. Fang, Effect of minor Cu addition on the precipitation sequence of an as-cast Al-Mg-Si 6005 alloy, Arch. Metall. Mater. 57, 457-467 (2012).
    [76] W. Wen, J.G. Morris, The effect of cold rolling and annealing on the serrated yielding phenomenon of AA5182 aluminum alloy, Mater. Sci. Eng. A-Struct. Mater. 373, 204-216 (2004).
    [77] J. Chen, E. Costan, M. Van Huis, Q. Xu, H. Zandbergen, Atomic pillar-based nanoprecipitates strengthen AlMgSi alloys, Science 312, 416-419 (2006).
    [78] D. Zhang, D. Zhang, F. Bu, X. Li, B. Li, T. Yan, K. Guan, Q. Yang, X. Liu, J. Meng, Excellent ductility and strong work hardening effect of as-cast Mg-Zn-Zr-Yb alloy at room temperature, J. Alloy. Compd. 728, 404-412 (2017).
    [79] J. Santos, R.M. Gouveia, F. Silva, Designing a new sustainable approach to the change for lightweight materials in structural components used in truck industry, J Clean Prod. 164, 115-123 (2017).
    [80] C. Brito, T.A. Costa, T.A. Vida, F. Bertelli, N. Cheung, J.E. Spinelli, A. Garcia, Characterization of dendritic microstructure, intermetallic phases, and hardness of directionally solidified Al-Mg and Al-Mg-Si alloys, Metall. Mater. Trans. 46, 3342-3355 (2015).
    [81] Y. Birol, Effect of cooling rate on precipitation during homogenization cooling in an excess silicon AlMgSi alloy, Mater. Charact. 73, 37-42 (2012).
    [82] H. Nakamura, M. Nishibata, Globalization of aluminum forging automotive suspension business: establishment of production bases in japan, “R&D” Kobe Steel Eng. Rep. 66, 99-102 (2017).
    [83] M. Nakai, G. Itoh, The effect of microstructure on mechanical properties of forged 6061 aluminum alloy, Mater. Trans. 55, 114-119 (2014).
    [84] Y.L. Chang, F.Y. Hung, T.S. Lui, Enhancing the tensile yield strength of A6082 aluminum alloy with rapid heat solutionizing, Mater. Sci. Eng. A-Struct. Mater. 702, 438-445 (2017).
    [85] Y. Lee, Y. Kwon, J. Lee, C. Park, S. Kim, Effects of strain and strain rate on tensile behavior of hot-forged Al 6061-T6, Mater. Sci. Eng. A-Struct. Mater. 362, 187-191 (2003).
    [86] R. Hu, T. Ogura, H. Tezuka, T. Sato, Q. Liu, Dispersoid formation and recrystallization behavior in an Al-Mg-Si-Mn alloy, J Mater. Sci. Technol. 26, 237-243 (2010).

    無法下載圖示 校內:2024-01-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE