| 研究生: |
張靈 Chang, Ling |
|---|---|
| 論文名稱: |
左,右旋聚乳酸錯合物及其摻合體之球晶型貌與晶板結構分析 Lamellar Assembly and Stereocomplex Structuring in Mixtures of Poly(L-lactic acid) and Poly(D-lactic acid) |
| 指導教授: |
吳逸謨
Woo, Eamor M. |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 生物可分解性 、聚酯類高分子 、聚乳酸 、立體錯合物 、聚羥基丁酯 、熱行為 |
| 外文關鍵詞: | Biodegradable, polyesters, PLLA, stereocomplex, PHB, thermal behavior |
| 相關次數: | 點閱:93 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本研究利用微分掃描卡度計(differential scanning calorimetry)、偏光顯微鏡(polarizing-light optical microscopy)、原子力顯微鏡(atomic force microscopy)、廣角X光繞射儀(wide-angle X-ray diffraction)、傅立葉轉換紅外光譜儀(Fourier-transform infrared spectroscopy)以及小角度X光散射儀(small-angle X-ray scattering)探討聚乳酸錯合物(stereocomplexed poly(lactic acid), sc-PLA)及其摻合體之相容性、晶態行為、球晶型貌以及晶板結構。
由微分掃描卡度計的熱分析,可知poly(D-lactic acid)/low-molecular-weight poly(L-lactic acid) (PDLA/LMw-PLLA)之摻合體隨組成變化,存有不同程度的混摻尺度及作用力大小。且由廣角X光繞射儀的晶體分析及傅立葉轉換紅外光譜儀的作用力探討下,可知非當量組成之摻合體存有不同比例的聚乳酸及錯合物,其結果亦顯示在LMw-PLLA組成為30至50 wt%之摻合體,僅存有錯合物晶體。擇以PDLA高含量組成之摻合體(90/10),觀察PDLA於錯合物模板下之多層次結晶型貌。依據原子力顯微鏡相圖的分析,可知PDLA於錯合物模板下的晶板排列,是由纖維狀晶板(fibril-like)轉變成串珠狀晶板(bead-on-string),進而增厚成非規則態麻花狀晶板(dough-like);而後麻花狀晶板如同一基體,供纖維狀至串珠狀的晶板反覆排列,直至接觸另一球晶。在冷結晶過程中,PLLA於當量組成下之摻合體(50/50),存有非PLLA及錯合物之特殊晶體(meta-crystal)。由廣角X光繞射儀的分析下,可知PLLA於冷結晶溫度為85oC至95oC,同時存有meta-form及alpha'-form晶體,以及溫度為100oC至120oC,則存有alpha-form晶體。並由變溫之小角度X光散射儀分析下,可知meta-form PLLA可能存在於錯合物晶板間,且於升溫過程中,meta-form PLLA部份熔融且以熔融再結晶之機制,直接排列成alpha-form晶體,而非透過形成規則性差的alpha'-form晶體之途徑形成alpha-form晶體。Meta-form晶體之熔融及再結晶的擇優性,則依冷結晶溫度而定。冷結晶溫度為85oC至95oC時,meta-form晶體之再結晶行為較熔融行為,更為顯著。
本研究中首度探討生物可分解性高分子poly(3-hydroxybutyrate)(PHB)與聚乳酸錯合物摻合體之相容性、結晶型態及晶板結構。由微分掃描卡度計的熱分析,可知PHB/sc-PLA摻合體屬一相容系統,且PHB的加入,其錯合物之結晶行為及型貌受到抑制及改變。當熔融結晶溫度為130oC以上,PHB可視為不定形高分子,且隨PHB含量的增加,錯合物的球晶型貌由典型的馬爾他十字轉變為樹枝狀之球晶型貌。依據偏光及原子力顯微鏡的分析,可知在結晶溫度為170oC時,錯合物的球晶型貌不再維持馬爾他十字的型貌,取而代之的是edge-on羽毛狀(feather-like)及flat-on菱形狀(wedge-like)的球晶型貌。並根據動態偏光顯微鏡的結果,可知受PHB導入的影響,錯合物先以羽毛狀(feather-like)的型貌呈現,隨之發展菱形狀(wedge-like)的型貌,且隨結晶時間的增加,羽毛狀(feather-like)與菱形狀(wedge-like)之球晶型貌將一同成長。導致錯合物呈現不同的球晶型貌及晶板排列,可歸因於PHB於錯合物晶體前緣的濃度及分布上的差異。由廣角X光繞射儀的分析,可知此球晶型貌的錯合物,其晶格結構未受改變。
此外,本研究亦針對PHB高分子在機械性質上的缺點,提供一具生物可分解之成核劑,以改善其強度。利用非恆溫結晶曲線,可初步了解添加少量之錯合物晶體有助於提高PHB高分子的結晶能力。並進而利用Avrami學者提出的恆溫結晶動力學理論,針對PHB高分子的結晶動力學進行探討。由Avrami參數n及k值的結果,可知導入少量的錯合物晶體,對於PHB高分子之結晶機制未受改變,並且提升PHB高分子整體的結晶速率。並由偏光顯微鏡的結果,可知添加少量之錯合物晶體有助於提高PHB高分子的成核密度。
The thermal behavior, lamellar assembly and crystallization in fully biodegradable polymer blends of poly(D-lactic acid) with low-molecular-weight poly(L-lactic acid) (PDLA/LMw-PLLA) and poly(3-hydroxybutyrate) with stereocomplexed PLA (PHB/sc-PLA) were probed using differential scanning calorimetry (DSC), polarizing-light optical microscopy (POM), atomic force microscopy (AFM), wide-angle X-ray diffraction (WAXD), Fourier-transform infrared spectroscopy (FTIR), and small-angle X-ray scattering (SAXS).
Sigmoidal Tg-composition relationship in blend of PDLA/LMw-PLLA indicates that interactions and scales of mixing vary with the blend composition. Blending LMw-PLLA with PDLA at 1:1 weight ratio led to formation of sc-PLA crystal. Crystallization of nonequimolar compositions of the blends leads to formation of various fractions of sc-PLA crystallites and homocrystallites (PDLA or PLLA). For the PDLA/LMw-PLLA blends within the composition window of LMw-PLLA content between 30 and 50 wt%, only sc-PLA crystal exists and no homocrystal is present. On the other hand, for PDLA/LMw-PLLA blends with excess PDLA, e.g. PDLA/LMw-PLLA=90/10, AFM characterization on various stages of crystallization of sc-PLA crystal with PDLA homocrystal shows a repetitive stacking of excess PDLA on pre-formed sc-PLA crystal serving as crystallizing templates. The crystallization initially begins with string-like (fibril-like) PDLA lamellae, followed with PDLA aggregating on sc-PLA crystal into a bead-on-string crystal, then growing to thicker irregularly-shaped dough-like lamellae. Repetitive growth cycle from strings to bead-on-string lamellae continues on top of the dough-like lamellae as new substrates, until ending impingement of the PDLA spherulites. A unique crystalline structure of homopolymeric PLLA, appearing as a meta-crystal, was discovered in PDLA/LMw-PLLA blend. In PDLA/LMw-PLLA blend, both meta-crystal and alpha'-crystal form in PLLA were found to form when crystallized at cold-crystallization temperature (Tcc) of 85-95oC and the alpha-crystal PLLA formed at 100 ≤ Tcc < 120oC, respectively. The SAXS result indicates that the meta-crystal PLLA may be incorporated in the sc-PLA lamellar region. During a heating process, the meta-crystal PLLA first partially melts and subsequently it repacks directly into the alpha-crystal PLLA without going through the less stable alpha'-form, by melt-recrystallization mechanism. For the PDLA/LMw-PLLA mixtures crystallized at Tcc from 85oC to 95oC, the re-crystallization of the meta-crystal becomes more predominant than the melting of the meta-form PLLA crystal.
The PHB/sc-PLA blend system shows a single composition-dependent Tg in all composition, indicating miscibility and interactions between PHB and sc-PLA, which leads to that crystallization growth of sc-PLA in blends is hindered by presence of PHB and final morphology of the sc-PLA complexes is altered. When crystallized at high Tc (130oC or above), morphology transition of sc-PLA occurs from original well-rounded Maltese-cross spherulites to dendritic form in blends of high PHB contents (50 wt% or higher), where PHB acts as an amorphous species. Microscopy characterizations show that morphology sc-PLA in PHB/sc-PLA blends crystallized at Tc=170oC no longer retain original complexed Maltese-cross well-rounded spherulites; instead, the spherulites are disintegrated and restructured into two types of dendrites: (1) edge-on feather-like dendrites (early growth) and (2) flat-on wedge-like crystal plates (later growth) by growing along different directions and exhibiting different optical brightness. The concentration and/or distribution of amorphous PHB at the crystal growth front, corresponding to variation of the slopes of spherulitic growth rates, is a factor resulting in alteration and restructuring of the sc-PLA spherulites in the blends. Despite of spherulite disintegration, WAXD result shows that these two PHB-induced dendrites still retain the original unit cells of complexes, and thus these two new dendrites are sc-PLA.
Small amount crystalline nuclei of sc-PLA (2-10 wt%) were incorporated into PHB for investigating melt-crystallization kinetics. The Avrami equation was employed to analyze the isothermal crystallization of PHB. The sc-PLA crystallites acted as nucleation sites in blends, and accelerated the crystallization rates of PHB by increasing the crystallization rate constant k and decreasing the half-time (t1/2). The PHB crystallization was nucleated most effectively with 10 wt% stereocomplexed crystallites, as evidenced by POM results. The sc-PLA complex nucleated PHB crystals exhibit much small spherulite sizes but possess the same crystal cell morphology as that of neat PHB based on the WAXD result.
Chapter 1 References
[1] R. Chandra, R. Rustgi, Prog. Polym. Sci., 23, 1273 (1998)
[2] S. Li, J. Biomed. Mater. Res., 48, 342 (1999)
[3] L. S. Nair, C. T. Laurencin, Prog. Polym. Sci., 32, 762 (2007)
[4] R. E. Drumright, P. R. Gruber, D. E. Henton, Adv. Mater., 12, 1841 (2000)
[5] H. Tsuji, Y. Ikada, Polymer, 36, 2709 (1995)
[6] H. R. Kricheldorf, A. Serra, Polym. Bull., 14, 497 (1985)
[7] K. Shinno, M. Miyamoto, Y. Kimura, Y. Hirai, H. Yoshitome, Macromolecules, 30, 6438 (1997)
[8] R. Miyoshi, N. Hashimoto, K. Koyanagi, Y. Sumihiro, T. Sakai, Int. Polym. Proc., 11, 320 (1996)
[9] S. I. Moon, C. W. Lee, M. Miyamoto, Y. Kimura, J. Polym. Sci., Part A: Polym. Chem., 38, 1673 (2000).
[10] H. Tusji, in Biopolymers. Vol. 4. Polyesters III: Applications and Commercial Products, Ed. By Doi, Y. and Steinbuchel, A. Wiley-VCH, Weinheim, pp. 129- (2002)
[11] D. R. Witzke, Ph. D. Thesis. Michigan State University, East Lansing, MI, p.389 (1997)
[12] W. Hoogsteen, A. R. Postema, A. J. Pennings, G. Ten Brinke, P. Zugenmaier, Macromolecules, 23, 634 (1990)
[13] D. Sawai, K. Takahashi, T. Imamura, K. Nakamura, T. Kanamoto, S. H. Hyon, J. Polym. Sci., Polym. Phys. Ed., 40, 95 (2002)
[14] L. Cartier, T. Okihara, Y. Ikada, H. Tsuji, J. Puiggali, B. Lotz, Polymer, 41, 8909 (2000)
[15] J. Zhang, A. J. Domb, H. Sato, H. Tsuji, I. Noda, S. Yan, Y. Ozaki, Macromolecules, 38, 8012 (2005)
[16] C. Vogel, H. W. Siesler, Macromol. Symp., 265, 183 (2008)
[17] T. Serizawa, Y. Arikawa, K.-I. Hamada, H. Yamashita, T. Fujiwara, Y. Kimura, M. Akashi, Macromolecules, 36, 1762 (2003)
[18] J. C. Middleton, A. J. Tipton, Biomaterials, 21, 2335 (2000)
[19] H. Tsuji, Y. Ikada, Polym. Degrad. Stab., 67, 179 (2000)
[20] H. Tsuji, Y. Ikada, J. Polym. Sci., Part A: Polym. Chem., 36, 59 (1998)
[21] H. Shinoda, Y. Asou, T. Kashima, T. Kato, Y. Tseng, T. Yagi, Polym. Degrad. Stab., 80,241 (2003)
[22] H. Tsuji, K. Ikarashi, Polym. Degrad. Stab., 85, 647 (2004)
[23] T. Iwata, Y. Doi, Macromol. Chem. Phys., 200, 2429 (1999)
[24] K. Sudesh, H. Abe, Y. Doi, Prog. Polym. Sci., 25, 1503 (2000)
[25] Y. He, B. Zhu, Y. Inoue, Prog. Polym. Sci., 29, 1021 (2004)
[26] A. J. Anderson, E. A. Dawes, Microbiol. Res., 54, 450 (1990)
[27] G. W. Haywood, A. J. Anderson, G. A. Williams, E. A. Dawes, D. F. Ewing. Int. J. Biol. Macromol., 13, 83 (1991)
[28] M. Yokouchi, Y. Chatani, H. Tadokoro, K. Teranishi, H. Tani, Polymer, 14, 267 (1973)
[29] C. W. Pouton, S. Akhtar, Adv. Drug Delivery Rev., 18, 133 (1996)
[30] P. J. Barham, A. Keller, E. L. Otum, P. A. Holmes, J. Mater. Sci., 19, 2781 (1984)
[31] M. Gazzano, M. L. Focarete, C. Reikel, A. Ripamonti, M. Scandola, Macrom. Chem. Phys., 202, 1405 (2001)
[32] Y. Kumagai, Y. Doi, Polym. Degrad. Stab., 36, 241 (1992)
[33] N. Grassie, E. J. Murray, P. A. Holmes, Polym. Degrad. Stab., 6, 95 (1984)
[34] P. J. Barham, A. Keller, J. Polym. Sci., Polym. Phys. Ed., 24, 69 (1986)
[35] J. D. He, M. K. Cheung, P. H. Yu, G. Q. Chen, J. Appl. Polym. Sci., 82, 90 (2001)
[36] S. N. Lee, M. Y. Lee, W. H. Park, J. Appl. Polym. Sci., 83, 2945 (2002)
[37] J. Mergaert, A. Webb, C. Anderson, A. Wouters, J. Swings, Appl. Environ. Microbiol., 59, 3233 (1993)
[38] K. Kasuya, K. Takagi, S. Ishiwatari, Y. Yoshida, Y. Doi. Polym. Degrad. Stab., 59, 327 (1998)
[39] Y. Kumagai, Y. Kanesawa, Y. Doi. Makromol. Chem., 193, 3 (1992)
[40] N. D. Miller, D. F. Williams, Biomaterials, 8, 129 (1987)
[41] H. Tsuji, K. Suzuyoshi, Polym. Degrad. Stab., 75, 347 (2002)
[42] Kasuya K, Y. Inoue, K. Yamada, Y. Doi, Polym. Degrad. Stab., 48, 167 (1995)
[43] K. Van de Velde, P. Kiekens, Polym. Test., 21, 433 (2002)
[44] L. Miao, Z. Qiu, W. Yang , T. Ikehara, React. Funct. Polym., 68, 446 (2008)
[45] J. Slager, A. J. Domb. Adv. Drug Delivery Rev., 55, 549 (2003)
[46] T. G. Fox, B. S. Garrett, W. E. Goode, S. Grathch, J. F. Kincaid, A. Spell, J. D. Stroupe, J. Am. Chem. Soc., 80, 1768 (1958)
[47] A. M. Liquori, G. Anzuino, V. M. Coiro, M. D’Alagni, P. de Santis, M. Savino, Nature, 206, 358 (1965)
[48] W. H. Watanable, C. F. Ryan, P. C. Fleischer, B. S. Garrett, J. Phys. Chem., 65, 896 (1961)
[49] E. Schomaker, G. Challa, Macromolecules, 21, 2195 (1988)
[50] E. Schomaker, H. Hoppen, G. Challa, Macromolecules, 21, 2203 (1988)
[51] I. A. Katime, J. R. Quintana, Makromol. Chem., 187, 1441 (1986)
[52] E. J. Lemieux, R. E. Prud’homme, Polymer, 39, 5453 (1998)
[53] E. Schomaker, G. Challa, Macromolecules, 22, 3337 (1989)
[54] J. Dybal, J. Štokr, B. Schneider, Polymer, 24, 971 (1983)
[55] J. Kumaki, T. Kawauchi, K. Okoshi, H. Kusanagi, E. Yashima, Angew. Chem., 119, 5444 (2007)
[56] J. K. Bikson, N. Nelson, J. Membr. Sci., 94, 313 (1994)
[57] T. Serizawa, K. Hamada, T. Kitayama, N. Fujimoto, K. Hatada, M. Akashi, J. Am. Chem. Soc., 122, 1891 (2000)
[58] T. Kida, M. Mouri, M. Akashi, Angew. Chem. Int. Ed., 45, 7534 (2006)
[59] T. Okihara, M. Tsuji, A. Kawaguchi, K. I. Katayama, H. Tsuji, S. H. Hyon, Y. Ikada, J. Macromol. Sci., Phys., B30, 119 (1991)
[60] D. Brizzolara, H. J. Cantow, K. Diederichs, E. Keller, A. J. Domb, Macromolecules, 29, 191 (1996)
[61] H. Tsuji, Y. Tezuka, Biomacromolecules, 5, 1181 (2004)
[62] Y. Ikada, K. Jamshidi, H. Tsuji, S. H. Hyon, Macromolecules, 20, 904 (987)
[63] H. Tsuji, Y. Ikada, S. H. Hyon, Y. Kimura, T. Kitao, J. Appl. Polym. Sci., 51, 337 (1994)
[64] K. Fukushima, Y. Kimura. Polym. Int., 44, 626 (2006)
[65] H. Tsuji, Y. Ikada, Polymer, 40, 6699 (1999)
[66] S. J. de Jong, B. van Eerdenbrugh, C. F. van Nostrum, J. J. Kettenes-van de Bosch, W. E. Hennink, J. Controlled Release, 71, 261 (2001)
[67] M. Kakuta, M. Hirata, Y. Kimura, J. Macromol. Sci., Polym. Rev., 49, 107 (2009)
[68] N. Yui, P. J. Dijkstra, J. Feijen, Makromol. Chem., 191, 481 (1990)
[69] K. Fukushima, Y. Furuhashi, K. Sogo, S. Miura, Y. Kimura. Macromol. Biosci., 5, 21 (2005)
[70] K. Fukushima, M. Hirata, Y. Kimura. Macromolecules, 40, 3049 (2007)
[71] P. De Santis, A. J. Kovacs, Biopolymer, 6, 299 (1968)
[72] J. Slager, A. J. Domb, Biomaterials, 23, 4389 (2003)
[73] H. Tsuji, H. Mastsuoka, Macromol. Rapid Commun., 29, 1372 (2008)
[74] H. Tsuji, S. Yamaoto, A. Okumura, Y. Sugiura, Biomacromlecules, 11, 252 (2010)
[75] C. Lavallee, R. E. Prud’homme, Macrmolecules, 22, 2438 (1989)
[76] Y. Mitsui, Y. Iitaka, M. Tsuboi, J. Mol. Biol., 24, 15 (1961)
[77] H. Tsuji, A. Okumura, Macromolecules, 42, 7263 (2009)
[78] Y. Li, H. Shimizu, Macromol. Biosci., 7, 921 (2007)
[79] E. Blümm, A. J. Owen. Polymer, 36, 4077 (1995)
[80] Z. Qiu, T. Ikehara, T. Nishi, Polymer, 44, 2799 (2003)
[81] J. P. Penning, R. St. J. Manley, Macromolecules, 29, 84 (1996)
[82] Z. Qiu, C. Yan, J. Lu, W. Yang, Macromolecules, 40, 5047 (2007)
[83] J. Lu, Z. Qiu, W. Yang, Macromolecules, 41, 141 (2008)
[84] T. Ikehara, H. Kimura, Z. Qiu, Macromolecules, 38, 5104 (2005)
[85] W. Kai, Y. He, Y. Inoue, Polym. Int., 54, 780 (2005)
[86] H. Alata, B. Hexig, Y. Inoue, J. Polym. Sci., Part B: Polym. Phys., 44, 1813 (2006)
[87] R. E. Withey, J. N. Hay, Polymer, 40, 5147 (1999)
[88] N. Jacquel, K. Tajima, N. Nakamura, T. Miyagawa, P. Pan, Y. Inoue, J. Appl. Polym. Sci., 114, 1287 (2009)
[89] W. Kai, Y. He, N. Asakawa, Y. Inoue, J. Appl. Polym. Sci., 94, 2466 (2004)
[90] N. Jacquel, K. Tajima, N. Nakamura, H. Kawachi, P. Pan, Y. Inoue, J. Appl. Polym. Sci., 115, 709 (2010)
[91] T. Dong, T. Mori, T. Aoyama, Y. Inoue, Carbohydr. Polym., 80, 387 (2010)
[92] Y. He, Y. Inoue, Biomacromlecules, 4, 1865 (2003)
[93] S. C. Schmidt, M. A. Hillmyer, J. Polym. Sci., Part B: Polym. Phys., 39, 300 (2001)
[94] K. S. Anderson, M. A. Hillmyer, Polymer, 47, 2030 (2006)
[95] H. Tsuji, H. Takai, S. K. Saha, Polymer, 47, 3826
(2006)
Chapter 2 References
[1] W. Hoogsteen, A. R. Postema, A. J. Pennings, G. Ten Brinke, P. Zugenmaier, Macromolecules, 23, 634 (1990)
[2] D. Brizzolara, H. J. Cantow, K. Diederichs, E. Keller, A. J. Domb, Macromolecules, 29, 191 (1996)
[3] Y. Ikada, K. Jamshidi, H. Tsuji, S. H. Hyon, Macromolecules, 20, 904 (1987)
[4] J. Puiggali, Y. Ikada, H. Tsuji, L. Cartier, T. Okihara, B. Lotz, Polymer, 41, 8921 (2000)
[5] D. Sawai, K. Takahashi, T. Imamura, K. Nakamura, T. Kanamoto, S. H. Hyon, J. Polym. Sci., Polym. Phys. Ed., 40, 95 (2002)
[6] D. Sawai, K. Takahashi, A. Sasashige, T. Kanamoto, S. H. Hyon, Macromolecules, 36, 3601 (2003)
[7] L. Cartier, T. Okihara, Y. Ikada, H. Tsuji, J. Puiggali, B. Lotz, Polymer, 41, 8909 (2000)
[8] H. Tsuji, Y. Ikada, Macromolecules, 26, 6918 (1993)
[9] H. Tsuji, S. H. Hyon, Y. Ikada, Macromolecules, 24, 5657 (1991)
[10] G. Kister, G. Gassanas, M. Vert, Polymer, 39. 267 (1998)
[11] T. Okihara, M.Tsuji, A. Kawaguchi, K. Katayama, H. Tsuji, S. H. Hyon, J. Macromol. Sci. Phys., B30, 119 (1991)
[12] J. Zhang, K. Tashiro, H. Tsuji, A. J. Domb, Macromolecules, 41, 1352 (2008)
[13] R. Auras, B. Harte, S. Selke, Macromol. Biosci., 4, 835 (2004)
[14] M. Kakuta, M. Hirata, Y. Kimura, J. Macromol. Sci. Part C: Polymer Reviews, 49, 107 (2009)
[15] K. Fukushima, Y. Kimura. Polym. Int., 44, 626 (2006)
[16] J. Zhang, A. J. Domb, H. Sato, H. Tsuji, I. Noda, S. Yan, Y. Ozaki, Macromolecules, 38, 8012 (2005)
[17] J. Zhang, K. Tashiro, H. Tsuji, A. J. Domb, Macromolecules, 40, 1049 (2007)
[18] P. Pan, B. Zhu, W. Kai, T. Dong, Y. Inoue, J. Appl. Polym. Sci., 107, 54 (2008)
[19] P. Pan, W. Kai, B. Zhu, T. Dong, Y. Inoue, Macromolecules, 40, 6898 (2007)
[20] P. Pan, B. Zhu, W. Kai, T. Dong, Y. Inoue, Macromolecules, 41, 4296 (2008)
[21] L. Bouapao, H. Tsuji, K. Tashiro, J. Zhang, M. Hanesaka, Polymer, 50, 4007 (2009)
[22] G. R. Strobl, “The Physical of Polymer Concepts for Understanding Their Structures and Behavior,” Section 3.2 Polymer Mixtures, Springer-Verlag (1996)
[23] T. G. Fox, J. Appl. Bull. Am. Phys. Soc., 1, 123 (1956)
[24] M. Gordon, J. S. Taylor, J. Appl. Chem., 2, 493 (1952)
[25] T. K. Kwei, J. Polym. Sci. Polym. Lett. Ed., 22, 307 (1984)
[26] A. A. Lin, T. K. Kwei, A. Reiser, Macromolecules, 22, 4112 (1989)
[27] H. A. Schneider, Polymer, 30, 771 (1989)
[28] H. A. Schneider, Polym. Bull., 40, 321 (1998)
[29] G. Reiter, G. R. Strobl, “Progress in understanding of polymer crystallization,” Springer, New York (2007)
[30] J. D. Hoffman, G. T.Davis, J. I. Lauritzem,” In Treastise on Solid State Chemistr”, vol 13, Plenum Press, New York (1976)
[31] M. L. Di Lorenzo, Prog. Polym. Sci., 28, 663 (2003)
[32] P. J. Phillips, N. Vatansever, Macromolecules, 20, 2138 (1987)
[33] H. D. Keith, F. J. Jr. Padden, J. Appl. Phys., 35, 1270 (1964)
[34] M. Avrami, J. Chem. Phys., 7, 1103 (1939)
Chapter 3 References
[1] M. Vert, S. M. Li, G. Spenlehauer, P. Guerin, J. Mater. Sci. Mater. Med., 3, 432 (1992)
[2] R. E. Drumright, P. R. Gruber, D. E. Henton, Adv. Mater., 12, 1841 (2000)
[3] H. Tsuji, Y. Ikada, Polymer, 36, 2709 (1995)
[4] W. Hoogsteen, A. R. Postema, A. J. Pennings, G. Ten Brinke, P. Zugenmaier, Macromolecules, 23, 634 (1990)
[5] S. Sasaki, T. Asakura, Macromolecules, 36, 8385 (2003)
[6] D. Sawai, K. Takahashi, A. Sasashige, T. Kanamoto, S. H. Hyon, Macromolecules, 36, 3601 (2003)
[7] L. Cartier, T. Okihara, Y. Ikada, H.Tsuji, J. Puiggali, B. Lotz, Polymer, 41, 8909. (2000)
[8] H. Tsuji, Macromol. Biosci., 5, 569 (2005)
[9] K. Aou, S. L. Hsu, Macromolecules, 39, 267 (2006)
[10] J. Zhang, Y. Duan, H. Sato, H. Tsuji, I. Noda, S. Yan, Y. Ozaki, Macromolecules, 38, 8012 (2005)
[11] J. Zhang, H. Sato, H.Tsuji, I. Noda, Y. Ozaki, Macromolecules, 38, 1822 (2005)
[12] T. Okihara, M.Tsuji, A. Kawaguchi, K. Katayama, H. Tsuji, S. H. Hyon, J. Macromol. Sci. Phys., B30, 119 (1991)
[13] H. Tsuji, Y. Ikada, Macromolecules, 26, 6918 (1993)
[14] H. Tsuji, S. H. Hyon, Y. Ikada, Macromolecules, 24, 5657 (1991)
[15] G. Kister, G. Gassanas, M. Vert, Polymer, 39. 267 (1998)
[16] S. Kang, S. L. Hsu, H. D. Stidham, P. B. Smith, M. A. Leugers, X. Yang, Macromolecules, 34, 4542 (2001)
[17] L. Cartier, T. Okihara, B. Lotz, Macromolecules, 30, 6313 (1997)
[18] H. Tsuji, Y. Ikada, Polymer, 40, 6699 (1999)
[19] H. Tsuji, S. H. Hyon, Y. Ikada, Macromolecules, 24, 5651 (1991)
[20] S. Brochu, R. E. Prudhomme, I. Barakat, R. Jerome, Macromolecules, 28, 5230 (1995)
[21] Z. Qiu, C. Yan, J. Lu, W. Yang, Macromolecules, 40, 5047 (2007)
[22] J. P. Penning, R. St. J. Manley, Macromolecules, 29, 84 (1996)
[23] J. Lu, Z. Qiu, W. Yang, Macromolecules, 41, 141 (2008)
[24] T. Ikehara, H. Kimura, Z. Qiu, Macromolecules, 38, 5104 (2005)
[25] T. Miyata, T. Masuko, Polymer, 39, 5515 (1998)
[26] H. Tsuji, F. Horri, M.Nakagawa, Y. Ikada, H. Odani, R. Kitamaru, Macromolecules, 25, 4114 (1992)
[27] P. Oparakasit, M. Oparakasit, Macromol. Symp., 264, 113 (2008)
[28] T. G. Fox, Bull. Am. Phys. Sci., 1, 123 (1995)
[29] M. Gordon, J. S. Taylor, J. Appl. Chem., 2, 493 (1952)
[30] T. K. Kwei, J. Polym. Sci. Polym. Lett. Ed., 22, 307 (1984)
[31] H. A. Schneider, Polymer, 30, 771 (1989)
[32] S. Zheng, Y. Mi, Polymer, 44, 1067 (2003)
[33] J. Kratochvíl, A. Sikora, J. Labsky, R. Puffr, Europ. Polym. J., 41, 1681 (2005)
[34] M. Yasuniwa, K. Iura, Y. Dan, Polymer, 48, 5398 (2007)
[35] M. Yasuniwa, K. Sakamo, Y. Ono, W. Kawahara, Polymer, 49, 1943 (2008)
[36] Y. Ikada, K. Jamshidi, H. Tsuji, S. H. Hyon, Macromolecules, 20, 904 (1987)
[37] J. Zhang, K. Tashiro, H. Tsuji, A. J. Domb, Macromolecules, 40, 1049 (2007)
[38] L. Chang, E. M. Woo, Macromol. Chem. Phys., 212, 125 (2011)
[39] J. Zhang, K. Tashiro, H. Tsuji, A. J. Domb, Macromolecules, 41, 1352 (2008)
[40] J. Zhang, H. Sato, H. Tsuji, I. Noda, Y. Ozaki, J. Mol. Struct., 735, 249 (2005)
[41] J. Zhang, H. Tsuji, I. Noda, Y. Ozaki, Macromolecules, 37, 6433 (2004)
[42] D. Qiu, R. T. Kean, Appl. Spectro., 52, 488 (1998)
[43] D. Sawai, K. Takahashi, A. Sasashige, T. Kanamoto, Macromolecules, 36, 3601 (2003)
[44] G. Kister, G. Cassanas, M. Vert, Polymer, 39, 267 (1998)
[45] J. Xu, B. H. Guo, J. J. Zhou, L. Li, J. Wu, M. Kowalczuk, Polymer, 46, 9176 (2005)
[46] M. Kanchanasopa, E. Manias, J. Runt, Biomacromolecules, 4, 1203 (2003)
Chapter 4 References
[1] M. Vert, S. M. Li, G. Spenlehauer, P. J. Guerin, Mater. Sci. -Mater. Med., 3, 432 (1992)
[2] R. E. Drumright, P. R. Gruger, D. E. Henton, Adv. Mater., 12, 1841 (2000)
[3] T. Miyata, T. Masuko, Polymer, 39, 5515 (1998)
[4] H. Tsuji, Y. Ikada, Polymer, 36, 2709 (1998)
[5] W. Hoogsteen, A. R. Postema, A. J. Pennings, G. Ten Brinke, P. Zugenmaier, Macromolecules, 23, 634 (1990)
[6] J. Kobayashi, T. Asahi, M. Ichiki, A. Okikawa, H. Suzuki, T. Watanbe, E. Fukuda, Y. Shikinami, J. Appl. Phys., 77, 2957 (1995)
[7] S. Sasaki, T. Asakura, Macromolecules, 36, 8385 (2003)
[8] D. Sawai, K. Takahashi, T. Imamura, K. Nakamura, T. Kanamoto, S. H. Hyon, J. Polym. Sci., Polym. Phys. Ed., 40, 95 (2002)
[9] D. Sawai, K. Takahashi, A. Sasashige, T. Kanamoto, S. H. Hyon, Macromolecules, 36, 3601 (2003)
[10] L. Cartier, T. Okihara, Y. Ikada, H. Tsuji, J. Puiggali, B. Lotz, Polymer, 41, 8909 (2000)
[11] J. Zhang, A. J. Domb, H. Sato, H. Tsuji, I. Noda, S. Yan, Y. Ozaki, Macromolecules, 38, 8012 (2005)
[12] J. Zhang, K. Tashiro, H. Tsuji, A. J. Domb, Macromolecules, 41, 1352 (2008)
[13] J. Zhang, K. Tashiro, H. Tsuji, A. J. Domb, Macromolecules, 40, 1049 (2007)
[14] P. Pan, B. Zhu, W. Kai, T. Dong, Y. Inoue, J. Appl. Polym. Sci., 107, 54 (2008)
[15] P. Pan, W. Kai, B. Zhu, T. Dong, Y. Inoue, Macromolecules, 40, 6898 (2007)
[16] P. Pan, B. Zhu, W. Kai, T. Dong, Y. Inoue, Macromolecules, 41, 4296 (2008)
[17] L. Bouapao, H. Tsuji, K. Tashiro, J. Zhang, M. Hanesaka, Polymer, 50, 4007 (2009)
[18] P. Pan, Z. Liang, B. Zhu, T. Dong, Y. Inoue, Macromolecules, 42, 3374 (2009)
[19] J. Zhang, H. Sato, H. Tsuji, I. Noda, Y. Ozaki, J. Mol. Struct., 735, 249 (2005)
[20] J. Zhang, H. Sato, H. Tsuji, I. Noda, Y. Ozaki, Macromolecules, 38, 1822 (2005)
[21] J. R. Sarasua, N. López Rodríguez, A. López Arraiza, E. Meaurio, Macromolecules, 38, 8362 (2005)
[22] H. Tsuji, Y. Ikada, S. H. Hyon, Y. Kimura, T. Kitao, J. Appl. Polym. Sci., 51, 337. (1994)
[23] T. Okiahara, M. Tsuji, A. Kawaguchi, K. Katayama, H. Tsuji, S. H. Hyon, J. Macromol. Sci., Phys., B30, 119 (1991)
[24] H. Tsuji, Y. Ikada, Macromolecules, 26, 6918 (1993)
[25] H. Tsuji, S. H. Hyon, Y. Ikada, Macromolecules, 24, 5651 (1991)
[26] H. Tsuji, S. H. Hyon, Y. Ikada, Macromolecules, 24, 5657 (1991)
[27] H. Tsuji, Y. Ikada, Polymer, 40, 6699 (1999)
[28] H. Tsuji, Y. Tezuka, Biomacromolecules, 5, 1181 (2004)
[29] S. Brochu, R. E. Prud’homme, I. Barakat, R. Jérôme, Macromolecules, 28, 5230. (1995)
[30] Y. Wang, J. F. Mano, J. Appl. Polym. Sci., 107, 1621 (2008)
[31] K. S. Anderson, M. A. Hillmyer, Polymer, 47, 2030 (2006)
[32] H. Yamane, K. Sasai, Polymer, 44, 2569 (2003)
[33] L. Bouapao, H. Tsuji, Macromol. Chem. Phys., 210, 993 (2009)
[34] J. Zhang, Y. Duan, A. J. Domb, Y. Ozaki, Macromolecules, 43, 4240 (2010)
[35] A. Röttle, T. Turn-Albrecht, Macromolecules, 36, 1257 (2003)
[36] S. Nojima, M. Toeu, S. Hara, S. Tanimoto, S. Sasaki, Polymer, 43, 4087 (2002)
[37] Y. He, B. Zhu, W. Kai, Y. Inoue, Macromolecules, 37, 3337 (2004)
[38] X. Yang, X. Kong, S. Tan, G. Li, W. Ling, E. Zhou, Polym. Int., 49, 1525 (2000)
[39] G. Cortil, G. Zerbi, Spectrochim. Acta, Part A, 23, 285 (1967)
[40] G. Strobl, M. Schneider, J. Polym. Sci., Part B: Polym. Phys. Ed., 18, 1343 (1980)
[41] H. Reynaers, M. H. J. Koch, V. B. F. Mathot, J. Polym. Sci., Part B: Polym. Phys., 37, 1715 (1999)
[42] S. Talibuddin, L. Wu, J. Runt, J. S. Lin, Macromolecules, 29, 7527 (1996)
[43] H. Tsuji, F. Horii, M. Nakagawa, Y. Ikada, H. Odani, R. Kitamaru, Macromolecules, 25, 4114 (1992)
Chapter 5 References
[1] Y. Okabe, T. Kyu, H. Saito, T. Inoue, Macromolecules, 31, 5823 (1998)
[2] G. Crevecoeur, G. Groeninckx, Macromolecules, 24, 1190 (1991)
[3] E. M. Woo, C. S. Chang, M. C. Wu, Mater. Lett., 61, 3542 (2007)
[4] E. Blümm, A. J. Owen, Polymer, 36, 4077 (1995)
[5] J. P. Penning, R. S. J. John Manley, Macromolecules, 29, 84 (1996)
[6] Z. Qiu, T. Ikehara, T. Nishi, Polymer, 44, 2799 (2003)
[7] M. Vert, S. M. Li, G. Spenlehauer, P. Guerin, J. Mater. Sci.- Mater. Med., 3, 432 (1992)
[8] R. E. Drumright, P. R. Gruber, D. E. Henton, Adv. Mater., 12, 1841 (2000)
[9] T. Miyata, T. Masuko, Polymer, 39, 5515 (1998)
[10] H. Tsuji, Y. Ikada, Polymer, 36, 2709 (1995)
[11] T. G. Fox, B. S. Garrett, W. E. Goode, S. Gratch, J. F. Kincaid, A. Spell, J. D.Stroupe, J. Am. Chem. Soc., 80, 1768 (1958)
[12] J. H. G. M. Lohmeyer, Y. Y. Tan, P. Lako, G. Challa, Polymer, 19, 1171 (1978)
[13] E. Schomaker, G. Challa, Macromolecules, 21, 3506 (1988)
[14] W. H. Watanabe, C. F. Ryan, P. C. Jr. Fleischer, B. S.Garrett, J. Phys. Chem., 65, 896 (1961)
[15] E. Schomaker, G. Challa, Macromolecules, 21, 2195 (1988)
[16] E. Schomaker, H. Hoppen, G. Challa, Macromolecules, 21, 2203 (1988)
[17] M. Pyrlik, G. Rehage, Colloid. Polym. Sci., 254, 329 (1976)
[18] G. Rehage, D. Wanger, Polym. Prepr., 23, 29 (1982)
[19] J. Spěváček, B. Schneider, Makromol. Chem., 175, 2939 (1974)
[20] J. Biroš, Z. Máša, J. Pouchlý, Eur. Polym. J., 10, 629 (1974)
[21] F. Bosscher, G. Ten Brinke, G. Challa, Macromolecules, 15,1442 (1982)
[22] L. Chang, E. M. Woo, Ind. Eng. Chem. Res., 48, 3432 (2009)
[23] H. Tsuji, Macromol. Biosci., 5, 569 (2005)
[24] H.Tsuji, S. H. Hyon, Y. Ikada, Macromolecules, 24, 5651 (1991)
[25] H. Tsuji, S. H. Hyon, Y. Ikada, Macromolecules, 24, 5657 (1991)
[26] H. Tsuji, Y. Ikada, Macromolecules, 26, 6918 (1993)
[27] Y. Ikada, K. Jamshidi, H. Tsuji, S. H. Hyon, Macromolecules, 20, 904 (1987)
[28] H. Tsuji, Y. Ikada, S. H. Hyon, Y. Kimura, T. Kitao, J. Appl. Polym. Sci., 51, 337 (1994)
[29] S. Brochu, R. E. Prudhomme, I. Barakat, R. Jerome, Macromolecules, 28, 5230 (1995)
[30] J. R. Sarasua, A. López Arraiza, P. Balerdi, I. Maiza, J. Mater. Sci., 40, 1855 (2005)
[31] N, Koyama, Y. Doi, Polymer, 38, 1589 (1997)
[32] J. S. Yoon, W. S. Lee, K. S. Kim, I. J. Chin, M. N. Kim, C. Kim, Eur. Polym. J., 36, 435 (2000)
[33] J. W. Park, Y. Doi, T. Iwata, Biomacromolecules, 5, 1557 (2004)
[34] T. Furukawa, H. Sato, R. Murakami, J. M. Zhang, Y. X. Duan, I. Noda, S. Ochiai, Y. Ozaki, Macromolecules, 38, 6445 (2005)
[35] M. Gazzano, M. L. Focarete, C. Riekel, M. Scandola, Biomacromolecules, 5, 553 (2004)
[36] M. Gordon, J. S.Taylor, J. Appl. Chem., 2, 493 (1952)
[37] D. Sawai, Y. Tsugane, M. Tamada, T. Kanamoto, M. Sungil, S. H. Hyon. J. Polym. Sci., Part B: Polym. Phys., 45, 2632 (2007)
[38] Ž. Škrbić, V. Divjaković, Polymer, 37, 505 (1996)
[39] M. Gazzano, G. Tomasi, M. Scandola, Macromol. Chem. Phys., 198, 71 (1997)
[40] J. Xu, B. H. Guo, J. J. Zhou, L. Li, J. Wu, M. Kowalczuk, Polymer, 46, 9176 (2005)
[41] S. Nurkhamidah, MS thesis, National Cheng Kung University, Tainan, Taiwan (2009)
[42] H. D. Keith, F. J. Jr. Padden, J. Appl. Phys., 35, 1270 (1964)
[43] H. D. Keith, F. J. Jr. Padden, J. Appl. Phys., 35, 1286 (1964)
[44] K. M. Kit, Polymer, 39, 4969 (1998)
[45] W. T. Chuang, P. D. Hong, H. H.Chuah, Polymer, 45, 2413 (2004)
[46] Z. G. Wang, L. J. An, B. Z. Jiang, X. H. Wangh, Macromol. Rapid. Comm., 19, 131 (1998)
[47] W. Wang, Y. Jin, X. N. Yang, Z. H. Su, J. Polym. Sci., Part B: Polym. Phys., 48, 541 (2010)
Chapter 6 References
[1] T. Iwata, Y. Doi, Macromol. Chem. Phys., 200, 2429 (1999)
[2] K. Sudesh, H. Abe, Y. Doi, Prog. Polym. Sci., 25, 1503 (2000)
[3] Y. He, B. Zhu, Y. Inoue, Prog. Polym. Sci., 29, 1021 (2004)
[4] N. Grassie, E. J. Murray, P. A. Holmes, Polym. Degrad. Stab., 6, 95 (1984)
[5] P. J. Barham, A. Keller, J. Polym. Sci., Polym. Phys. Ed., 24, 69 (1986)
[6] A. Steninbüchel, B. Füchtenbusch, Trends Biotechnol., 16, 419 (1998)
[7] G. J. M. de Koning, P. J. Lemstra, Polymer, 34, 4089 (1993)
[8] W. Kai, Y. He, Y. Inoue, Polym. Int., 54, 780 (2005)
[9] H. Alata, B. Hexig, Y. Inoue, J. Polym. Sci., Part B: Polym. Phys., 44, 1813 (2006)
[10] R. E. Withey, J. N. Hay, Polymer, 40, 5147 (1999)
[11] N. Jacquel, K. Tajima, N. Nakamura, T. Miyagawa, P. Pan, Y. Inoue, J. Appl. Polym. Sci., 114, 1287 (2009)
[12] W. Kai, Y. He, N. Asakawa, Y. Inoue, J. Appl. Polym. Sci., 94, 2466 (2004)
[13] N. Jacquel, K. Tajima, N. Nakamura, H. Kawachi, P. Pan, Y. Inoue, J. Appl. Polym. Sci., 115, 709 (2010)
[14] T. Dong, T. Mori, T. Aoyama, Y. Inoue, Carbohydr. Polym., 80, 387 (2010)
[15] Y. He, Y. Inoue, Biomacromolecules, 4, 1865 (2003)
[16] P. Pan, Z. Liang, N. Nakamura, T. Miyagawa, Y. Inoue, Macromol. Biosci., 9, 585 (2009)
[17] R. E. Drumright, P. R. Gruber, D. E. Henton, Adv. Mater., 12, 1841 (2000)
[18] T. Miyata, T. Masuko, Polymer, 39, 5515 (1998)
[19] Y. Ikada, K. Jamshidi, H. Tsuji, S. H. Hyon, Macromolecules, 20, 904 (1987)
[20] H. Tsuji, Y. Ikada, S. H. Hyon, Y. Kimura, T. Kitao, J. Appl. Polym. Sci., 51, 337 (1994)
[21] H. Tsuji, Macromol. Biosci., 5, 569 (2005)
[22] S. Sinha Ray, K. Yamada, M. Okamoto, Y. Fujimoto, A. Ogami, K. Ueda, Polymer, 44, 6633 (2003)
[23] J. J. Kolstad, J. Appl. Polym. Sci., 62, 1079 (1996)
[24] S. C. Schmidt, M. A. Hillmyer, J. Polym. Sci., Part B: Polym. Phys., 39, 300 (2001)
[25] K. S. Anderson, M. A. Hillmyer, Polymer, 47, 2030 (2006)
[26] H. Tsuji, H. Takai, S. K. Saha, Polymer, 47, 3826 (2006)
[27] H. Tsuji, Y. Ikada, Macromolecules, 26, 6918 (1993)
[28] H. Tsuji, S. H. Hyon, Y. Ikada, Macromolecules, 24, 5651 (1991)
[29] L. Chang, E. M. Woo, Polymer, 52, 68 (2011)
[30] M. Avrami, J. Chem. Phys., 7, 1103 (1939)
[31] P. J. Barham, A. Keller, E. L. Otun, P. A. Holmes, J. Mater. Sci., 19, 2781 (1984)
[32] J. Liu, X. Qiao, S. He, Q. Cao, H. Wang, J. Appl. Polym. Sci., 115, 1616 (2010)
[33] Ž. Škrbić, V. Divjaković, Polymer, 37, 505 (1996)
[34] M. Gazzano, G. Tomasi, M. Scandola, Macromol. Chem. Phys., 198, 71 (1997)