簡易檢索 / 詳目顯示

研究生: 李孟穎
Lee, Meng-Ying
論文名稱: 以單水鋁石為原料製作奈米二維(γ-)氧化鋁粉末
Nano-2D (γ-)Al2O3 powder prepared using boehmite as the starting material.
指導教授: 向性一
Hsiang, Hsing-I
共同指導教授: 顏富士
Yen, Fu-Su
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 112
中文關鍵詞: 單水鋁石γ-Al2O3c/a值拓樸相變二維粉末
外文關鍵詞: boehmite, γ-Al2O3, c/a value, topotactic transformation, Nano-2D powders
相關次數: 點閱:60下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單水鋁石是製備氧化鋁的常見前驅體礦物。對於具明確疊層型態的單水鋁石原料而言,其層狀結構、礦物學解理面,加上受熱於結構層間發生的脫結晶水及鋁遷移,這為結構層間帶來膨脹壓力及缺陷弱面的產生,再考慮到單水鋁石與γ-Al2O3產物間的結構尺寸及體積差異,等於在原料及剝層動力方面都滿足二維粉末製作條件,然而目前為止卻未有相關作法。本研究認為原因是目前對單水鋁石衍生γ-Al2O3二維片體缺乏了解:1. 由單水鋁石至γ-Al2O3的相轉換內容可能影響外形,以及2. γ-Al2O3不規則外形實際上為原單水鋁石之”碎片化”的結果。因此,儘管兩者間的拓樸關係眾所周知,仍然限制了當前以簡單熱處理製作奈米二維粉末的機會。
      本研究以具有疊層狀外形之單水鋁石前驅體為粉末原料,成功利用單水鋁石受熱時可能產生的固有剝層現象,配合適當的操作條件,獲得厚度5nm的γ-Al2O3二維粉末。採用不同的升溫速率(0.5、2.5、5.0、10及20oC/min)作為操作變因,等同於在持續升溫的過程中同時考慮溫度與時間兩個變數,觀察到的現象可理解為粉末系統在不同反應時間內,隨溫度升高所發生的動態反應過程。通過有系統的操作法,除了了解晶粒結構轉變內容,也得以了解當系統的熱力學和動力學反應條件改變時,如何影響γ-Al2O3結構於晶粒上的成長方式及特徵,以及反應於所得二維γ-Al2O3的結果。
      研究結果發現,粉末系統之比表面積值隨溫度上升及釋出結晶水的比例增加,由15 m2/g上升至100 m2/g左右。相變過程中觀察到的晶粒外形與原料單水鋁石維持一致。但於高升溫速率(>5 oC/min)熱處理條件下,當相變完成,所得γ-Al2O3粉末系統存在大量破碎片體,部分表面積應來自因破碎形成的暴露面。因此在厚度評估方面,若以比表面積值100 m2/g換算,由於將所得片體外形假設為完整承襲單水鋁石前驅體,因此所得粉末平均厚度為5-6nm。而當晶粒厚度通過以XRD量測解理方向晶徑來評估,首先單水鋁石(020)由55nm降低至消失前為22nm,表明晶粒隨剝層過程漸次成為薄板狀片體。而升溫速率的影響於生成γ-Al2O3片體厚度顯示出差異,γ-Al2O3 (440)在低升溫速率下小於6nm,在高升溫速率下則大於6nm。經AFM量測低升溫速率下γ-Al2O3二維片體之厚度範圍為5-7.5nm。
      已知升溫速率影響所得γ-Al2O3片體產生破碎與否,為深究其成因,研究進一步觀察γ-Al2O3核晶結構於晶粒上的成長方式及特徵。結果顯示,隨相變進行,於單水鋁石晶粒上產生鋁陽離子由原來的八面體位點(六配位鋁[VI]Al) 遷移至四面體位點(四配位鋁[IV]Al),使γ-Al2O3晶胞尺寸沿c軸方向變長,a軸方向縮短。相變先後出現的γ-Al2O3 c/a值不一,核晶間對應的晶格尺寸不一致。在單水鋁石晶粒尚未完全轉換為γ-Al2O3單晶之前,晶粒為一固態膠體複合相系統,由於尚有單水鋁石結構作為緩衝,晶粒保有塑性並得以維持其完整晶形。然而,當相變接近完成時,具有不同晶格尺寸的γ-Al2O3核晶需互相接合,以形成與原單水鋁石晶粒外形相近的 γ-Al2O3單晶(Pseudomorph假形),否則即會破碎分離,顯然晶粒上核晶間的c/a值差異,即為破碎現象的成因。根據本研究低與高升溫速率兩種熱處理法下所得結果,可以知道相變環境對晶粒外形具有決定性的影響。採<5℃/min升溫速率者,γ-Al2O3核晶在較窄的溫度範圍裡生成,並有較長的時間作晶格尺寸調整,而>5℃/min升溫速率者則否,其結果造成低或高升溫速率下所生成之γ-Al2O3核晶之間,具有相近或差異較大的c/a值,即晶格尺寸。同時,根據a, c軸尺寸變化計算,相對長的反應時間有利於晶面間距縮減,γ-Al2O3於低升溫速率下以較高的結構密度3.644~3.647 g/cm3生成;於高升溫速率下則為3.636~3.640 g/cm3。最終,由於在低升溫速率條件下生成的γ-Al2O3核晶間,經調整至c/a值相近且具有相對高的結構密度,可順利接合得到完整γ-Al2O3晶粒;而在高升溫速率條件下,則出現晶粒破碎現象。
      至此,我們了解於晶粒上發生的相轉換及γ-Al2O3核晶成長過程,也藉此解析造成晶粒破碎的主要因素為升溫速率。此外,由c/a值變化趨勢可知,γ-Al2O3結構在能量持續輸入下可使各核晶c/a值分布集中並整體向1接近,可達到兩軸相等之立方結構。然而嚴格來說,不論是粉末系統或者單一晶粒上,由於固相反應難以達成均質,各部位無法同時相變,γ-Al2O3的過渡性質又使c/a值分布集中過程難以持續至真正達成c/a=1。因此,若能找到方法使晶粒上之γ-Al2O3結構同步生成,或者適當控制γ-Al2O3穩定度不往δ-Al2O3相變,才有機會由單水鋁石前驅體製備出c/a=1之γ-Al2O3。
      本研究利用單水鋁石之礦物學特性及相變過程中自然存在的自規性(Self-dimension)尺寸現象,通過熱處理引發剝層現象,以生產奈米級二維粉末。同時,通過有系統的操作法了解其於二維粉末合成中的潛在影響,釐清了先前由單水鋁石生產的γ-Al2O3常出現破碎現象的原因。也指出採用熱輔助剝層技術製備大尺寸或厚度5nm之二維粉末,存在操作條件的限制,這對於優化未來以熱處理作為製備二維奈米粉末之技術至關重要。對於單水鋁石衍生γ-Al2O3中常見的結構議題:四方變形,研究也提出了目前各文獻所得結果的由來,以及實現理想立方結構的具體方向。本文於最後一部分指出,由於晶粒於相變過程中展現出複合相結構,可於相同路徑下製備外形完整的二維單水鋁石-γ-Al2O3複合相晶粒,而γ-Al2O3於原晶粒上的生成細節取決於升溫速率,因此可通過操作法微調所得複合相片狀晶粒之結構密度和組成單元,開闢了一種以複合相結構為晶粒組成特性的創新材料,這種材料將展現出不同相之間的綜合性能,可供未來相關材料的應用或研究方向參考。

    In this study, we successfully prepared 5nm thick γ-Al2O3 two-dimensional powder by utilizing the inherent exfoliation phenomenon of boehmite during heating, combined with appropriate operating conditions. Through a systematic approach, we gained valuable insights into the crystal structure transformation, its dependence on the heating rate (phase transformation environment), and the resulting product.
    Firstly, we elucidated the potential reasons behind the frequent fragmentation of γ-Al2O3 derived from boehmite and offered practical know-how for heat treatment as a two-dimensional nano-powder preparation technique. Moreover, the crystals displayed a multi-phase structure during the phase transformation process, and a two-dimensional boehmite/γ-Al2O3 crystal with a complete morphology was prepared using the same approach, with the structure finely tuned through various operations such as processing time and heating rate selection. Lastly, concerning the common structural issue in boehmite-derived γ-Al2O3: tetragonal distortion, this research also proposed the origin of the results obtained in the current literature and explored specific directions for achieving the ideal cubic structure.

    摘要 I 誌謝 XIV 目錄 XVI 表目錄 XIX 圖目錄 XX 第一章、 前言 1 1-1 奈米二維粉末的重要性 1 1-2 常見奈米二維粉末製備方式 2 1-3 γ-Al2O3的工業應用與發展 4 1-4 γ-Al2O3的製備 5 1-4-1 單水鋁石衍生γ-Al2O3的四方變形特徵 5 1-5 研究動機及目的 9 第二章、 理論基礎及前人研究 11 2-1 氧化鋁水合物及過渡相氧化鋁 11 2-1-1 單水鋁石結構 18 2-1-2 γ-Al2O3結構 18 2-1-3 與γ-Al2O3結構相關之不確定性 21 2-2 自發剝層相關的特性基礎 27 2-2-1 單水鋁石具備完美解理面 27 2-2-2 單水鋁石與γ-Al2O3之晶體取向與尺寸變化 27 2-2-3 相變機制與剝層動力 28 2-3 單水鋁石衍生γ-Al2O3的生成 29 2-3-1 四方變形特徵:c/a值 29 2-3-2 成核成長 29 2-3-3 Oriented attachment (OA) 30 2-3-4 相轉換反應動力學 31 2-3-5 可穩定存在之片體厚度 32 第三章、 實驗設計 36 3-1 實驗原料 36 3-2 實驗設計 37 3-3 實驗流程(Fig. 3-2) 37 3-3-1 起始原料準備 38 3-3-2 實驗條件取得:熱差分析的應用 38 3-3-3 待測樣品製備 39 3-4 特性分析 41 3-4-1 L.O.I.失重分析 41 3-4-2 粉末系統平均比表面積分析 41 3-4-3 孔隙分析 41 3-4-4 粉末結晶相分析 41 3-4-5 γ-Al2O3結構參數a, c以及c/a值分析 42 3-4-6 顯微結構分析 42 3-4-7 鋁陽離子配位比例 43 3-4-8 片體厚度觀察 43 第四章、二維粉末的生成:熱助剝層 46 4-1 片狀產物的生成 46 4-1-1 剝層現象 46 4-1-2 破碎現象 54 4-2 晶粒的厚度變化 58 4-2-1 單水鋁石(020)晶徑縮減 58 4-2-2 γ-Al2O3片體 58 4-3 結論 62 第五章、 晶粒在相變過程中的結構轉變 63 5-1 γ-Al2O3結構成長特徵 63 5-1-1 鋁遷移使γ-Al2O3生成 63 5-1-2 鋁遷移牽動γ-Al2O3 c/a值變化 63 5-1-3 γ-Al2O3於單水鋁石晶粒上的成核成長現象 64 5-1-4 γ-Al2O3單晶形成時可共存之c/a值範圍分析 64 5-2 升溫速率的影響 74 5-2-1 a, c軸尺寸與c/a值的調節 74 5-2-2 γ-Al2O3結構密度 74 5-3 結論 79 第六章、 可製備之相變產物 81 6-1 (γ)-Al2O3 81 6-1-1 含水量 81 6-1-2 結構 81 6-2 單水鋁石/γ-Al2O3複合相晶粒 83 6-2-1 複合相組成單元 83 6-2-2 複合相粉末特性範圍 83 6-3 結論 84 第七章、 總結論及建議 89 7-1 未來展望 91 參考文獻 92 附錄 109

    [1] J. Watt, S. Cheong, and R. D. Tilley, “How to control the shape of metal nanostructures in organic solution phase synthesis for plasmonics and catalysis,” Nano Today, vol. 8, no. 2, pp. 198-215, 2013.
    [2] C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.-H. Nam, M. Sindoro, H. Zhang, “Recent Advances in Ultrathin Two-Dimensional Nanomaterials,” Chemical Reviews, vol. 117, no. 9, pp. 6225-6331, 2017.
    [3] D. L. Duong, S. J. Yun, and Y. H. Lee, “van der Waals layered materials: opportunities and challenges,” ACS nano, vol. 11, no. 12, pp. 11803-11830, 2017.
    [4] P. Ajayan, P. Kim, and K. Banerjee, “van der Waals materials,” Phys. Today, vol. 69, no. 9, pp. 38, 2016.
    [5] X. Duan, C. Wang, A. Pan, R. Yu, X. Duan, “Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges,” Chemical Society Reviews, vol. 44, no. 24, pp. 8859-8876, 2015.
    [6] G.R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M.S. Strano, V.R. Cooper, “Recent advances in two-dimensional materials beyond graphene,” ACS nano, vol. 9, no. 12, pp. 11509-11539, 2015.
    [7] J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko, “Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites,” Carbon, vol. 44, no. 9, pp. 1624-1652, 2006.
    [8] B. Wetzel, F. Haupert, K. Friedrich, M.Q. Zhang, M.Z. Rong, “Impact and wear resistance of polymer nanocomposites at low filler content,” Polymer Engineering & Science, vol. 42, no. 9, pp. 1919-1927, 2002.
    [9] B.P. Singh, B.K. Jena, S. Bhattacharjee, L. Besra, “Development of oxidation and corrosion resistance hydrophobic graphene oxide-polymer composite coating on copper,” Surface and Coatings Technology, vol. 232, pp. 475-481, 2013.
    [10] Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, “Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties,” Progress in Polymer Science, vol. 35, no. 3, pp. 357-401, 2010.
    [11] D. M. Bigg, “Mechanical, thermal, and electrical properties of metal fiber-filled polymer composites,” Polymer Engineering & Science, vol. 19, no. 16, pp. 1188-1192, 1979.
    [12] B.W. Chieng, N.A. Ibrahim, W.M.Z. Wan Yunus, M.Z. Hussein, V.S.G. Silverajah, “Graphene Nanoplatelets as Novel Reinforcement Filler in Poly(lactic acid)/Epoxidized Palm Oil Green Nanocomposites: Mechanical Properties,” International Journal of Molecular Sciences, vol. 13, no. 9, 2012.
    [13] M. Perez-Page, M. Sahoo, and S. M. Holmes, “Single Layer 2D Crystals for Electrochemical Applications of Ion Exchange Membranes and Hydrogen Evolution Catalysts,” Advanced Materials Interfaces, vol. 6, no. 7, pp. 1838, 2019.
    [14] H. Knözinger, and P. Ratnasamy, “Catalytic Aluminas: Surface Models and Characterization of Surface Sites,” Catalysis Reviews, vol. 17, no. 1, pp. 31-70, 1978.
    [15] A. K. Geim, and K. S. Novoselov, “The rise of graphene,” Nature Materials, vol. 6, no. 3, pp. 183-191, 2007.
    [16] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee, L. Colombo, “Electronics based on two-dimensional materials,” Nature Nanotechnology, vol. 9, no. 10, pp. 768-779, 2014.
    [17] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nature Nanotechnology, vol. 7, no. 11, pp. 699-712, 2012.
    [18] V. V. Pokropivny, and V. V. Skorokhod, “Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science,” Materials Science and Engineering: C, vol. 27, no. 5, pp. 990-993, 2007.
    [19] M. Wang, X. Chen, H. Wang, H. Wu, X. Jin, C. Huang, “Improved performances of lithium-ion batteries with a separator based on inorganic fibers,” Journal of Materials Chemistry A, vol. 5, no. 1, pp. 311-318, 2017.
    [20] X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia, X. He, “Thermal runaway mechanism of lithium ion battery for electric vehicles: A review,” Energy Storage Materials, vol. 10, pp. 246-267, 2018.
    [21] M. F. Lagadec, R. Zahn, and V. Wood, “Characterization and performance evaluation of lithium-ion battery separators,” Nature Energy, vol. 4, no. 1, pp. 16-25, 2019.
    [22] G. Sharma, Y. Jin, and Y. Lin, “Lithium ion batteries with alumina separator for improved safety,” Journal of The Electrochemical Society, vol. 164, no. 6, pp. A1184, 2017.
    [23] C. Tan, and H. Zhang, “Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials,” Nature Communications, vol. 6, no. 1, pp. 7873, 2015.
    [24] Z. Sun, T. Liao, Y. Dou, S.M. Hwang, M.-S. Park, L. Jiang, J.H. Kim, S.X. Dou, “Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets,” Nature Communications, vol. 5, no. 1, pp. 3813, 2014.
    [25] Y. Sun, Z. Sun, S. Gao, H. Cheng, Q. Liu, J. Piao, T. Yao, C. Wu, S. Hu, S. Wei, Y. Xie, “Fabrication of flexible and freestanding zinc chalcogenide single layers,” Nature Communications, vol. 3, no. 1, pp. 1057, 2012.
    [26] Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J.T.-W. Wang, C.-S. Chang, L.-J. Li, T.-W. Lin, “Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition,” Advanced Materials, vol. 24, no. 17, pp. 2320-2325, 2012.
    [27] Q. Ji, Y. Zhang, Y. Zhang, Z. Liu, “Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: engineered substrates from amorphous to single crystalline,” Chemical Society Reviews, vol. 44, no. 9, pp. 2587-2602, 2015.
    [28] M.-Y. Li, Y. Shi, C.-C. Cheng, L.-S. Lu, Y.-C. Lin, H.-L. Tang, M.-L. Tsai, C.-W. Chu, K.-H. Wei, J.-H. He, W.-H. Chang, K. Suenaga, L.-J. Li, “Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface,” Science, vol. 349, no. 6247, pp. 524-528, 2015.
    [29] B. Mahler, V. Hoepfner, K. Liao, G.A. Ozin, “Colloidal Synthesis of 1T-WS2 and 2H-WS2 Nanosheets: Applications for Photocatalytic Hydrogen Evolution,” Journal of the American Chemical Society, vol. 136, no. 40, pp. 14121-14127, 2014.
    [30] A.-X. Yin, W.-C. Liu, J. Ke, W. Zhu, J. Gu, Y.-W. Zhang, C.-H. Yan, “Ru Nanocrystals with Shape-Dependent Surface-Enhanced Raman Spectra and Catalytic Properties: Controlled Synthesis and DFT Calculations,” Journal of the American Chemical Society, vol. 134, no. 50, pp. 20479-20489, 2012.
    [31] X.-L. Yin, L.-L. Li, W.-J. Jiang, Y. Zhang, X. Zhang, L.-J. Wan, J.-S. Hu, “MoS2/CdS Nanosheets-on-Nanorod Heterostructure for Highly Efficient Photocatalytic H2 Generation under Visible Light Irradiation,” ACS Applied Materials & Interfaces, vol. 8, no. 24, pp. 15258-15266, 2016.
    [32] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science, vol. 306, no. 5696, pp. 666-669, 2004.
    [33] H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud'homme, R. Car, D.A. Saville, I.A. Aksay, “Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide,” The Journal of Physical Chemistry B, vol. 110, no. 17, pp. 8535-8539, 2006.
    [34] W. Wei, T. Guan, C. Li, L. Shen, N. Bao, “Heating Rate-Controlled Thermal Exfoliation for Foldable Graphene Sponge,” Industrial & Engineering Chemistry Research, vol. 59, no. 7, pp. 2946-2952, 2020.
    [35] A.S. Mayorov, R.V. Gorbachev, S.V. Morozov, L. Britnell, R. Jalil, L.A. Ponomarenko, P. Blake, K.S. Novoselov, K. Watanabe, T. Taniguchi, A.K. Geim, “Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature,” Nano Letters, vol. 11, no. 6, pp. 2396-2399, 2011.
    [36] Y. Lin, T. V. Williams, and J. W. Connell, “Soluble, Exfoliated Hexagonal Boron Nitride Nanosheets,” The Journal of Physical Chemistry Letters, vol. 1, no. 1, pp. 277-283, 2010.
    [37] D. Pacilé, J. C. Meyer, Ç. Ö. Girit, A. Zettl, “The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes,” Applied Physics Letters, vol. 92, no. 13, pp. 133107, 2008.
    [38] N. Alem, R. Erni, C. Kisielowski, M.D. Rossell, W. Gannett, A. Zettl, “Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy,” Physical Review B, vol. 80, no. 15, pp. 155425, 2009.
    [39] Z. Cui, A.J. Oyer, A.J. Glover, H.C. Schniepp, D.H. Adamson, “Large Scale Thermal Exfoliation and Functionalization of Boron Nitride,” Small, vol. 10, no. 12, pp. 2352-2355, 2014.
    [40] H. Li, J. Wu, Z. Yin, H. Zhang, “Preparation and Applications of Mechanically Exfoliated Single-Layer and Multilayer MoS2 and WSe2 Nanosheets,” Accounts of Chemical Research, vol. 47, no. 4, pp. 1067-1075, 2014.
    [41] L. Li, D. Zhang, Y. Gao, J. Deng, Y. Gou, J. Fang, “Electric field driven exfoliation of MoS2,” Journal of Alloys and Compounds, vol. 862, pp. 158551, 2021.
    [42] P.-Z. Li, Y. Maeda, and Q. Xu, “Top-down fabrication of crystalline metal–organic framework nanosheets,” Chemical communications, vol. 47, no. 29, pp. 8436-8438, 2011.
    [43] J.-C. Tan, P.J. Saines, E.G. Bithell, A.K. Cheetham, “Hybrid Nanosheets of an Inorganic–Organic Framework Material: Facile Synthesis, Structure, and Elastic Properties,” ACS Nano, vol. 6, no. 1, pp. 615-621, 2012.
    [44] E. Gerstner, “Nobel Prize 2010: Andre Geim & Konstantin Novoselov,” Nature Physics, vol. 6, no. 11, pp. 836-836, 2010.
    [45] E. Varrla, C. Backes, K.R. Paton, A. Harvey, Z. Gholamvand, J. McCauley, J.N. Coleman, “Large-scale production of size-controlled MoS2 nanosheets by shear exfoliation,” Chemistry of Materials, vol. 27, no. 3, pp. 1129-1139, 2015.
    [46] J. N. Coleman, “Liquid Exfoliation of Defect-Free Graphene,” Accounts of Chemical Research, vol. 46, no. 1, pp. 14-22, 2013.
    [47] H.-B. Zhang, J.-W. Wang, Q. Yan, W.-G. Zheng, C. Chen, Z.-Z. Yu, “Vacuum-assisted synthesis of graphene from thermal exfoliation and reduction of graphite oxide,” Journal of Materials Chemistry, vol. 21, no. 14, pp. 5392-5397, 2011.
    [48] C. Botas, P. Álvarez, C. Blanco, R. Santamaría, M. Granda, M.D. Gutiérrez, F. Rodríguez-Reinoso, R. Menéndez, “Critical temperatures in the synthesis of graphene-like materials by thermal exfoliation–reduction of graphite oxide,” Carbon, vol. 52, pp. 476-485, 2013.
    [49] K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, “Two-dimensional atomic crystals,” Proceedings of the National Academy of Sciences, vol. 102, no. 30, pp. 10451-10453, 2005.
    [50] A. Ciesielski, and P. Samorì, “Graphene via sonication assisted liquid-phase exfoliation,” Chemical Society Reviews, vol. 43, no. 1, pp. 381-398, 2014.
    [51] J. N. Coleman, “Liquid-Phase Exfoliation of Nanotubes and Graphene,” Advanced Functional Materials, vol. 19, no. 23, pp. 3680-3695, 2009.
    [52] A. Agrawal, and G.-C. Yi, "Chapter Two - Sample pretreatment with graphene materials," Comprehensive Analytical Chemistry, C. M. Hussain, ed., pp. 21-47: Elsevier, 2020.
    [53] V. Nagyte, D.J. Kelly, A. Felten, G. Picardi, Y. Shin, A. Alieva, R.E. Worsley, K. Parvez, S. Dehm, R. Krupke, S.J. Haigh, A. Oikonomou, A.J. Pollard, C. Casiraghi, “Raman Fingerprints of Graphene Produced by Anodic Electrochemical Exfoliation,” Nano Letters, vol. 20, no. 5, pp. 3411-3419, 2020.
    [54] N.P. Dileep, T.V. Vineesh, P.V. Sarma, M.V. Chalil, C.S. Prasad, M.M. Shaijumon, “Electrochemically Exfoliated β-Co(OH)2 Nanostructures for Enhanced Oxygen Evolution Electrocatalysis,” ACS Applied Energy Materials, vol. 3, no. 2, pp. 1461-1467, 2020.
    [55] 陈静, 龙光斗, 艾春玲, 白一穷, 李中华, “累托石插层改性纳米材料的制备及应用,” 2005.
    [56] Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun'Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotechnology, vol. 3, no. 9, pp. 563-568, 2008.
    [57] U. Khan, P. May, A. O'Neill, A.P. Bell, E. Boussac, A. Martin, J. Semple, J.N. Coleman, “Polymer reinforcement using liquid-exfoliated boron nitride nanosheets,” Nanoscale, vol. 5, no. 2, pp. 581-587, 2013.
    [58] X. Li, X. Hao, M. Zhao, Y. Wu, J. Yang, Y. Tian, G. Qian, “Exfoliation of Hexagonal Boron Nitride by Molten Hydroxides,” Advanced Materials, vol. 25, no. 15, pp. 2200-2204, 2013.
    [59] J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, “Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials,” Science, vol. 331, no. 6017, pp. 568-571, 2011.
    [60] X. Zhang, Z. Lai, C. Tan, H. Zhang, “Solution-Processed Two-Dimensional MoS2 Nanosheets: Preparation, Hybridization, and Applications,” Angewandte Chemie International Edition, vol. 55, no. 31, pp. 8816-8838, 2016.
    [61] C. N. Satterfield, Heterogeneous catalysis in practice: McGraw-Hill New York, 1980.
    [62] K. C. Taylor, “Nitric Oxide Catalysis in Automotive Exhaust Systems,” Catalysis Reviews, vol. 35, no. 4, pp. 457-481, 1993.
    [63] B. C. Gates, “Supported Metal Clusters: Synthesis, Structure, and Catalysis,” Chemical Reviews, vol. 95, no. 3, pp. 511-522, 1995.
    [64] M. Che, and C. O. Bennett, "The Influence of Particle Size on the Catalytic Properties of Supported Metals," Advances in Catalysis, D. D. Eley, H. Pines and P. B. Weisz, eds., pp. 55-172: Academic Press, 1989.
    [65] Z. Xu, F.S. Xiao, S.K. Purnell, O. Alexeev, S. Kawi, S.E. Deutsch, B.C. Gates, “Size-dependent catalytic activity of supported metal clusters,” Nature, vol. 372, no. 6504, pp. 346-348, 1994.
    [66] J. F. DeWilde, C. J. Czopinski, and A. Bhan, “Ethanol Dehydration and Dehydrogenation on γ-Al2O3: Mechanism of Acetaldehyde Formation,” ACS Catalysis, vol. 4, no. 12, pp. 4425-4433, 2014.
    [67] B. C. Lippens, and J. H. De Boer, “Study of phase transformations during calcination of aluminum hydroxides by selected area electron diffraction,” Acta Crystallographica, vol. 17, no. 10, pp. 1312-1321, 1964.
    [68] S. E. Tung, and E. McIninch, “High-purity alumina I. The nature of its surface acid sites and its activity in some hydrocarbon conversion reactions,” Journal of Catalysis, vol. 3, no. 3, pp. 229-238, 1964.
    [69] D. Laurenti, B. Phung-Ngoc, C. Roukoss, E. Devers, K. Marchand, L. Massin, L. Lemaitre, C. Legens, A.-A. Quoineaud, M. Vrinat, “Intrinsic potential of alumina-supported CoMo catalysts in HDS: Comparison between γc, γT, and δ-alumina,” Journal of Catalysis, vol. 297, pp. 165-175, 2013.
    [70] M. A. Goula, S. K. Kontou, and P. E. Tsiakaras, “Hydrogen production by ethanol steam reforming over a commercial Pd/γ-Al2O3 catalyst,” Applied Catalysis B: Environmental, vol. 49, no. 2, pp. 135-144, 2004.
    [71] L. Song, Y. Kong, and X. Li, “Hydrogen production from partial oxidation of methane over dielectric barrier discharge plasma and NiO/γ-Al2O3 catalyst,” International Journal of Hydrogen Energy, vol. 42, no. 31, pp. 19869-19876, 2017.
    [72] J. A. C. Dias, and J. M. Assaf, “Autoreduction of promoted Ni/γ-Al2O3 during autothermal reforming of methane,” Journal of Power Sources, vol. 139, no. 1, pp. 176-181, 2005.
    [73] M. Drost, C. Call, J. Cuta, R. Wegeng, “Microchannel combustor/evaporator thermal processes,” Microscale Thermophysical Engineering, vol. 1, 1997.
    [74] P. B. Koeneman, I. J. Busch-Vishniac, and K. L. Wood, “Feasibility of micro power supplies for MEMS,” Journal of Microelectromechanical Systems, vol. 6, no. 4, pp. 355-362, 1997.
    [75] K. Rafiz, D. R. L. Murali, and J. Y. S. Lin, “Suppressing lithium dendrite growth on lithium-ion/metal batteries by a tortuously porous γ-alumina separator,” Electrochimica Acta, vol. 421, pp. 140478, 2022.
    [76] Y.-C. Nho, J.-Y. Sohn, J. Shin, J.-S. Park, Y.-M. Lim, P.-H. Kang, “Preparation of nanocomposite γ-Al2O3/polyethylene separator crosslinked by electron beam irradiation for lithium secondary battery,” Radiation Physics and Chemistry, vol. 132, pp. 65-70, 2017.
    [77] A. Larsson, and S. Ruppi, “Microstructure and properties of CVD γ-Al2O3 coatings,” International Journal of Refractory Metals and Hard Materials, vol. 19, no. 4, pp. 515-522, 2001.
    [78] R. McPherson, “On the formation of thermally sprayed alumina coatings,” Journal of Materials Science, vol. 15, no. 12, pp. 3141-3149, 1980.
    [79] Y. Ao, Y. Yang, S. Yuan, H. Hu, H. Gu, G. Chen, “Nanosized γ-Al2O3 protective film for fluorescent lamps,” Ceramics International, vol. 33, no. 8, pp. 1547-1550, 2007.
    [80] J. Wrzyszcz, W. Miśta, D. Hreniak, W. Stręk, M. Zawadzki, H. Grabowska, “Preparation and optical properties of nanostructured europium-doped γ-Al2O3,” Journal of Alloys and Compounds, vol. 341, no. 1, pp. 358-361, 2002.
    [81] G. Rosanova, “Composite bus structure for the SMEX/WIRE satellite,” 1998.
    [82] D. Everett, T. Correll, S. Schick, K. Brown, “Recovery of the Wide-Field Infrared Explorer Spacecraft,” 2000.
    [83] P. B. Tchounwou, A. K. Patlolla, and J. A. Centeno, “Invited Reviews: CarcinogeniC and Systemic Health Effects Associated with Arsenic Exposure—A Critical Review,” Toxicologic Pathology, vol. 31, no. 6, pp. 575-588, 2003.
    [84] D. Mohan, and C. U. Pittman, “Arsenic removal from water/wastewater using adsorbents—A critical review,” Journal of Hazardous Materials, vol. 142, no. 1, pp. 1-53, 2007.
    [85] Y. Kim, C. Kim, I. Choi, S. Rengaraj, J. Yi, “Arsenic Removal Using Mesoporous Alumina Prepared via a Templating Method,” Environmental Science and Technology, vol. 38, no. 3, pp. 924-931, 2004.
    [86] S. J. Wilson, “The dehydration of boehmite, γ-AlOOH, to γ-Al2O3,” Journal of Solid State Chemistry, vol. 30, no. 2, pp. 247-255, 1979.
    [87] K. M. Wefers, C., “Oxides and Hydroxides of Aluminum,” pp. Technical Paper 19, 1987.
    [88] I. Levin, T. Gemming, and D. G. Brandon, “Some metastable polymorphs and transient stages of transformation in alumina,” Physica Status Solidi (A) Applied Research, vol. 166, no. 1, pp. 197-218, 1998.
    [89] C.W. White, C.J. McHargue, P.S. Sklad, L.A. Boatner, G.C. Farlow, “Ion implantation and annealing of crystalline oxides,” Materials Science Reports, vol. 4, no. 2, pp. 41-146, 1989.
    [90] A.L. Clauser, R. Giulian, Z.D. McClure, K.O. Sarfo, C. Ophus, J. Ciston, L. Árnadóttir, M.K. Santala, “Orientation and morphology of Pt nanoparticles in γ-alumina processed via ion implantation and thermal annealing,” Scripta Materialia, vol. 188, pp. 44-49, 2020.
    [91] Z. Zhang, L. Li, and J. C. Yang, “γ-Al2O3 thin film formation via oxidation of β-NiAl(110),” Acta Materialia, vol. 59, no. 15, pp. 5905-5916, 2011.
    [92] J.C. Yang, K. Nadarzinski, E. Schumann, M. Rühle, “Electron microscopy studies of NiAl/γ-Al2O3 interfaces,” Scripta Metallurgica et Materialia, vol. 33, no. 7, pp. 1043-1048, 1995.
    [93] R.M. Jaeger, H. Kuhlenbeck, H.J. Freund, M. Wuttig, W. Hoffmann, R. Franchy, H. Ibach, “Formation of a well-ordered aluminium oxide overlayer by oxidation of NiAl(110),” Surface Science, vol. 259, no. 3, pp. 235-252, 1991.
    [94] H.O. Ayoola, S.D. House, C.S. Bonifacio, K. Kisslinger, W.A. Saidi, J.C. Yang, “Evaluating the accuracy of common γ-Al2O3 structure models by selected area electron diffraction from high-quality crystalline γ-Al2O3,” Acta Materialia, vol. 182, pp. 257-266, 2020.
    [95] L. Smrcok, V. Langer, and J. Krestan, “Gamma-alumina: a single-crystal X-ray diffraction study,” Acta Crystallogr C, vol. 62, no. Pt 9, pp. i83-4, 2006.
    [96] J. Křesťan, O. Pritula, Ľ. Smrčok, P. Šajgalík, Z. Lenčéš, A. Wannberg, F. Monteverde, “Corrosion of β-sialon-based ceramics by molten steel,” Journal of the European Ceramic Society, vol. 27, no. 5, pp. 2137-2143, 2007.
    [97] Q. Fu, C.-B. Cao, and H.-S. Zhu, “Preparation of alumina films from a new sol–gel route,” Thin Solid Films, vol. 348, no. 1, pp. 99-102, 1999.
    [98] J. Sanz, I. Sobrados, A.L. Cavalieri, P. Pena, S. de Aza, J.S. Moya, “Structural Changes Induced on Mullite Precursors by Thermal Treatment: A 27Al MAS-NMR Investigation,” Journal of the American Ceramic Society, vol. 74, no. 10, pp. 2398-2403, 1991.
    [99] M. Plummer, “The formation of metastable aluminas at high temperatures,” Journal of Applied Chemistry, vol. 8, no. 1, pp. 35-44, 1958.
    [100] F. W. Dynys, and J. W. Halloran, “Alpha Alumina Formation in Alum-Derived Gamma Alumina,” Journal of the American Ceramic Society, vol. 65, no. 9, pp. 442-448, 1982.
    [101] B. Ealet, M.H. Elyakhloufi, E. Gillet, M. Ricci, “Electronic and crystallographic structure of γ-alumina thin films,” Thin Solid Films, vol. 250, no. 1, pp. 92-100, 1994.
    [102] Y. Li, C. M. Lousada, and P. A. Korzhavyi, “The nature of hydrogen in γ-alumina,” Journal of Applied Physics, vol. 115, no. 20, 2014.
    [103] W.Y. Ching, L. Ouyang, P. Rulis, H. Yao, “Ab initio study of the physical properties of γ-Al2O3: Lattice dynamics, bulk properties, electronic structure, bonding, optical properties, and ELNES/XANES spectra,” Physical Review B - Condensed Matter and Materials Physics, vol. 78, no. 1, 2008.
    [104] X. Krokidis, P. Raybaud, A.-E. Gobichon, B. Rebours, P. Euzen, H. Toulhoat, “Theoretical Study of the Dehydration Process of Boehmite to γ-Alumina,” The Journal of Physical Chemistry B, vol. 105, no. 22, pp. 5121-5130, 2001.
    [105] M. Acikgoz, J. Harrell, and M. Pavanello, “Seeking a Structure-Function Relationship for γ-Al2O3 Surfaces,” Journal of Physical Chemistry C, vol. 122, no. 44, pp. 25314-25330, 2018.
    [106] Y. Liu, B. Cheng, K.-K. Wang, G.-P. Ling, J. Cai, C.-L. Song, G.-R. Han, “Study of Raman spectra for γ-Al2O3 models by using first-principles method,” Solid State Communications, vol. 178, pp. 16-22, 2014.
    [107] H.C. Stumpf, A.S. Russell, J.W. Newsome, C.M. Tucker, “Thermal Transformations of Aluminas and Alumina Hydrates - Reaction with 44% Technical Acid,” Industrial & Engineering Chemistry, vol. 42, no. 7, pp. 1398-1403, 1950.
    [108] R. Tertian, and D. Papée, “Transformations thermiques et hydrothermiques de l’alumine,” J. Chim. Phys., vol. 55, pp. 341-353, 1958.
    [109] H. Saalfeld, “The dehydration of gibbsite and the structure of a tetragonal γ-Al2O3,” Clay Minerals Bulletin, vol. 3, no. 19, pp. 249-257, 1958.
    [110] Y. Hiroaki, and Y. Goro, “Thermal Effects on the Lattices of η- and γ-Aluminum Oxide,” Bulletin of the Chemical Society of Japan, vol. 37, no. 8, pp. 1229-1231, 1964.
    [111] S. J. Wilson, and J. D. C. Mc Connell, “A kinetic study of the system γ-AlOOHAl2O3,” Journal of Solid State Chemistry, vol. 34, no. 3, pp. 315-322, 1980.
    [112] S. Gates-Rector, and T. Blanton, “The Powder Diffraction File: a quality materials characterization database,” Powder Diffraction, vol. 34, no. 4, pp. 352-360, 2019.
    [113] T. Tsuchida, R. Furuichi, and T. Ishii, “Kinetics of the dehydration of boehmites prepared under different hydrothermal conditions,” Thermochimica Acta, vol. 39, no. 2, pp. 103-115, 1980.
    [114] V. Jayaram, and C. G. Levi, “The structure of δ-alumina evolved from the melt and the γ → δ transformation,” Acta Metallurgica, vol. 37, no. 2, pp. 569-578, 1989.
    [115] K.J. Morrissey, K.K. Czanderna, R.P. Merrill, C.B. Carter, “Transition alumina structures studied using HREM,” Ultramicroscopy, vol. 18, no. 1, pp. 379-385, 1985.
    [116] G. Paglia, C.E. Buckley, A.L. Rohl, R.D. Hart, K. Winter, A.J. Studer, B.A. Hunter, J.V. Hanna, “Boehmite Derived γ-Alumina System. 1. Structural Evolution with Temperature, with the Identification and Structural Determination of a New Transition Phase, γ‘-Alumina,” Chemistry of Materials, vol. 16, no. 2, pp. 220-236, 2004.
    [117] P. S. Santos, H. S. Santos, and S. P. Toledo, “Standard transition aluminas. Electron microscopy studies,” Materials Research, vol. 3, 2000.
    [118] S. J. Wilson, and M. H. Stacey, “The porosity of aluminum oxide phases derived from well-crystallized boehmite: Correlated electron microscope, adsorption, and porosimetry studies,” Journal of Colloid and Interface Science, vol. 82, no. 2, pp. 507-517, 1981.
    [119] W. H. Gitzen, Alumina as a ceramic material, Columbus: American Ceramic Society, 1970.
    [120] D. Kim, J. Jung, and J. Ihm, “Theoretical Study of Aluminum Hydroxide as a Hydrogen-Bonded Layered Material,” Nanomaterials, vol. 8, pp. 375, 2018.
    [121] M. Conroy, J.A. Soltis, R.S. Wittman, F.N. Smith, S. Chatterjee, X. Zhang, E.S. Ilton, E.C. Buck, “Importance of interlayer H bonding structure to the stability of layered minerals,” Scientific Reports, vol. 7, no. 1, pp. 13274, 2017.
    [122] Y. Yang, Y. Zhong, X. Wang, Y. Ma, J. Yao, “Facile Synthesis of Ultrathin Lepidocrocite Nanosheets from Layered Precursors,” Chemistry – An Asian Journal, vol. 9, no. 6, pp. 1563-1569, 2014.
    [123] D. McAteer, I.J. Godwin, Z. Ling, A. Harvey, L. He, C.S. Boland, V. Vega-Mayoral, B. Szydłowska, A.A. Rovetta, C. Backes, J.B. Boland, X. Chen, M.E.G. Lyons, J.N. Coleman, “Liquid Exfoliated Co(OH)2 Nanosheets as Low-Cost, Yet High-Performance, Catalysts for the Oxygen Evolution Reaction,” Advanced Energy Materials, vol. 8, no. 15, pp. 1702965, 2018.
    [124] M. Schmidt, and H. D. Lutz, “γ-Cd(OH)2, a common hydroxide or an aquoxy-hydroxide,” Materials Research Bulletin, vol. 26, no. 7, pp. 605-612, 1991.
    [125] A. Nonat, and J. C. Mutin, “Evolution des dimensions des cristallites des phases initiale et finale au cours de la deshydratation mecanique: Cd(OH)2 →CdO + H2O,” Materials Chemistry, vol. 7, no. 4, pp. 479-498, 1982.
    [126] L. R. D. Hart, and E. Lense, Alumina Chemicals: Science and Technology Handbook: Wiley, 1990.
    [127] F. J. Ewing, “The Crystal Structure of Lepidocrocite,” The Journal of Chemical Physics, vol. 3, no. 7, pp. 420-424, 2004.
    [128] I. Levin, and D. Brandon, “Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences,” Journal of the American Ceramic Society, vol. 81, no. 8, pp. 1995-2012, 1998.
    [129] L. D. L. E. Hart, Alumina chemicals : science and technology handbook, Westerville, Ohio: The American Ceramic Society, 1990.
    [130] T. Sato, “The thermal transformation of alumina monohydrate, boehmite,” Journal of Applied Chemistry, vol. 12, pp. 9-12, 2007.
    [131] M. Pyzalski, and M. Wojcik, “The dehydroxylation of aluminium hydroxides and the kinetics of α-Al2O3 formation,” Journal of thermal analysis, vol. 36, no. 6, pp. 2147-2151, 1990.
    [132] S. Rajendran, “Production of ultrafine alpha alumina powders and fabrication of fine grained strong ceramics,” Journal of Materials Science, vol. 29, no. 21, pp. 5664-5672, 1994.
    [133] A. Tonejc, C. Kosanović, M. Stubičar, A. Tonejc, B. Subotić, I. S̈mit, “Equivalence of ball milling and thermal treatment for phase transitions in the Al2O3 system,” Journal of Alloys and Compounds, vol. 204, 1994.
    [134] T. Sato, “Thermal transformation of alumina trihydrate, bayerite,” Journal of Applied Chemistry, vol. 12, no. 12, pp. 553-556, 1962.
    [135] R. S. Bradbeer, and A. C. D. Chaklader, "Reactive Hot-Pressing of Colloidal Boehmite," Materials Science Research book series, vol. 6, pp. 395-407, 1973.
    [136] F. Paulik, J. Paulik, R. Naumann, K. Köhnke, D. Petzold, “Mechanism and kinetics of the dehydration of hydrargillites. Part I,” Thermochimica Acta, vol. 64, no. 1, pp. 1-14, 1983.
    [137] J. F. Brown, D. Clark, and W. W. Elliott, “13. The thermal decomposition of the alumina trihydrate, gibbsite,” Journal of the Chemical Society (Resumed), no. 0, pp. 84-88, 1953.
    [138] G. W. Brindley, and J. O. Choe, “The reaction series, gibbsite→chi alumina →kappa alumina→corundum*,” American Mineralogist, vol. 46, no. 7-8, pp. 771-785, 1961.
    [139] E. J. W. Verwey, “The Crystal Structure of γ-Fe2O3 and γ-Al2O3,” Zeitschrift für Kristallographie - Crystalline Materials, vol. 91, no. 1, pp. 65-69, 1935.
    [140] A. Ionescu, A. Allouche, J.P. Aycard, M. Rajzmann, F. Hutschka, “Study of gamma-alumina surface reactivity: Adsorption of water and hydrogen sulfide on octahedral aluminum sites,” JOURNAL OF PHYSICAL CHEMISTRY B, vol. 106, no. 36, pp. 9359-9366, 2002.
    [141] C. Morterra, and G. Magnacca, “A case study: Surface chemistry and surface structure of catalytic aluminas, as studied by vibrational spectroscopy of adsorbed species,” CATALYSIS TODAY, vol. 27, no. 3-4, pp. 497-532, 1996.
    [142] G. Paglia, C.E. Buckley, T.J. Udovic, A.L. Rohl, F. Jones, C.F. Maitland, J. Connolly, “Boehmite-derived gamma-alumina system. 2. Consideration of hydrogen and surface effects,” CHEMISTRY OF MATERIALS, vol. 16, no. 10, pp. 1914-1923, 2004.
    [143] K. Sohlberg, S. J. Pennycook, and S. T. Pantelides, “Explanation of the observed dearth of three-coordinated Al on gamma-alumina surfaces,” JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 121, no. 47, pp. 10999-11001, 1999.
    [144] G. Paglia, C.E. Buckley, A.L. Rohl, B.A. Hunter, R.D. Hart, J.V. Hanna, L.T. Byrne, “Tetragonal structure model for boehmite-derived gamma-alumina,” Physical Review B, vol. 68, no. 14, pp. 144110, 2003.
    [145] M. Digne, P. Sautet, P. Raybaud, P. Euzen, H. Toulhoat, “Use of DFT to achieve a rational understanding of acid–basic properties of γ-alumina surfaces,” Journal of Catalysis, vol. 226, no. 1, pp. 54-68, 2004.
    [146] H. P. Pinto, R. M. Nieminen, and S. D. Elliott, “Ab initio study of γ-Al2O3 surfaces,” Physical Review B, vol. 70, no. 12, pp. 125402, 2004.
    [147] S.-D. Mo, Y.-N. Xu, and W.-Y. Ching, “Electronic and Structural Properties of Bulk γ-Al2O3,” Journal of the American Ceramic Society, vol. 80, no. 5, pp. 1193-1197, 1997.
    [148] F. H. Streitz, and J. W. Mintmire, “Energetics of aluminum vacancies in gamma alumina,” Physical Review B, vol. 60, no. 2, pp. 773-777, 1999.
    [149] C. Wolverton, and K. C. Hass, “Phase stability and structure of spinel-based transition aluminas,” Physical Review B, vol. 63, no. 2, pp. 024102, 2000.
    [150] G. Gutiérrez, A. Taga, and B. Johansson, “Theoretical structure determination of γ-Al2O3,” Physical Review B, vol. 65, no. 1, pp. 012101, 11/29/, 2001.
    [151] K. P. Sinha, and A. P. B. Sinha, “Vacancy Distribution and Bonding in Some Oxides of Spine1 Structure,” The Journal of Physical Chemistry, vol. 61, no. 6, pp. 758-761, 1957.
    [152] C. S. John, N. C. M. Alma, and G. R. Hays, “Characterization of transitional alumina by solid-state magic angle spinning aluminium NMR,” Applied Catalysis, vol. 6, no. 3, pp. 341-346, 1983.
    [153] S. Blonski, and S. H. Garofalini, “Molecular dynamics simulations of α-alumina and γ-alumina surfaces,” Surface Science, vol. 295, pp. 263-274, 1993.
    [154] M.H. Lee, C.-F. Cheng, V. Heine, J. Klinowski, “Distribution of tetrahedral and octahedral A1 sites in gamma alumina,” Chemical Physics Letters, vol. 265, no. 6, pp. 673-676, 1997.
    [155] J.A. Wang, X. Bokhimi, A. Morales, O. Novaro, T. López, R. Gómez, “Aluminum Local Environment and Defects in the Crystalline Structure of Sol−Gel Alumina Catalyst,” The Journal of Physical Chemistry B, vol. 103, no. 2, pp. 299-303, 1999.
    [156] J. H. d. Boer, Proceedings of the International Symposium on the Reactivity of Solids, pp. 237-244, 1952.
    [157] E. Kordes, “Kristallchemische Untersuchungen über Aluminiumverbindungen mit spinellartigem Gitterbau und über γ-Fe2O3,” Mit einem Beitrag über die mineralisatorische Wirkungsweise von Fluoriden, vol. 91, no. 1-6, pp. 193-228, 1935.
    [158] S. Soled, “γ-Al2O3 viewed as a defect oxyhydroxide,” Journal of Catalysis, vol. 81, no. 1, pp. 252-257, 1983.
    [159] J. G. M. Decleer, “TG/XRD/Sem Study of the Conversion of Gibbsite to (Pseudo) Boehmite,” Bulletin des Sociétés Chimiques Belges, vol. 98, no. 7, pp. 449-462, 1989.
    [160] R. M. Pearson, “Wide line nuclear magnetic resonance studies on transition aluminas—Distribution of protons between surface and bulk phases,” Journal of Catalysis, vol. 23, no. 3, pp. 388-394, 1971.
    [161] R.-S. Zhou, and R. L. Snyder, “Structures and transformation mechanisms of the [eta], [gamma] and [theta] transition aluminas,” Acta Crystallographica Section B, vol. 47, no. 5, pp. 617-630, 1991.
    [162] Z. Luo, “Structure of boehmite-derived [gamma]-alumina and its transformation mechanism revealed by electron crystallography,” Acta Crystallographica Section B, vol. 77, no. 5, pp. 772-784, 2021.
    [163] H.-I. Kim, and S. K. Lee, “Probing the transformation paths from aluminum (oxy)hydroxides (boehmite, bayerite, and gibbsite) to metastable alumina: A view from high-resolution 27Al MAS NMR,” American Mineralogist, vol. 106, no. 3, pp. 389-403, 2021.
    [164] R. Giovanoli, and R. Brütsch, “Kinetics and mechanism of the dehydration of γ-FeOOH,” Thermochimica Acta, vol. 13, no. 1, pp. 15-36, 1975.
    [165] R. J. Hill, “Hydrogen atoms in boehmite: A single crystal X-ray diffraction and molecular orbital study,” Clays and Clay Minerals, vol. 29, pp. 435-445, 1981.
    [166] J. Anthony, Handbook of mineralogy. Vol. 3: Halides, hydroxides and oxides: Mineral Data Pub., 1997.
    [167] J. F. W. Bowles, "Hydroxides," Encyclopedia of Geology (Second Edition), D. Alderton and S. A. Elias, eds., pp. 442-451, Oxford: Academic Press, 2021.
    [168] W. A. F. Deer, R. A. Howie, and J. Zussman, "An Introduction to the Rock-Forming Minerals," Mineralogical Society of Great Britain and Ireland, 2013.
    [169] T. Tsuchida, R. Furuichi, and T. Ishii, “Reactivity of η‐, γ‐, and α‐Al2O3 for ZnAl2O4 Formation,” ZAAC ‐ Journal of Inorganic and General Chemistry, vol. 415, no. 2, pp. 175-184, 1975.
    [170] L. Volpe, and M. Boudart, “Topotactic Preparation of Powders with High Specific Surface Area,” Catalysis Reviews, vol. 27, no. 4, pp. 515-538, 1985.
    [171] H. de Souza Santons, P. K. Kiyohara, and P. de Souza Santos, “Pseudomorphic transformations of euhedral crystals of γ-AlOOH into aluminas,” Ceramics International, vol. 20, no. 3, pp. 175-181, 1994.
    [172] D. Chiche, M. Digne, R. Revel, C. Chanéac, J.P. Jolivet, “Accurate determination of oxide nanoparticle size and shape based on X-ray powder pattern simulation: Application to boehmite AlOOH,” Journal of Physical Chemistry C, vol. 112, no. 23, pp. 8524-8533, 2008.
    [173] M. Figlarz, J. Guenot, and F. Fievet-Vincent, “Morphological and topotactical aspects of the reactions Co(OH)2 → CoOOH and CoOOH → Co3O4,” Journal of Materials Science, vol. 11, no. 12, pp. 2267-2270, 1976.
    [174] J. C. Niepce, M. T. Mesnier, and D. Louër, “Forme des cristallites d'oxyde de cadmium produits par decomposition de l'hydroxyde,” Journal of Solid State Chemistry, vol. 22, no. 3, pp. 341-351, 1977.
    [175] J. Bernal, “Schweiz. Archiv angew,” Wiss. Techn, vol. 26, no. 69, pp. 15, 1960.
    [176] W. E. Garner, “Chemistry of solid state,” Butterworths, 1955.
    [177] J.J. Fitzgerald, G. Piedra, S.F. Dec, M. Seger, G.E. Maciel, “Dehydration Studies of a High-Surface-Area Alumina (Pseudo-boehmite) Using Solid-State 1H and 27Al NMR,” Journal of the American Chemical Society, vol. 119, no. 33, pp. 7832-7842, 1997.
    [178] J. H. De Boer, J. M. H. Fortuin, and J. J. Steggerda, “The dehydration of alumina hydrates,” Proc. K. Ned. Akad. Wet. B, vol. 57, 1954.
    [179] D. Martin, and D. Duprez, “Mobility of surface species on oxides. 1. Isotopic exchange of 18O2 with 16O of SiO2, Al2O3, ZrO2, MgO, CeO2, and CeO2-Al2O3. Activation by noble metals. Correlation with oxide basicity,” The Journal of Physical Chemistry, vol. 100, no. 22, pp. 9429-9438, 1996.
    [180] H. van Gog, “First-principles study of dehydration interfaces between diaspore and corundum, gibbsite and boehmite, and boehmite and γ-Al2O3: Energetic stability, interface charge effects, and dehydration defects,” Applied Surface Science, vol. 541, pp. 148501, 2021.
    [181] R. Wischert, C. Copéret, F. Delbecq, P. Sautet, “Optimal Water Coverage on Alumina: A Key to Generate Lewis Acid–Base Pairs that are Reactive Towards the C-H Bond Activation of Methane,” Angewandte Chemie International Edition, vol. 50, no. 14, pp. 3202-3205, 2011.
    [182] H. Rietveld, “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallographica, vol. 22, no. 1, pp. 151-152, 1967.
    [183] G. Paglia, “Determination of the structure of y-alumina using empirical and first principle calculations combined with supporting experiments,” 2004.
    [184] S.R. Egorova, Y. Zhang, A.N. Mukhamed'yarova, A.Z. Kurbangaleeva, A.A. Lamberov, “Application of coarse gibbsite agglomerates to formation of 2D and 3D boehmite particles by the dehydration of the hydrothermal treatment and atmospheric pressure,” Surfaces and Interfaces, vol. 13, pp. 58-64, 2018.
    [185] A. L. Dragoo, and J. J. Diamond, “Transitions in Vapor-Deposited Alumina from 300° to 1200°C,” Journal of the American Ceramic Society, vol. 50, no. 11, pp. 568-574, 1967.
    [186] M. Niederberger, and H. Cölfen, “Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly,” Physical Chemistry Chemical Physics, vol. 8, no. 28, pp. 3271-3287, 2006.
    [187] J.J. De Yoreo, P.U.P.A. Gilbert, N.A.J.M. Sommerdijk, R.L. Penn, S. Whitelam, D. Joester, H. Zhang, J.D. Rimer, A. Navrotsky, J.F. Banfield, A.F. Wallace, F.M. Michel, F.C. Meldrum, H. Cölfen, P.M. Dove, “Crystallization by particle attachment in synthetic, biogenic, and geologic environments,” Science, vol. 349, no. 6247, pp. aaa6760, 2015.
    [188] H. Cöelfen, and M. Antonietti, Mesocrystals and nonclassical crystallization: John Wiley & Sons, 2008.
    [189] J. F. Banfield, and K. H. Nealson, Geomicrobiology: Interactions between microbes and minerals: Walter de Gruyter GmbH & Co KG, 2018.
    [190] R. L. Penn, and J. F. Banfield, “Imperfect Oriented Attachment: Dislocation Generation in Defect-Free Nanocrystals,” Science, vol. 281, no. 5379, pp. 969-971, 1998.
    [191] R. L. Penn, and J. F. Banfield, “Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: Insights from nanocrystalline TiO2,” vol. 83, no. 9-10, pp. 1077-1082, 1998.
    [192] H. Zhang, and J. F. Banfield, “Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation,” Journal of Materials Research, vol. 15, no. 2, pp. 437-448, 2000.
    [193] S. A. Speakman, “Estimating crystallite size using XRD,” MIT Center for Materials Science and Engineering, vol. 2, pp. 14, 2014.
    [194] K. Yamada, T. Fukunaga, Y. Takahashi, T. Mukaibo, “Heat of Dehydration of Hydrated Aluminas,” Denki Kagaku oyobi Kogyo Butsuri Kagaku, vol. 41, no. 4, pp. 290-292, 1973.
    [195] Q. Chen, and W. Zeng, “Calorimetric determination of the standard enthalpies of formation of gibbsite, Al(OH)3(cr), and boehmite, AlOOH(cr),” Geochimica et Cosmochimica Acta, vol. 60, no. 1, pp. 1-5, 1996.
    [196] J.M. McHale, A. Auroux, A.J. Perrotta, A. Navrotsky, “Surface Energies and Thermodynamic Phase Stability in Nanocrystalline Aluminas,” Science, vol. 277, no. 5327, pp. 788-791, 1997.
    [197] P. Raybaud, M. Digne, R. Iftimie, W. Wellens, P. Euzen, H. Toulhoat, “Morphology and Surface Properties of Boehmite (γ-AlOOH): A Density Functional Theory Study,” Journal of Catalysis, vol. 201, no. 2, pp. 236-246, 2001.
    [198] R. Speyer, Thermal Analysis of Materials / Robert Speyer, First edition. ed., Boca Raton, FL: CRC Press, 1993.
    [199] T.J. Bastow, J.S. Hall, M.E. Smith, S. Steuernagel, “Characterisation of hydrated aluminas by MAS and DOR 27Al NMR,” Materials Letters, vol. 18, no. 4, pp. 197-200, 1994.
    [200] T. Isobe, T. Watanabe, J.B. d'Espinose de la Caillerie, A.P. Legrand, D. Massiot, “Solid-state 1H and 27Al NMR studies of amorphous aluminum hydroxides,” Journal of Colloid and Interface Science, vol. 261, no. 2, pp. 320-324, 2003.
    [201] U. Holzwarth, and N. Gibson, “The Scherrer equation versus the 'Debye-Scherrer equation',” Nature Nanotechnology, vol. 6, no. 9, pp. 534-534, 2011.
    [202] Y.G. Wang, P.M. Bronsveld, J.T.M. DeHosson, B. Djuričić, D. McGarry, S. Pickering, “Ordering of Octahedral Vacancies in Transition Aluminas,” Journal of the American Ceramic Society, vol. 81, no. 6, pp. 1655-1660, 1998.
    [203] Y. Repelin, and E. Husson, “Etudes structurales d'alumines de transition. I-alumines gamma et delta,” Materials Research Bulletin, vol. 25, no. 5, pp. 611-621, 1990.
    [204] D. Li, M.H. Nielsen, J.R.I. Lee, C. Frandsen, J.F. Banfield, J.J. De Yoreo, “Direction-Specific Interactions Control Crystal Growth by Oriented Attachment,” Science, vol. 336, no. 6084, pp. 1014-1018, 2012.
    [205] M. H. Nielsen, S. Aloni, and J. J. De Yoreo, “In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways,” Science, vol. 345, no. 6201, pp. 1158-1162, 2014.
    [206] T. H. Ballinger, and J. Yates, “IR spectroscopic detection of Lewis acid sites on Al2O3 using adsorbed CO. Correlation with Al-OH group removal,” Langmuir, vol. 7, no. 12, pp. 3041-3045, 1991.
    [207] P. Euzen, P. Raybaud, X. Krokidis, H. Toulhoat, J. Le Loarer, J. Jolivet, C. Froidefond, “Handbook of Porous Solids,” Volume, vol. 3, pp. 1591-1677, 2002.
    [208] C. Morterra, and G. Magnacca, “A case study: surface chemistry and surface structure of catalytic aluminas, as studied by vibrational spectroscopy of adsorbed species,” Catalysis Today, vol. 27, no. 3, pp. 497-532, 1996.
    [209] K.S. Novoselov, V.I. Fal′ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, “A roadmap for graphene,” Nature, vol. 490, no. 7419, pp. 192-200, 2012.
    [210] A.C. Ferrari, F. Bonaccorso, V. Fal'ko, K.S. Novoselov, S. Roche, P. Bøggild, S. Borini, F.H.L. Koppens, V. Palermo, N. Pugno, J.A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J.N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G.F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A.N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G.M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B.J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I.A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S.R.T. Neil, Q. Tannock, T. Löfwander, J. Kinaret, “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale, vol. 7, no. 11, pp. 4598-4810, 2015

    下載圖示 校內:2025-09-01公開
    校外:2025-09-01公開
    QR CODE