簡易檢索 / 詳目顯示

研究生: 張靈
Chang, Ling
論文名稱: 左,右旋聚乳酸錯合物及其摻合體之球晶型貌與晶板結構分析
Lamellar Assembly and Stereocomplex Structuring in Mixtures of Poly(L-lactic acid) and Poly(D-lactic acid)
指導教授: 吳逸謨
Woo, Eamor M.
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 85
中文關鍵詞: 生物可分解性聚酯類高分子聚乳酸立體錯合物聚羥基丁酯熱行為
外文關鍵詞: Biodegradable, polyesters, PLLA, stereocomplex, PHB, thermal behavior
相關次數: 點閱:93下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    本研究利用微分掃描卡度計(differential scanning calorimetry)、偏光顯微鏡(polarizing-light optical microscopy)、原子力顯微鏡(atomic force microscopy)、廣角X光繞射儀(wide-angle X-ray diffraction)、傅立葉轉換紅外光譜儀(Fourier-transform infrared spectroscopy)以及小角度X光散射儀(small-angle X-ray scattering)探討聚乳酸錯合物(stereocomplexed poly(lactic acid), sc-PLA)及其摻合體之相容性、晶態行為、球晶型貌以及晶板結構。
    由微分掃描卡度計的熱分析,可知poly(D-lactic acid)/low-molecular-weight poly(L-lactic acid) (PDLA/LMw-PLLA)之摻合體隨組成變化,存有不同程度的混摻尺度及作用力大小。且由廣角X光繞射儀的晶體分析及傅立葉轉換紅外光譜儀的作用力探討下,可知非當量組成之摻合體存有不同比例的聚乳酸及錯合物,其結果亦顯示在LMw-PLLA組成為30至50 wt%之摻合體,僅存有錯合物晶體。擇以PDLA高含量組成之摻合體(90/10),觀察PDLA於錯合物模板下之多層次結晶型貌。依據原子力顯微鏡相圖的分析,可知PDLA於錯合物模板下的晶板排列,是由纖維狀晶板(fibril-like)轉變成串珠狀晶板(bead-on-string),進而增厚成非規則態麻花狀晶板(dough-like);而後麻花狀晶板如同一基體,供纖維狀至串珠狀的晶板反覆排列,直至接觸另一球晶。在冷結晶過程中,PLLA於當量組成下之摻合體(50/50),存有非PLLA及錯合物之特殊晶體(meta-crystal)。由廣角X光繞射儀的分析下,可知PLLA於冷結晶溫度為85oC至95oC,同時存有meta-form及alpha'-form晶體,以及溫度為100oC至120oC,則存有alpha-form晶體。並由變溫之小角度X光散射儀分析下,可知meta-form PLLA可能存在於錯合物晶板間,且於升溫過程中,meta-form PLLA部份熔融且以熔融再結晶之機制,直接排列成alpha-form晶體,而非透過形成規則性差的alpha'-form晶體之途徑形成alpha-form晶體。Meta-form晶體之熔融及再結晶的擇優性,則依冷結晶溫度而定。冷結晶溫度為85oC至95oC時,meta-form晶體之再結晶行為較熔融行為,更為顯著。
    本研究中首度探討生物可分解性高分子poly(3-hydroxybutyrate)(PHB)與聚乳酸錯合物摻合體之相容性、結晶型態及晶板結構。由微分掃描卡度計的熱分析,可知PHB/sc-PLA摻合體屬一相容系統,且PHB的加入,其錯合物之結晶行為及型貌受到抑制及改變。當熔融結晶溫度為130oC以上,PHB可視為不定形高分子,且隨PHB含量的增加,錯合物的球晶型貌由典型的馬爾他十字轉變為樹枝狀之球晶型貌。依據偏光及原子力顯微鏡的分析,可知在結晶溫度為170oC時,錯合物的球晶型貌不再維持馬爾他十字的型貌,取而代之的是edge-on羽毛狀(feather-like)及flat-on菱形狀(wedge-like)的球晶型貌。並根據動態偏光顯微鏡的結果,可知受PHB導入的影響,錯合物先以羽毛狀(feather-like)的型貌呈現,隨之發展菱形狀(wedge-like)的型貌,且隨結晶時間的增加,羽毛狀(feather-like)與菱形狀(wedge-like)之球晶型貌將一同成長。導致錯合物呈現不同的球晶型貌及晶板排列,可歸因於PHB於錯合物晶體前緣的濃度及分布上的差異。由廣角X光繞射儀的分析,可知此球晶型貌的錯合物,其晶格結構未受改變。
    此外,本研究亦針對PHB高分子在機械性質上的缺點,提供一具生物可分解之成核劑,以改善其強度。利用非恆溫結晶曲線,可初步了解添加少量之錯合物晶體有助於提高PHB高分子的結晶能力。並進而利用Avrami學者提出的恆溫結晶動力學理論,針對PHB高分子的結晶動力學進行探討。由Avrami參數n及k值的結果,可知導入少量的錯合物晶體,對於PHB高分子之結晶機制未受改變,並且提升PHB高分子整體的結晶速率。並由偏光顯微鏡的結果,可知添加少量之錯合物晶體有助於提高PHB高分子的成核密度。

    The thermal behavior, lamellar assembly and crystallization in fully biodegradable polymer blends of poly(D-lactic acid) with low-molecular-weight poly(L-lactic acid) (PDLA/LMw-PLLA) and poly(3-hydroxybutyrate) with stereocomplexed PLA (PHB/sc-PLA) were probed using differential scanning calorimetry (DSC), polarizing-light optical microscopy (POM), atomic force microscopy (AFM), wide-angle X-ray diffraction (WAXD), Fourier-transform infrared spectroscopy (FTIR), and small-angle X-ray scattering (SAXS).
    Sigmoidal Tg-composition relationship in blend of PDLA/LMw-PLLA indicates that interactions and scales of mixing vary with the blend composition. Blending LMw-PLLA with PDLA at 1:1 weight ratio led to formation of sc-PLA crystal. Crystallization of nonequimolar compositions of the blends leads to formation of various fractions of sc-PLA crystallites and homocrystallites (PDLA or PLLA). For the PDLA/LMw-PLLA blends within the composition window of LMw-PLLA content between 30 and 50 wt%, only sc-PLA crystal exists and no homocrystal is present. On the other hand, for PDLA/LMw-PLLA blends with excess PDLA, e.g. PDLA/LMw-PLLA=90/10, AFM characterization on various stages of crystallization of sc-PLA crystal with PDLA homocrystal shows a repetitive stacking of excess PDLA on pre-formed sc-PLA crystal serving as crystallizing templates. The crystallization initially begins with string-like (fibril-like) PDLA lamellae, followed with PDLA aggregating on sc-PLA crystal into a bead-on-string crystal, then growing to thicker irregularly-shaped dough-like lamellae. Repetitive growth cycle from strings to bead-on-string lamellae continues on top of the dough-like lamellae as new substrates, until ending impingement of the PDLA spherulites. A unique crystalline structure of homopolymeric PLLA, appearing as a meta-crystal, was discovered in PDLA/LMw-PLLA blend. In PDLA/LMw-PLLA blend, both meta-crystal and alpha'-crystal form in PLLA were found to form when crystallized at cold-crystallization temperature (Tcc) of 85-95oC and the alpha-crystal PLLA formed at 100 ≤ Tcc < 120oC, respectively. The SAXS result indicates that the meta-crystal PLLA may be incorporated in the sc-PLA lamellar region. During a heating process, the meta-crystal PLLA first partially melts and subsequently it repacks directly into the alpha-crystal PLLA without going through the less stable alpha'-form, by melt-recrystallization mechanism. For the PDLA/LMw-PLLA mixtures crystallized at Tcc from 85oC to 95oC, the re-crystallization of the meta-crystal becomes more predominant than the melting of the meta-form PLLA crystal.
    The PHB/sc-PLA blend system shows a single composition-dependent Tg in all composition, indicating miscibility and interactions between PHB and sc-PLA, which leads to that crystallization growth of sc-PLA in blends is hindered by presence of PHB and final morphology of the sc-PLA complexes is altered. When crystallized at high Tc (130oC or above), morphology transition of sc-PLA occurs from original well-rounded Maltese-cross spherulites to dendritic form in blends of high PHB contents (50 wt% or higher), where PHB acts as an amorphous species. Microscopy characterizations show that morphology sc-PLA in PHB/sc-PLA blends crystallized at Tc=170oC no longer retain original complexed Maltese-cross well-rounded spherulites; instead, the spherulites are disintegrated and restructured into two types of dendrites: (1) edge-on feather-like dendrites (early growth) and (2) flat-on wedge-like crystal plates (later growth) by growing along different directions and exhibiting different optical brightness. The concentration and/or distribution of amorphous PHB at the crystal growth front, corresponding to variation of the slopes of spherulitic growth rates, is a factor resulting in alteration and restructuring of the sc-PLA spherulites in the blends. Despite of spherulite disintegration, WAXD result shows that these two PHB-induced dendrites still retain the original unit cells of complexes, and thus these two new dendrites are sc-PLA.
    Small amount crystalline nuclei of sc-PLA (2-10 wt%) were incorporated into PHB for investigating melt-crystallization kinetics. The Avrami equation was employed to analyze the isothermal crystallization of PHB. The sc-PLA crystallites acted as nucleation sites in blends, and accelerated the crystallization rates of PHB by increasing the crystallization rate constant k and decreasing the half-time (t1/2). The PHB crystallization was nucleated most effectively with 10 wt% stereocomplexed crystallites, as evidenced by POM results. The sc-PLA complex nucleated PHB crystals exhibit much small spherulite sizes but possess the same crystal cell morphology as that of neat PHB based on the WAXD result.

    CONTENTS ABSTRACTS (In CHINESE) /I ABSTRACTS (In ENGLISH) /III ACKNOWLEDGEMENT (In CHINESE) /V CONTENTS /IX LIST OF TABLES /XII LIST OF FIGURES /XIII CHAPTER 1 /1 GENRAL INTRODUCTION /1 1.1 Biodegradable polymers /1 1.2 Biopolymer stereocomplexes /4 1.3 Blending effects on mixtures /6 1.4 References /8 CHAPTER 2 /11 BACKGROUND /11 2.1 Review of crystalline form poly(L-lactic acid) and its complexes /11 2.2 The assessment of miscibility in mixtures /13 2.3 Theories Review of Crystallization in Polymer Mixtures /14 2.4 References /17 CHAPTER 3 /18 Crystallization and Morphology of Stereocomplexes in Nonequimolar Mixtures of Poly(L-Lactic Acid) with Excess Poly(D-Lactic Acid) /18 3.1 Introduction /18 3.2 Experimental Section /19 3.3 Results and discussion /21 3.3.1 Effect of molecular weight of PLLA on thermal behavior in PDLA/PLLA blend /21 3.3.2 Effect of the content of PLLA on crystalline structure in PDLA/LMw-PLLA blend /24 3.3.3 Effect of the content of PLLA on molecular interaction in PDLA/LMw-PLLA blend /24 3.3.4 Effect of the contnent of PLLA on spherulitic morphology in PDLA/LMw-PLLA blend /26 3.3.5 Lamellar evolution of the later-grown PDLA-crystal in sc-PLA spherulite /28 3.4 Summary /32 3.5 References /34 3.6 Appendix /36 CHAPTER 4 /37 A Unique Meta-Form Structure in Stereocomplex of Poly(D-Lactic Acid) with Low Molecular Weight Poly(L-Lactic Acid) /37 4.1 Introduction /37 4.2 Experimental Section /38 4.3 Results and discussion /40 4.3.1 Effect of molecular weight of PLLA on crystalline structure in PDLA/PLLA blend /40 4.3.2 Effect of crystallization temperature on crystalline structure in neat PDLA and PDLA/LMw-PLLA blend /41 4.3.3 The nature of ’-/-crystal and meta-crystal PLLA in PDLA/LMw-PLLA blend /44 4.3.4 Effect of crystallization temperature on the transition of meta-crystal PLLA in PDLA/LMw-PLLA blend /48 4.4 Summary /49 4.5 References /50 4.6 Appendix /52 CHAPTER 5 /53 Effects of Molten Poly(3-hydroxybutyrate) on Crystalline Morphology in Stereocomplex of Poly(L-Lactic Acid) with Poly(D-Lactic Acid) /53 5.1 Introduction /53 5.2 Experimental Section /54 5.3 Results and discussion /56 5.3.1 Thermal behavior in PHB/sc-PLA blends /56 5.3.2 Dendritic morphology in PHB/sc-PLA blend /58 5.3.3 Crystalline structure in PHB/sc-PLA blend /60 5.3.4 Difference in lamellar structure of dual types spherulites /61 5.3.5 Difference in growth rate of dual types spherulites /63 5.3.6 Morphology evolution of sc-PLA in contact with molten PHB /65 5.4 Summary /67 5.5 References /68 5.6 Appendix /70 CHAPTER 6 /71 Crystallization of Poly(3-hydroxybutyrate) with Stereocomplex Polylactide Crystallites as Biodegradable Nucleation Agent /71 6.1 Introduction /71 6.2 Experimental Section /72 6.3 Results and discussion /73 6.3.1 Nonisothermal melt-crystallization of PHB affected by sc-PLA /73 6.3.2 Isothermal melt-crystallization of PHB affected by sc-PLA /74 6.3.3 Spherulitic morphology of PHB affected by sc-PLA crystals /78 6.3.4 Crystalline structure of PHB affected by sc-PLA crystals /78 6.4 Summary /79 6.5 References /80 CHAPTER 7 /81 OVERALL CONCLUSIONS /81

    Chapter 1 References
    [1] R. Chandra, R. Rustgi, Prog. Polym. Sci., 23, 1273 (1998)
    [2] S. Li, J. Biomed. Mater. Res., 48, 342 (1999)
    [3] L. S. Nair, C. T. Laurencin, Prog. Polym. Sci., 32, 762 (2007)
    [4] R. E. Drumright, P. R. Gruber, D. E. Henton, Adv. Mater., 12, 1841 (2000)
    [5] H. Tsuji, Y. Ikada, Polymer, 36, 2709 (1995)
    [6] H. R. Kricheldorf, A. Serra, Polym. Bull., 14, 497 (1985)
    [7] K. Shinno, M. Miyamoto, Y. Kimura, Y. Hirai, H. Yoshitome, Macromolecules, 30, 6438 (1997)
    [8] R. Miyoshi, N. Hashimoto, K. Koyanagi, Y. Sumihiro, T. Sakai, Int. Polym. Proc., 11, 320 (1996)
    [9] S. I. Moon, C. W. Lee, M. Miyamoto, Y. Kimura, J. Polym. Sci., Part A: Polym. Chem., 38, 1673 (2000).
    [10] H. Tusji, in Biopolymers. Vol. 4. Polyesters III: Applications and Commercial Products, Ed. By Doi, Y. and Steinbuchel, A. Wiley-VCH, Weinheim, pp. 129- (2002)
    [11] D. R. Witzke, Ph. D. Thesis. Michigan State University, East Lansing, MI, p.389 (1997)
    [12] W. Hoogsteen, A. R. Postema, A. J. Pennings, G. Ten Brinke, P. Zugenmaier, Macromolecules, 23, 634 (1990)
    [13] D. Sawai, K. Takahashi, T. Imamura, K. Nakamura, T. Kanamoto, S. H. Hyon, J. Polym. Sci., Polym. Phys. Ed., 40, 95 (2002)
    [14] L. Cartier, T. Okihara, Y. Ikada, H. Tsuji, J. Puiggali, B. Lotz, Polymer, 41, 8909 (2000)
    [15] J. Zhang, A. J. Domb, H. Sato, H. Tsuji, I. Noda, S. Yan, Y. Ozaki, Macromolecules, 38, 8012 (2005)
    [16] C. Vogel, H. W. Siesler, Macromol. Symp., 265, 183 (2008)
    [17] T. Serizawa, Y. Arikawa, K.-I. Hamada, H. Yamashita, T. Fujiwara, Y. Kimura, M. Akashi, Macromolecules, 36, 1762 (2003)
    [18] J. C. Middleton, A. J. Tipton, Biomaterials, 21, 2335 (2000)
    [19] H. Tsuji, Y. Ikada, Polym. Degrad. Stab., 67, 179 (2000)
    [20] H. Tsuji, Y. Ikada, J. Polym. Sci., Part A: Polym. Chem., 36, 59 (1998)
    [21] H. Shinoda, Y. Asou, T. Kashima, T. Kato, Y. Tseng, T. Yagi, Polym. Degrad. Stab., 80,241 (2003)
    [22] H. Tsuji, K. Ikarashi, Polym. Degrad. Stab., 85, 647 (2004)
    [23] T. Iwata, Y. Doi, Macromol. Chem. Phys., 200, 2429 (1999)
    [24] K. Sudesh, H. Abe, Y. Doi, Prog. Polym. Sci., 25, 1503 (2000)
    [25] Y. He, B. Zhu, Y. Inoue, Prog. Polym. Sci., 29, 1021 (2004)
    [26] A. J. Anderson, E. A. Dawes, Microbiol. Res., 54, 450 (1990)
    [27] G. W. Haywood, A. J. Anderson, G. A. Williams, E. A. Dawes, D. F. Ewing. Int. J. Biol. Macromol., 13, 83 (1991)
    [28] M. Yokouchi, Y. Chatani, H. Tadokoro, K. Teranishi, H. Tani, Polymer, 14, 267 (1973)
    [29] C. W. Pouton, S. Akhtar, Adv. Drug Delivery Rev., 18, 133 (1996)
    [30] P. J. Barham, A. Keller, E. L. Otum, P. A. Holmes, J. Mater. Sci., 19, 2781 (1984)
    [31] M. Gazzano, M. L. Focarete, C. Reikel, A. Ripamonti, M. Scandola, Macrom. Chem. Phys., 202, 1405 (2001)
    [32] Y. Kumagai, Y. Doi, Polym. Degrad. Stab., 36, 241 (1992)
    [33] N. Grassie, E. J. Murray, P. A. Holmes, Polym. Degrad. Stab., 6, 95 (1984)
    [34] P. J. Barham, A. Keller, J. Polym. Sci., Polym. Phys. Ed., 24, 69 (1986)
    [35] J. D. He, M. K. Cheung, P. H. Yu, G. Q. Chen, J. Appl. Polym. Sci., 82, 90 (2001)
    [36] S. N. Lee, M. Y. Lee, W. H. Park, J. Appl. Polym. Sci., 83, 2945 (2002)
    [37] J. Mergaert, A. Webb, C. Anderson, A. Wouters, J. Swings, Appl. Environ. Microbiol., 59, 3233 (1993)
    [38] K. Kasuya, K. Takagi, S. Ishiwatari, Y. Yoshida, Y. Doi. Polym. Degrad. Stab., 59, 327 (1998)
    [39] Y. Kumagai, Y. Kanesawa, Y. Doi. Makromol. Chem., 193, 3 (1992)
    [40] N. D. Miller, D. F. Williams, Biomaterials, 8, 129 (1987)
    [41] H. Tsuji, K. Suzuyoshi, Polym. Degrad. Stab., 75, 347 (2002)
    [42] Kasuya K, Y. Inoue, K. Yamada, Y. Doi, Polym. Degrad. Stab., 48, 167 (1995)
    [43] K. Van de Velde, P. Kiekens, Polym. Test., 21, 433 (2002)
    [44] L. Miao, Z. Qiu, W. Yang , T. Ikehara, React. Funct. Polym., 68, 446 (2008)
    [45] J. Slager, A. J. Domb. Adv. Drug Delivery Rev., 55, 549 (2003)
    [46] T. G. Fox, B. S. Garrett, W. E. Goode, S. Grathch, J. F. Kincaid, A. Spell, J. D. Stroupe, J. Am. Chem. Soc., 80, 1768 (1958)
    [47] A. M. Liquori, G. Anzuino, V. M. Coiro, M. D’Alagni, P. de Santis, M. Savino, Nature, 206, 358 (1965)
    [48] W. H. Watanable, C. F. Ryan, P. C. Fleischer, B. S. Garrett, J. Phys. Chem., 65, 896 (1961)
    [49] E. Schomaker, G. Challa, Macromolecules, 21, 2195 (1988)
    [50] E. Schomaker, H. Hoppen, G. Challa, Macromolecules, 21, 2203 (1988)
    [51] I. A. Katime, J. R. Quintana, Makromol. Chem., 187, 1441 (1986)
    [52] E. J. Lemieux, R. E. Prud’homme, Polymer, 39, 5453 (1998)
    [53] E. Schomaker, G. Challa, Macromolecules, 22, 3337 (1989)
    [54] J. Dybal, J. Štokr, B. Schneider, Polymer, 24, 971 (1983)
    [55] J. Kumaki, T. Kawauchi, K. Okoshi, H. Kusanagi, E. Yashima, Angew. Chem., 119, 5444 (2007)
    [56] J. K. Bikson, N. Nelson, J. Membr. Sci., 94, 313 (1994)
    [57] T. Serizawa, K. Hamada, T. Kitayama, N. Fujimoto, K. Hatada, M. Akashi, J. Am. Chem. Soc., 122, 1891 (2000)
    [58] T. Kida, M. Mouri, M. Akashi, Angew. Chem. Int. Ed., 45, 7534 (2006)
    [59] T. Okihara, M. Tsuji, A. Kawaguchi, K. I. Katayama, H. Tsuji, S. H. Hyon, Y. Ikada, J. Macromol. Sci., Phys., B30, 119 (1991)
    [60] D. Brizzolara, H. J. Cantow, K. Diederichs, E. Keller, A. J. Domb, Macromolecules, 29, 191 (1996)
    [61] H. Tsuji, Y. Tezuka, Biomacromolecules, 5, 1181 (2004)
    [62] Y. Ikada, K. Jamshidi, H. Tsuji, S. H. Hyon, Macromolecules, 20, 904 (987)
    [63] H. Tsuji, Y. Ikada, S. H. Hyon, Y. Kimura, T. Kitao, J. Appl. Polym. Sci., 51, 337 (1994)
    [64] K. Fukushima, Y. Kimura. Polym. Int., 44, 626 (2006)
    [65] H. Tsuji, Y. Ikada, Polymer, 40, 6699 (1999)
    [66] S. J. de Jong, B. van Eerdenbrugh, C. F. van Nostrum, J. J. Kettenes-van de Bosch, W. E. Hennink, J. Controlled Release, 71, 261 (2001)
    [67] M. Kakuta, M. Hirata, Y. Kimura, J. Macromol. Sci., Polym. Rev., 49, 107 (2009)
    [68] N. Yui, P. J. Dijkstra, J. Feijen, Makromol. Chem., 191, 481 (1990)
    [69] K. Fukushima, Y. Furuhashi, K. Sogo, S. Miura, Y. Kimura. Macromol. Biosci., 5, 21 (2005)
    [70] K. Fukushima, M. Hirata, Y. Kimura. Macromolecules, 40, 3049 (2007)
    [71] P. De Santis, A. J. Kovacs, Biopolymer, 6, 299 (1968)
    [72] J. Slager, A. J. Domb, Biomaterials, 23, 4389 (2003)
    [73] H. Tsuji, H. Mastsuoka, Macromol. Rapid Commun., 29, 1372 (2008)
    [74] H. Tsuji, S. Yamaoto, A. Okumura, Y. Sugiura, Biomacromlecules, 11, 252 (2010)
    [75] C. Lavallee, R. E. Prud’homme, Macrmolecules, 22, 2438 (1989)
    [76] Y. Mitsui, Y. Iitaka, M. Tsuboi, J. Mol. Biol., 24, 15 (1961)
    [77] H. Tsuji, A. Okumura, Macromolecules, 42, 7263 (2009)
    [78] Y. Li, H. Shimizu, Macromol. Biosci., 7, 921 (2007)
    [79] E. Blümm, A. J. Owen. Polymer, 36, 4077 (1995)
    [80] Z. Qiu, T. Ikehara, T. Nishi, Polymer, 44, 2799 (2003)
    [81] J. P. Penning, R. St. J. Manley, Macromolecules, 29, 84 (1996)
    [82] Z. Qiu, C. Yan, J. Lu, W. Yang, Macromolecules, 40, 5047 (2007)
    [83] J. Lu, Z. Qiu, W. Yang, Macromolecules, 41, 141 (2008)
    [84] T. Ikehara, H. Kimura, Z. Qiu, Macromolecules, 38, 5104 (2005)
    [85] W. Kai, Y. He, Y. Inoue, Polym. Int., 54, 780 (2005)
    [86] H. Alata, B. Hexig, Y. Inoue, J. Polym. Sci., Part B: Polym. Phys., 44, 1813 (2006)
    [87] R. E. Withey, J. N. Hay, Polymer, 40, 5147 (1999)
    [88] N. Jacquel, K. Tajima, N. Nakamura, T. Miyagawa, P. Pan, Y. Inoue, J. Appl. Polym. Sci., 114, 1287 (2009)
    [89] W. Kai, Y. He, N. Asakawa, Y. Inoue, J. Appl. Polym. Sci., 94, 2466 (2004)
    [90] N. Jacquel, K. Tajima, N. Nakamura, H. Kawachi, P. Pan, Y. Inoue, J. Appl. Polym. Sci., 115, 709 (2010)
    [91] T. Dong, T. Mori, T. Aoyama, Y. Inoue, Carbohydr. Polym., 80, 387 (2010)
    [92] Y. He, Y. Inoue, Biomacromlecules, 4, 1865 (2003)
    [93] S. C. Schmidt, M. A. Hillmyer, J. Polym. Sci., Part B: Polym. Phys., 39, 300 (2001)
    [94] K. S. Anderson, M. A. Hillmyer, Polymer, 47, 2030 (2006)
    [95] H. Tsuji, H. Takai, S. K. Saha, Polymer, 47, 3826
    (2006)

    Chapter 2 References
    [1] W. Hoogsteen, A. R. Postema, A. J. Pennings, G. Ten Brinke, P. Zugenmaier, Macromolecules, 23, 634 (1990)
    [2] D. Brizzolara, H. J. Cantow, K. Diederichs, E. Keller, A. J. Domb, Macromolecules, 29, 191 (1996)
    [3] Y. Ikada, K. Jamshidi, H. Tsuji, S. H. Hyon, Macromolecules, 20, 904 (1987)
    [4] J. Puiggali, Y. Ikada, H. Tsuji, L. Cartier, T. Okihara, B. Lotz, Polymer, 41, 8921 (2000)
    [5] D. Sawai, K. Takahashi, T. Imamura, K. Nakamura, T. Kanamoto, S. H. Hyon, J. Polym. Sci., Polym. Phys. Ed., 40, 95 (2002)
    [6] D. Sawai, K. Takahashi, A. Sasashige, T. Kanamoto, S. H. Hyon, Macromolecules, 36, 3601 (2003)
    [7] L. Cartier, T. Okihara, Y. Ikada, H. Tsuji, J. Puiggali, B. Lotz, Polymer, 41, 8909 (2000)
    [8] H. Tsuji, Y. Ikada, Macromolecules, 26, 6918 (1993)
    [9] H. Tsuji, S. H. Hyon, Y. Ikada, Macromolecules, 24, 5657 (1991)
    [10] G. Kister, G. Gassanas, M. Vert, Polymer, 39. 267 (1998)
    [11] T. Okihara, M.Tsuji, A. Kawaguchi, K. Katayama, H. Tsuji, S. H. Hyon, J. Macromol. Sci. Phys., B30, 119 (1991)
    [12] J. Zhang, K. Tashiro, H. Tsuji, A. J. Domb, Macromolecules, 41, 1352 (2008)
    [13] R. Auras, B. Harte, S. Selke, Macromol. Biosci., 4, 835 (2004)
    [14] M. Kakuta, M. Hirata, Y. Kimura, J. Macromol. Sci. Part C: Polymer Reviews, 49, 107 (2009)
    [15] K. Fukushima, Y. Kimura. Polym. Int., 44, 626 (2006)
    [16] J. Zhang, A. J. Domb, H. Sato, H. Tsuji, I. Noda, S. Yan, Y. Ozaki, Macromolecules, 38, 8012 (2005)
    [17] J. Zhang, K. Tashiro, H. Tsuji, A. J. Domb, Macromolecules, 40, 1049 (2007)
    [18] P. Pan, B. Zhu, W. Kai, T. Dong, Y. Inoue, J. Appl. Polym. Sci., 107, 54 (2008)
    [19] P. Pan, W. Kai, B. Zhu, T. Dong, Y. Inoue, Macromolecules, 40, 6898 (2007)
    [20] P. Pan, B. Zhu, W. Kai, T. Dong, Y. Inoue, Macromolecules, 41, 4296 (2008)
    [21] L. Bouapao, H. Tsuji, K. Tashiro, J. Zhang, M. Hanesaka, Polymer, 50, 4007 (2009)
    [22] G. R. Strobl, “The Physical of Polymer Concepts for Understanding Their Structures and Behavior,” Section 3.2 Polymer Mixtures, Springer-Verlag (1996)
    [23] T. G. Fox, J. Appl. Bull. Am. Phys. Soc., 1, 123 (1956)
    [24] M. Gordon, J. S. Taylor, J. Appl. Chem., 2, 493 (1952)
    [25] T. K. Kwei, J. Polym. Sci. Polym. Lett. Ed., 22, 307 (1984)
    [26] A. A. Lin, T. K. Kwei, A. Reiser, Macromolecules, 22, 4112 (1989)
    [27] H. A. Schneider, Polymer, 30, 771 (1989)
    [28] H. A. Schneider, Polym. Bull., 40, 321 (1998)
    [29] G. Reiter, G. R. Strobl, “Progress in understanding of polymer crystallization,” Springer, New York (2007)
    [30] J. D. Hoffman, G. T.Davis, J. I. Lauritzem,” In Treastise on Solid State Chemistr”, vol 13, Plenum Press, New York (1976)
    [31] M. L. Di Lorenzo, Prog. Polym. Sci., 28, 663 (2003)
    [32] P. J. Phillips, N. Vatansever, Macromolecules, 20, 2138 (1987)
    [33] H. D. Keith, F. J. Jr. Padden, J. Appl. Phys., 35, 1270 (1964)
    [34] M. Avrami, J. Chem. Phys., 7, 1103 (1939)

    Chapter 3 References
    [1] M. Vert, S. M. Li, G. Spenlehauer, P. Guerin, J. Mater. Sci. Mater. Med., 3, 432 (1992)
    [2] R. E. Drumright, P. R. Gruber, D. E. Henton, Adv. Mater., 12, 1841 (2000)
    [3] H. Tsuji, Y. Ikada, Polymer, 36, 2709 (1995)
    [4] W. Hoogsteen, A. R. Postema, A. J. Pennings, G. Ten Brinke, P. Zugenmaier, Macromolecules, 23, 634 (1990)
    [5] S. Sasaki, T. Asakura, Macromolecules, 36, 8385 (2003)
    [6] D. Sawai, K. Takahashi, A. Sasashige, T. Kanamoto, S. H. Hyon, Macromolecules, 36, 3601 (2003)
    [7] L. Cartier, T. Okihara, Y. Ikada, H.Tsuji, J. Puiggali, B. Lotz, Polymer, 41, 8909. (2000)
    [8] H. Tsuji, Macromol. Biosci., 5, 569 (2005)
    [9] K. Aou, S. L. Hsu, Macromolecules, 39, 267 (2006)
    [10] J. Zhang, Y. Duan, H. Sato, H. Tsuji, I. Noda, S. Yan, Y. Ozaki, Macromolecules, 38, 8012 (2005)
    [11] J. Zhang, H. Sato, H.Tsuji, I. Noda, Y. Ozaki, Macromolecules, 38, 1822 (2005)
    [12] T. Okihara, M.Tsuji, A. Kawaguchi, K. Katayama, H. Tsuji, S. H. Hyon, J. Macromol. Sci. Phys., B30, 119 (1991)
    [13] H. Tsuji, Y. Ikada, Macromolecules, 26, 6918 (1993)
    [14] H. Tsuji, S. H. Hyon, Y. Ikada, Macromolecules, 24, 5657 (1991)
    [15] G. Kister, G. Gassanas, M. Vert, Polymer, 39. 267 (1998)
    [16] S. Kang, S. L. Hsu, H. D. Stidham, P. B. Smith, M. A. Leugers, X. Yang, Macromolecules, 34, 4542 (2001)
    [17] L. Cartier, T. Okihara, B. Lotz, Macromolecules, 30, 6313 (1997)
    [18] H. Tsuji, Y. Ikada, Polymer, 40, 6699 (1999)
    [19] H. Tsuji, S. H. Hyon, Y. Ikada, Macromolecules, 24, 5651 (1991)
    [20] S. Brochu, R. E. Prudhomme, I. Barakat, R. Jerome, Macromolecules, 28, 5230 (1995)
    [21] Z. Qiu, C. Yan, J. Lu, W. Yang, Macromolecules, 40, 5047 (2007)
    [22] J. P. Penning, R. St. J. Manley, Macromolecules, 29, 84 (1996)
    [23] J. Lu, Z. Qiu, W. Yang, Macromolecules, 41, 141 (2008)
    [24] T. Ikehara, H. Kimura, Z. Qiu, Macromolecules, 38, 5104 (2005)
    [25] T. Miyata, T. Masuko, Polymer, 39, 5515 (1998)
    [26] H. Tsuji, F. Horri, M.Nakagawa, Y. Ikada, H. Odani, R. Kitamaru, Macromolecules, 25, 4114 (1992)
    [27] P. Oparakasit, M. Oparakasit, Macromol. Symp., 264, 113 (2008)
    [28] T. G. Fox, Bull. Am. Phys. Sci., 1, 123 (1995)
    [29] M. Gordon, J. S. Taylor, J. Appl. Chem., 2, 493 (1952)
    [30] T. K. Kwei, J. Polym. Sci. Polym. Lett. Ed., 22, 307 (1984)
    [31] H. A. Schneider, Polymer, 30, 771 (1989)
    [32] S. Zheng, Y. Mi, Polymer, 44, 1067 (2003)
    [33] J. Kratochvíl, A. Sikora, J. Labsky, R. Puffr, Europ. Polym. J., 41, 1681 (2005)
    [34] M. Yasuniwa, K. Iura, Y. Dan, Polymer, 48, 5398 (2007)
    [35] M. Yasuniwa, K. Sakamo, Y. Ono, W. Kawahara, Polymer, 49, 1943 (2008)
    [36] Y. Ikada, K. Jamshidi, H. Tsuji, S. H. Hyon, Macromolecules, 20, 904 (1987)
    [37] J. Zhang, K. Tashiro, H. Tsuji, A. J. Domb, Macromolecules, 40, 1049 (2007)
    [38] L. Chang, E. M. Woo, Macromol. Chem. Phys., 212, 125 (2011)
    [39] J. Zhang, K. Tashiro, H. Tsuji, A. J. Domb, Macromolecules, 41, 1352 (2008)
    [40] J. Zhang, H. Sato, H. Tsuji, I. Noda, Y. Ozaki, J. Mol. Struct., 735, 249 (2005)
    [41] J. Zhang, H. Tsuji, I. Noda, Y. Ozaki, Macromolecules, 37, 6433 (2004)
    [42] D. Qiu, R. T. Kean, Appl. Spectro., 52, 488 (1998)
    [43] D. Sawai, K. Takahashi, A. Sasashige, T. Kanamoto, Macromolecules, 36, 3601 (2003)
    [44] G. Kister, G. Cassanas, M. Vert, Polymer, 39, 267 (1998)
    [45] J. Xu, B. H. Guo, J. J. Zhou, L. Li, J. Wu, M. Kowalczuk, Polymer, 46, 9176 (2005)
    [46] M. Kanchanasopa, E. Manias, J. Runt, Biomacromolecules, 4, 1203 (2003)

    Chapter 4 References
    [1] M. Vert, S. M. Li, G. Spenlehauer, P. J. Guerin, Mater. Sci. -Mater. Med., 3, 432 (1992)
    [2] R. E. Drumright, P. R. Gruger, D. E. Henton, Adv. Mater., 12, 1841 (2000)
    [3] T. Miyata, T. Masuko, Polymer, 39, 5515 (1998)
    [4] H. Tsuji, Y. Ikada, Polymer, 36, 2709 (1998)
    [5] W. Hoogsteen, A. R. Postema, A. J. Pennings, G. Ten Brinke, P. Zugenmaier, Macromolecules, 23, 634 (1990)
    [6] J. Kobayashi, T. Asahi, M. Ichiki, A. Okikawa, H. Suzuki, T. Watanbe, E. Fukuda, Y. Shikinami, J. Appl. Phys., 77, 2957 (1995)
    [7] S. Sasaki, T. Asakura, Macromolecules, 36, 8385 (2003)
    [8] D. Sawai, K. Takahashi, T. Imamura, K. Nakamura, T. Kanamoto, S. H. Hyon, J. Polym. Sci., Polym. Phys. Ed., 40, 95 (2002)
    [9] D. Sawai, K. Takahashi, A. Sasashige, T. Kanamoto, S. H. Hyon, Macromolecules, 36, 3601 (2003)
    [10] L. Cartier, T. Okihara, Y. Ikada, H. Tsuji, J. Puiggali, B. Lotz, Polymer, 41, 8909 (2000)
    [11] J. Zhang, A. J. Domb, H. Sato, H. Tsuji, I. Noda, S. Yan, Y. Ozaki, Macromolecules, 38, 8012 (2005)
    [12] J. Zhang, K. Tashiro, H. Tsuji, A. J. Domb, Macromolecules, 41, 1352 (2008)
    [13] J. Zhang, K. Tashiro, H. Tsuji, A. J. Domb, Macromolecules, 40, 1049 (2007)
    [14] P. Pan, B. Zhu, W. Kai, T. Dong, Y. Inoue, J. Appl. Polym. Sci., 107, 54 (2008)
    [15] P. Pan, W. Kai, B. Zhu, T. Dong, Y. Inoue, Macromolecules, 40, 6898 (2007)
    [16] P. Pan, B. Zhu, W. Kai, T. Dong, Y. Inoue, Macromolecules, 41, 4296 (2008)
    [17] L. Bouapao, H. Tsuji, K. Tashiro, J. Zhang, M. Hanesaka, Polymer, 50, 4007 (2009)
    [18] P. Pan, Z. Liang, B. Zhu, T. Dong, Y. Inoue, Macromolecules, 42, 3374 (2009)
    [19] J. Zhang, H. Sato, H. Tsuji, I. Noda, Y. Ozaki, J. Mol. Struct., 735, 249 (2005)
    [20] J. Zhang, H. Sato, H. Tsuji, I. Noda, Y. Ozaki, Macromolecules, 38, 1822 (2005)
    [21] J. R. Sarasua, N. López Rodríguez, A. López Arraiza, E. Meaurio, Macromolecules, 38, 8362 (2005)
    [22] H. Tsuji, Y. Ikada, S. H. Hyon, Y. Kimura, T. Kitao, J. Appl. Polym. Sci., 51, 337. (1994)
    [23] T. Okiahara, M. Tsuji, A. Kawaguchi, K. Katayama, H. Tsuji, S. H. Hyon, J. Macromol. Sci., Phys., B30, 119 (1991)
    [24] H. Tsuji, Y. Ikada, Macromolecules, 26, 6918 (1993)
    [25] H. Tsuji, S. H. Hyon, Y. Ikada, Macromolecules, 24, 5651 (1991)
    [26] H. Tsuji, S. H. Hyon, Y. Ikada, Macromolecules, 24, 5657 (1991)
    [27] H. Tsuji, Y. Ikada, Polymer, 40, 6699 (1999)
    [28] H. Tsuji, Y. Tezuka, Biomacromolecules, 5, 1181 (2004)
    [29] S. Brochu, R. E. Prud’homme, I. Barakat, R. Jérôme, Macromolecules, 28, 5230. (1995)
    [30] Y. Wang, J. F. Mano, J. Appl. Polym. Sci., 107, 1621 (2008)
    [31] K. S. Anderson, M. A. Hillmyer, Polymer, 47, 2030 (2006)
    [32] H. Yamane, K. Sasai, Polymer, 44, 2569 (2003)
    [33] L. Bouapao, H. Tsuji, Macromol. Chem. Phys., 210, 993 (2009)
    [34] J. Zhang, Y. Duan, A. J. Domb, Y. Ozaki, Macromolecules, 43, 4240 (2010)
    [35] A. Röttle, T. Turn-Albrecht, Macromolecules, 36, 1257 (2003)
    [36] S. Nojima, M. Toeu, S. Hara, S. Tanimoto, S. Sasaki, Polymer, 43, 4087 (2002)
    [37] Y. He, B. Zhu, W. Kai, Y. Inoue, Macromolecules, 37, 3337 (2004)
    [38] X. Yang, X. Kong, S. Tan, G. Li, W. Ling, E. Zhou, Polym. Int., 49, 1525 (2000)
    [39] G. Cortil, G. Zerbi, Spectrochim. Acta, Part A, 23, 285 (1967)
    [40] G. Strobl, M. Schneider, J. Polym. Sci., Part B: Polym. Phys. Ed., 18, 1343 (1980)
    [41] H. Reynaers, M. H. J. Koch, V. B. F. Mathot, J. Polym. Sci., Part B: Polym. Phys., 37, 1715 (1999)
    [42] S. Talibuddin, L. Wu, J. Runt, J. S. Lin, Macromolecules, 29, 7527 (1996)
    [43] H. Tsuji, F. Horii, M. Nakagawa, Y. Ikada, H. Odani, R. Kitamaru, Macromolecules, 25, 4114 (1992)

    Chapter 5 References
    [1] Y. Okabe, T. Kyu, H. Saito, T. Inoue, Macromolecules, 31, 5823 (1998)
    [2] G. Crevecoeur, G. Groeninckx, Macromolecules, 24, 1190 (1991)
    [3] E. M. Woo, C. S. Chang, M. C. Wu, Mater. Lett., 61, 3542 (2007)
    [4] E. Blümm, A. J. Owen, Polymer, 36, 4077 (1995)
    [5] J. P. Penning, R. S. J. John Manley, Macromolecules, 29, 84 (1996)
    [6] Z. Qiu, T. Ikehara, T. Nishi, Polymer, 44, 2799 (2003)
    [7] M. Vert, S. M. Li, G. Spenlehauer, P. Guerin, J. Mater. Sci.- Mater. Med., 3, 432 (1992)
    [8] R. E. Drumright, P. R. Gruber, D. E. Henton, Adv. Mater., 12, 1841 (2000)
    [9] T. Miyata, T. Masuko, Polymer, 39, 5515 (1998)
    [10] H. Tsuji, Y. Ikada, Polymer, 36, 2709 (1995)
    [11] T. G. Fox, B. S. Garrett, W. E. Goode, S. Gratch, J. F. Kincaid, A. Spell, J. D.Stroupe, J. Am. Chem. Soc., 80, 1768 (1958)
    [12] J. H. G. M. Lohmeyer, Y. Y. Tan, P. Lako, G. Challa, Polymer, 19, 1171 (1978)
    [13] E. Schomaker, G. Challa, Macromolecules, 21, 3506 (1988)
    [14] W. H. Watanabe, C. F. Ryan, P. C. Jr. Fleischer, B. S.Garrett, J. Phys. Chem., 65, 896 (1961)
    [15] E. Schomaker, G. Challa, Macromolecules, 21, 2195 (1988)
    [16] E. Schomaker, H. Hoppen, G. Challa, Macromolecules, 21, 2203 (1988)
    [17] M. Pyrlik, G. Rehage, Colloid. Polym. Sci., 254, 329 (1976)
    [18] G. Rehage, D. Wanger, Polym. Prepr., 23, 29 (1982)
    [19] J. Spěváček, B. Schneider, Makromol. Chem., 175, 2939 (1974)
    [20] J. Biroš, Z. Máša, J. Pouchlý, Eur. Polym. J., 10, 629 (1974)
    [21] F. Bosscher, G. Ten Brinke, G. Challa, Macromolecules, 15,1442 (1982)
    [22] L. Chang, E. M. Woo, Ind. Eng. Chem. Res., 48, 3432 (2009)
    [23] H. Tsuji, Macromol. Biosci., 5, 569 (2005)
    [24] H.Tsuji, S. H. Hyon, Y. Ikada, Macromolecules, 24, 5651 (1991)
    [25] H. Tsuji, S. H. Hyon, Y. Ikada, Macromolecules, 24, 5657 (1991)
    [26] H. Tsuji, Y. Ikada, Macromolecules, 26, 6918 (1993)
    [27] Y. Ikada, K. Jamshidi, H. Tsuji, S. H. Hyon, Macromolecules, 20, 904 (1987)
    [28] H. Tsuji, Y. Ikada, S. H. Hyon, Y. Kimura, T. Kitao, J. Appl. Polym. Sci., 51, 337 (1994)
    [29] S. Brochu, R. E. Prudhomme, I. Barakat, R. Jerome, Macromolecules, 28, 5230 (1995)
    [30] J. R. Sarasua, A. López Arraiza, P. Balerdi, I. Maiza, J. Mater. Sci., 40, 1855 (2005)
    [31] N, Koyama, Y. Doi, Polymer, 38, 1589 (1997)
    [32] J. S. Yoon, W. S. Lee, K. S. Kim, I. J. Chin, M. N. Kim, C. Kim, Eur. Polym. J., 36, 435 (2000)
    [33] J. W. Park, Y. Doi, T. Iwata, Biomacromolecules, 5, 1557 (2004)
    [34] T. Furukawa, H. Sato, R. Murakami, J. M. Zhang, Y. X. Duan, I. Noda, S. Ochiai, Y. Ozaki, Macromolecules, 38, 6445 (2005)
    [35] M. Gazzano, M. L. Focarete, C. Riekel, M. Scandola, Biomacromolecules, 5, 553 (2004)
    [36] M. Gordon, J. S.Taylor, J. Appl. Chem., 2, 493 (1952)
    [37] D. Sawai, Y. Tsugane, M. Tamada, T. Kanamoto, M. Sungil, S. H. Hyon. J. Polym. Sci., Part B: Polym. Phys., 45, 2632 (2007)
    [38] Ž. Škrbić, V. Divjaković, Polymer, 37, 505 (1996)
    [39] M. Gazzano, G. Tomasi, M. Scandola, Macromol. Chem. Phys., 198, 71 (1997)
    [40] J. Xu, B. H. Guo, J. J. Zhou, L. Li, J. Wu, M. Kowalczuk, Polymer, 46, 9176 (2005)
    [41] S. Nurkhamidah, MS thesis, National Cheng Kung University, Tainan, Taiwan (2009)
    [42] H. D. Keith, F. J. Jr. Padden, J. Appl. Phys., 35, 1270 (1964)
    [43] H. D. Keith, F. J. Jr. Padden, J. Appl. Phys., 35, 1286 (1964)
    [44] K. M. Kit, Polymer, 39, 4969 (1998)
    [45] W. T. Chuang, P. D. Hong, H. H.Chuah, Polymer, 45, 2413 (2004)
    [46] Z. G. Wang, L. J. An, B. Z. Jiang, X. H. Wangh, Macromol. Rapid. Comm., 19, 131 (1998)
    [47] W. Wang, Y. Jin, X. N. Yang, Z. H. Su, J. Polym. Sci., Part B: Polym. Phys., 48, 541 (2010)

    Chapter 6 References
    [1] T. Iwata, Y. Doi, Macromol. Chem. Phys., 200, 2429 (1999)
    [2] K. Sudesh, H. Abe, Y. Doi, Prog. Polym. Sci., 25, 1503 (2000)
    [3] Y. He, B. Zhu, Y. Inoue, Prog. Polym. Sci., 29, 1021 (2004)
    [4] N. Grassie, E. J. Murray, P. A. Holmes, Polym. Degrad. Stab., 6, 95 (1984)
    [5] P. J. Barham, A. Keller, J. Polym. Sci., Polym. Phys. Ed., 24, 69 (1986)
    [6] A. Steninbüchel, B. Füchtenbusch, Trends Biotechnol., 16, 419 (1998)
    [7] G. J. M. de Koning, P. J. Lemstra, Polymer, 34, 4089 (1993)
    [8] W. Kai, Y. He, Y. Inoue, Polym. Int., 54, 780 (2005)
    [9] H. Alata, B. Hexig, Y. Inoue, J. Polym. Sci., Part B: Polym. Phys., 44, 1813 (2006)
    [10] R. E. Withey, J. N. Hay, Polymer, 40, 5147 (1999)
    [11] N. Jacquel, K. Tajima, N. Nakamura, T. Miyagawa, P. Pan, Y. Inoue, J. Appl. Polym. Sci., 114, 1287 (2009)
    [12] W. Kai, Y. He, N. Asakawa, Y. Inoue, J. Appl. Polym. Sci., 94, 2466 (2004)
    [13] N. Jacquel, K. Tajima, N. Nakamura, H. Kawachi, P. Pan, Y. Inoue, J. Appl. Polym. Sci., 115, 709 (2010)
    [14] T. Dong, T. Mori, T. Aoyama, Y. Inoue, Carbohydr. Polym., 80, 387 (2010)
    [15] Y. He, Y. Inoue, Biomacromolecules, 4, 1865 (2003)
    [16] P. Pan, Z. Liang, N. Nakamura, T. Miyagawa, Y. Inoue, Macromol. Biosci., 9, 585 (2009)
    [17] R. E. Drumright, P. R. Gruber, D. E. Henton, Adv. Mater., 12, 1841 (2000)
    [18] T. Miyata, T. Masuko, Polymer, 39, 5515 (1998)
    [19] Y. Ikada, K. Jamshidi, H. Tsuji, S. H. Hyon, Macromolecules, 20, 904 (1987)
    [20] H. Tsuji, Y. Ikada, S. H. Hyon, Y. Kimura, T. Kitao, J. Appl. Polym. Sci., 51, 337 (1994)
    [21] H. Tsuji, Macromol. Biosci., 5, 569 (2005)
    [22] S. Sinha Ray, K. Yamada, M. Okamoto, Y. Fujimoto, A. Ogami, K. Ueda, Polymer, 44, 6633 (2003)
    [23] J. J. Kolstad, J. Appl. Polym. Sci., 62, 1079 (1996)
    [24] S. C. Schmidt, M. A. Hillmyer, J. Polym. Sci., Part B: Polym. Phys., 39, 300 (2001)
    [25] K. S. Anderson, M. A. Hillmyer, Polymer, 47, 2030 (2006)
    [26] H. Tsuji, H. Takai, S. K. Saha, Polymer, 47, 3826 (2006)
    [27] H. Tsuji, Y. Ikada, Macromolecules, 26, 6918 (1993)
    [28] H. Tsuji, S. H. Hyon, Y. Ikada, Macromolecules, 24, 5651 (1991)
    [29] L. Chang, E. M. Woo, Polymer, 52, 68 (2011)
    [30] M. Avrami, J. Chem. Phys., 7, 1103 (1939)
    [31] P. J. Barham, A. Keller, E. L. Otun, P. A. Holmes, J. Mater. Sci., 19, 2781 (1984)
    [32] J. Liu, X. Qiao, S. He, Q. Cao, H. Wang, J. Appl. Polym. Sci., 115, 1616 (2010)
    [33] Ž. Škrbić, V. Divjaković, Polymer, 37, 505 (1996)
    [34] M. Gazzano, G. Tomasi, M. Scandola, Macromol. Chem. Phys., 198, 71 (1997)

    下載圖示 校內:2014-08-03公開
    校外:2014-08-03公開
    QR CODE