| 研究生: |
王紹宇 Wang, Shao-Yu |
|---|---|
| 論文名稱: |
以SPM技術研究鋰電池之LiCoO2陰極材料電化學性質 The Investigation of Electrochemical Properties in LiCoO2 Cathode of Li Battery via SPM Techniques |
| 指導教授: |
劉浩志
Liu, Hao-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 鋰電池 、掃描探針顯微術 、電化學阻抗分析 、鋰鈷氧 |
| 外文關鍵詞: | Li battery, Scanning probe microscopy, Electrochemical impedance spectroscopy, LiCoO2 |
| 相關次數: | 點閱:146 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在建立一套結合掃描探針顯微術與電化學阻抗分析的平台,並針對鋰電池內的LiCoO2鋰鈷氧陰極材料作初步的微區阻抗分析。為了瞭解與比較微區阻抗量測和過去一般阻抗量測結果的不同之處,本實驗的鋰電池組裝方式分為”半開放式電池” 及“正常型式電池”兩種,前者即用來搭配微區阻抗量測;且微區阻抗量測亦分為使用三軸探針座上的Tungsten probe或是使用AFM探針進行量測。
實驗結果發現,使用三軸探針座上的Tungsten probe或AFM探針對半開放式電池作微區阻抗分析時,在Nyquist plot的高頻區都會出現探針與試片之間接觸電阻和接觸電容效應所導致的半圓,而該半圓並不會出現在正常型式電池的量測中。另一方面,使用AFM探針作微區阻抗分析時,低頻區會出現一條反映擴散特性的Warburg阻抗曲線,該曲線並未在使用三軸探針座的量測情況下發現,原因可能是由於AFM探針針尖的電流密度較高,因此對LiCoO2產生更大的離子遷移和極化作用,所以在該微區阻抗分析中較容易觀察到擴散特性。
The major purpose of this study is to establish a platform, which is to use the combination of scanning probe microscopy and electrochemical impedance spectroscopy techniques to measure the micro-region impedance of the LiCoO2 material in the Li battery.
In order to discriminate the impedance characteristics between micro-region and normal ones, we have designed and assembled the “semi-exposed cell” and “typical cell” to execute the EIS measurements. The “semi- exposed cell” is used to measure the micro-region impedance; there are two ways to measure the micro-region impedance, one is performed by manipulator, the other is by AFM.
The experimental results, which are performed by the manipulator or AFM, show an additional semicircle in the high-frequency region in Nyquist plot, and this semicircle is caused by tip-sample contact resistance and contact capacitance.
There is a Warburg impedance characteristic in low-frequency region measured by AFM, though the Warburg characteristic is not found in the manipulator case. We attribute the Warburg characteristic to the high current density in the AFM tip, which induces larger ion-migration and polarization in the LiCoO2 material, so that we can easily find the diffusion effects in this case.
1. Binnig, G., C.F. Quate, and C. Gerber, ATOMIC FORCE MICROSCOPE. Physical Review Letters, 1986. 56(9): p. 930-933.
2. Binnig, G. and H. Rohrer, SCANNING TUNNELING MICROSCOPY. Helvetica Physica Acta, 1982. 55(6): p. 726-735.
3. Binning, G., et al., SURFACE STUDIES BY SCANNING TUNNELING MICROSCOPY. Physical Review Letters, 1982. 49(1): p. 57-61.
4. Liu, S.Y. and Y.F. Wang, Application of AFM in Microbiology: A Review. Scanning, 2010. 32(2): p. 61-73.
5. Jalili, N. and K. Laxminarayana, A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences. Mechatronics, 2004. 14(8): p. 907-945.
6. Parot, P., et al., Past, present and future of atomic force microscopy in life sciences and medicine. Journal of Molecular Recognition, 2007. 20(6): p. 418-431.
7. Gould, S.A.C., et al., THE ATOMIC FORCE MICROSCOPE - A TOOL FOR SCIENCE AND INDUSTRY. Ultramicroscopy, 1990. 33(2): p. 93-98.
8. Aurbach, D. and Y. Cohen, In situ micromorphological studies of Li electrodes by atomic force microscopy in a glove box system. Electrochemical and Solid State Letters, 1999. 2(1): p. 16-18.
9. Tian, Y., A. Timmons, and J.R. Dahn, In Situ AFM Measurements of the Expansion of Nanostructured Sn-Co-C Films Reacting with Lithium. Journal of the Electrochemical Society, 2009. 156(3): p. A187-A191.
10. Beaulieu, L.Y., et al., The electrochemical reaction of lithium with tin studied by in situ AFM. Journal of the Electrochemical Society, 2003. 150(4): p. A419-A424.
11. Beaulieu, L.Y., et al., Reaction of Li with alloy thin films studied by in situ AFM. Journal of the Electrochemical Society, 2003. 150(11): p. A1457-A1464.
12. Lewis, R.B., et al., In situ AFM measurements of the expansion and contraction of amorphous Sn-Co-C films reacting with lithium. Journal of the Electrochemical Society, 2007. 154(3): p. A213-A216.
13. Morozovska, A.N., et al., Local probing of ionic diffusion by electrochemical strain microscopy: Spatial resolution and signal formation mechanisms. Journal of Applied Physics, 2010. 108(5).
14. Balke, N., et al., Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nature Nanotechnology, 2010. 5(10): p. 749-754.
15. Chung, D.W., et al., Virtual Electrochemical Strain Microscopy of Polycrystalline LiCoO2 Films. Journal of the Electrochemical Society, 2011. 158(10): p. A1083-A1089.
16. Balke, N., et al., Real Space Mapping of Li-Ion Transport in Amorphous Si Anodes with Nanometer Resolution. Nano Letters, 2010. 10(9): p. 3420-3425.
17. Leroy, S., et al., Surface film formation on a graphite electrode in Li-ion batteries: AFM and XPS study. Surface and Interface Analysis, 2005. 37(10): p. 773-781.
18. Lucas, I.T., E. Pollak, and R. Kostecki, In situ AFM studies of SEI formation at a Sn electrode. Electrochemistry Communications, 2009. 11(11): p. 2157-2160.
19. Hajek, J., French Patent, 1949.
20. Tarascon, J.M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-367.
21. Julien, C. and G.-A. Nazri, Solid State Batteries:Materials Design and Optimization1994: Kluwer Academic Publishers.
22. Mizushima, K., et al., LIXCOO2 "(OLESS-THANXLESS-THAN-OR-EQUAL-TO1) - A NEW CATHODE MATERIAL FOR BATTERIES OF HIGH-ENERGY DENSITY. Materials Research Bulletin, 1980. 15(6): p. 783-789.
23. Delmas, C., Mater. Sci. Eng, 1980.
24. Rabou, L. and A. Roskam, CYCLE-LIFE IMPROVEMENT OF LI/LICOO2 BATTERIES. Journal of Power Sources, 1995. 54(2): p. 316-318.
25. Antaya, M., et al., PREPARATION AND CHARACTERIZATION OF LICOO2 THIN-FILMS BY LASER ABLATION DEPOSITION. Journal of the Electrochemical Society, 1993. 140(3): p. 575-578.
26. Yazami, R., et al., HIGH-PERFORMANCE LICOO2 POSITIVE ELECTRODE MATERIAL. Journal of Power Sources, 1995. 54(2): p. 389-392.
27. Han, K.S., et al., Simultaneous and direct fabrication of lithium cobalt oxide film and powder using soft solution processing at 100 degrees C. Electrochemical and Solid State Letters, 1999. 2(2): p. 63-66.
28. Ni, C.T. and K.Z. Fung, Effect of chitosan on deposition of LiCoO2 thin film for Li-ion batteries. Solid State Ionics, 2009. 180(11-13): p. 900-903.
29. Takahashi, Y., et al., Anisotropic Electrical Conductivity in LiCoO2 Single Crystal. Journal of Solid State Chemistry, 2002. 164(1): p. 1-4.
30. Winter, M. and J.O. Besenhard, Lithiated Carbons, in Handbook of Battery Materials2011, Wiley-VCH Verlag GmbH & Co. KGaA. p. 433-478.
31. Winter, M., et al., Insertion Electrode Materials for Rechargeable Lithium Batteries. Advanced Materials, 1998. 10(10): p. 725-763.
32. Juttner, K., ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS) OF CORROSION PROCESSES ON INHOMOGENEOUS SURFACES. Electrochimica Acta, 1990. 35(10): p. 1501-1508.
33. Mansfeld, F., ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS) AS A NEW TOOL FOR INVESTIGATING METHODS OF CORROSION PROTECTION. Electrochimica Acta, 1990. 35(10): p. 1533-1544.
34. Liu, C., Q. Bi, and A. Matthews, EIS comparison on corrosion performance of PVD TiN and CrN coated mild steel in 0.5 N NaCl aqueous solution. Corrosion Science, 2001. 43(10): p. 1953-1961.
35. Liu, C., et al., An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part I. Establishment of equivalent circuits for EIS data modelling. Corrosion Science, 2003. 45(6): p. 1243-1256.
36. Breur, H.J.A., et al., Electrochemical impedance study on the formation of biological iron phosphate layers. Electrochimica Acta, 2002. 47(13-14): p. 2289-2295.
37. Krishnan, C.V. and M. Garnett, Electrochemical impedance measurements for studying biological oscillations. Abstracts of Papers of the American Chemical Society, 2005. 230: p. U573-U574.
38. Ismail, A.H., et al., An electrochemical impedance spectroscopy (EIS) assay measuring the calcification inhibition capacity in biological fluids. Biosensors & Bioelectronics, 2011. 26(12): p. 4702-4707.
39. Nobili, F., et al., An AC impedance spectroscopic study of LixCoO2 at different temperatures. Journal of Physical Chemistry B, 2002. 106(15): p. 3909-3915.
40. Nobili, F., et al., An ac impedance spectroscopic study of Mg-doped LiCoO2 at different temperatures: electronic and ionic transport properties. Electrochimica Acta, 2005. 50(11): p. 2307-2313.
41. Wang, B., et al., Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes. Journal of the Electrochemical Society, 1996. 143(10): p. 3203-3213.
42. Barsoukov, E., et al., Comparison of kinetic properties of LiCoO2 and LiTi0.05Mg0.05Ni0.7Co0.2O2 by impedance spectroscopy. Solid State Ionics, 2003. 161(1-2): p. 19-29.
43. Qiu, X.-Y., et al., Electrochemical and electronic properties of LiCoO2 cathode investigated by galvanostatic cycling and EIS. Physical Chemistry Chemical Physics, 2012. 14(8): p. 2617-2630.
44. Sato, H., et al., Electrochemical characterization of thin-film LiCoO2 electrodes in propylene carbonate solutions. Journal of Power Sources, 1997. 68(2): p. 540-544.
45. Dokko, K., et al., Kinetic characterization of single particles of LiCoO2 by AC impedance and potential step methods. Journal of the Electrochemical Society, 2001. 148(5): p. A422-A426.
46. Xia, H., L. Lu, and G. Ceder, Li diffusion in LiCoO2 thin films prepared by pulsed laser deposition. Journal of Power Sources, 2006. 159(2): p. 1422-1427.
47. Zhuang, Q.C., et al., LiCoO2 electrode/electrolyte interface of Li-ion batteries investigated by electrochemical impedance spectroscopy. Science in China Series B-Chemistry, 2007. 50(6): p. 776-783.
48. Itagaki, M., et al., LiCoO2 electrode/electrolyte interface of Li-ion rechargeable batteries investigated by in situ electrochemical impedance spectroscopy. Journal of Power Sources, 2005. 148: p. 78-84.
49. Tian, L., et al., Mechanism of intercalation and deintercalation of lithium ions in graphene nanosheets. Chinese Science Bulletin, 2011. 56(30): p. 3204-3212.
50. Levi, M.D., et al., Solid-state electrochemical kinetics of Li-ion intercalation into Li1-xCoO2: Simultaneous application of electroanalytical techniques SSCV, PITT, and EIS. Journal of the Electrochemical Society, 1999. 146(4): p. 1279-1289.
51. Barsoukov, E. and J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications2005: Wiley-Interscience.
52. Yuan, X.-Z., et al., Electrochemical Impedance Spectroscopy in PEM Fuel Cells2010: Springerr.
53. Fonthal, F., et al., AC impedance analysis of Au/porous silicon contacts. Microelectronic Engineering, 2006. 83(11-12): p. 2381-2385.
54. Domaradzki, J. and K. Nitsch, Electrical characterization of semiconducting V and Pd-doped TiO2 thin films on silicon by impedance spectroscopy. Thin Solid Films, 2007. 515(7-8): p. 3745-3752.
55. Mulder, W.H., et al., TAFEL CURRENT AT FRACTAL ELECTRODES - CONNECTION WITH ADMITTANCE SPECTRA. Journal of Electroanalytical Chemistry, 1990. 285(1-2): p. 103-115.
56. Kim, C.-H., S.-I. Pyun, and J.-H. Kim, An investigation of the capacitance dispersion on the fractal carbon electrode with edge and basal orientations. Electrochimica Acta, 2003. 48(23): p. 3455-3463.
57. Schiller, C.A. and W. Strunz, The evaluation of experimental dielectric data of barrier coatings by means of different models. Electrochimica Acta, 2001. 46(24–25): p. 3619-3625.
58. Jorcin, J.-B., et al., CPE analysis by local electrochemical impedance spectroscopy. Electrochimica Acta, 2006. 51(8–9): p. 1473-1479.
59. Oldham, K.B., The RC time “constant” at a disk electrode. Electrochemistry Communications, 2004. 6(2): p. 210-214.
60. Rotsch, C. and M. Radmacher, Mapping local electrostatic forces with the atomic force microscope. Langmuir, 1997. 13(10): p. 2825-2832.
61. Muller, D.J. and A. Engel, The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions. Biophysical Journal, 1997. 73(3): p. 1633-1644.
62. Florin, E.L., et al., ATOMIC-FORCE MICROSCOPE WITH MAGNETIC FORCE MODULATION. Review of Scientific Instruments, 1994. 65(3): p. 639-643.
63. Saenz, J.J., et al., OBSERVATION OF MAGNETIC FORCES BY THE ATOMIC FORCE MICROSCOPE. Journal of Applied Physics, 1987. 62(10): p. 4293-4295.
64. O'Hayre, R., et al., Quantitative impedance measurement using atomic force microscopy. Journal of Applied Physics, 2004. 96(6): p. 3540-3549.
65. Kittel, A., et al., Near-field heat transfer in a scanning thermal microscope. Physical Review Letters, 2005. 95(22).
66. Lefevre, S. and S. Volz, 3 omega-scanning thermal microscope. Review of Scientific Instruments, 2005. 76(3).
67. Oesterschulze, E., et al., Thermal imaging of thin films by scanning thermal microscope. Journal of Vacuum Science & Technology B, 1996. 14(2): p. 832-837.
68. Sebastian, A., A. Gannepalli, and M.V. Salapaka, A review of the systems approach to the analysis of dynamic-mode atomic force microscopy. Ieee Transactions on Control Systems Technology, 2007. 15(5): p. 952-959.
69. Arutunow, A., K. Darowicki, and A. Zielinski, Atomic force microscopy based approach to local impedance measurements of grain interiors and grain boundaries of sensitized AISI 304 stainless steel. Electrochimica Acta, 2011. 56(5): p. 2372-2377.
70. Croce, F., et al., An electrochemical impedance spectroscopic study of the transport properties of LiNi0.75Co0.25O2. Electrochemistry Communications, 1999. 1(12): p. 605-608.
71. Molenda, J., A. Stokłosa, and T. Ba̧k, Modification in the electronic structure of cobalt bronze LixCoO2 and the resulting electrochemical properties. Solid State Ionics, 1989. 36(1–2): p. 53-58.
校內:2017-09-04公開