| 研究生: |
蘇翊筑 Su, Yi-Chu |
|---|---|
| 論文名稱: |
公共自行車使用型態與都市活動的空間結構比較 The comparison of urban structures represented by public bike usage and urban activities |
| 指導教授: |
李子璋
Lee, Tzu-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 都市計劃學系 Department of Urban Planning |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 公共自行車系統 、社群偵測 、模矩度 、大數據 、空間結構 |
| 外文關鍵詞: | public bicycle system, PBS, community detection, modularity, big data |
| 相關次數: | 點閱:69 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
公共自行車系統是近代蓬勃發展的大眾運輸系統之一。具備主動出行的特性解決短距離旅次的需求,在都市中與其他運具相輔相成,輔助完成最後一哩路的交通出行,發展至今已經成為各大城市發展永續交通的重要政策。為管理龐大的租借系統,智慧型的工具IoT設備也被引入協助管理,相應產生許多旅次資訊,其產生的大量數據提供分析都市移動的重要依據,有助於研究都市中的旅運行為與個人移動的空間分布。
以旅次分佈理解的都市空間結構是常見的分析方式,過去對於旅次分佈的調查常受限於資料調查的繁瑣與局限,無法對都市的移動進行更細緻時空分布的調查。公共自行車的個體旅次資訊提供數據分析的重要依據。但大量旅次數據資料的處理是相當具有挑戰的,因為大量的資料中涵蓋許多雜亂的數值以及重疊的資訊,使得無法從中取得有價值的資訊。因此需要更有效率方法理解資料中所蘊含的訊息。過去的研究中對於都市結構的分析沒有標準的框架或程序,本研究的挑戰在於如何以現有的大數據資料探索都市活動空間分布的規律。
交通型態分析上,已經有相關研究以圖論或網絡結構的概念討論其中的關係,網絡結構並非單純只聚焦一個點討論交通量,而是觀察節點間的互動關係,在都市移動的分析上具備觀察分析土地與交通相互作用的潛力。但多數相關研究偏重於指標建立、探究移動的規律性或是加強預測,大部分缺乏將這些路網結構呈現的空間不對稱與實際的空間使用型態進行討論與比較。
本研究以臺北市作為實證分析地區,分析公共自行車的使用資料呈現的旅次型態,應用社會網絡的概念分析公共自行車旅次資料所呈現的都市活動型態,透過社群偵測的模矩度指標指認自行車站點的階層式組織結構。社群偵測建構的公共自行車使用型態社群內能反映出特定的都市活動與分佈。
研究成果得出在時間特徵下的臺北市公共自行車社會網絡分布圖,以邊界的形式討論時間差異產生的都市活動。另外研究結果顯現單一設施的空間分布與自行車使用型態的空間分布比較結果並不好。本研究有助於理解都市活動背後所反映的空間結構也加強對於自行車使用型態的分析,本研究分析旅次型態的框架可以作為都市空間規劃的基礎資訊。
The Public Bicycle System (PBS) has become an important policy for sustainable transportation in many big cities. The big data generated from PBS provides an important foundation for analyzing urban mobility, and helps to evaluate the spatial distribution of travel behavior and personal mobility in urban areas.
However, the processing of a large amount of trip data is challenging, because a large amount of data contains many cluttered values and overlapping information, making it impossible to obtain valuable information from it. Therefore, more efficient methods are needed to exploit the information contained in the data. There is no standard framework or procedure for the analysis of urban structure in the past research. The challenge of this article is how to use the existing big data to explore the spatial distribution of urban activities.
This research analyzes the travel patterns presented by public bike usage in Taipei City, Taiwan. Appling the concept of social network to analyze the urban activity patterns presented by the public bike travel data. The relationship between bike stations is identified through the modularity index detected by the community. The usage patterns of public bikes constructed by community detection can reflect specific urban activities and distribution.
The results conducted the social network distribution map of the public bikes in Taipei City under the characteristics of time and integrate the spatial structure differences of urban activities caused by time differences in the form of boundaries. Finally, this research proposed a method to compare the spatial structure presented by public bike usage with the spatial structure presented by points of interest (POI).
This study helps to understand the spatial structure of urban activities and strengthens the analysis of bike usage patterns. The framework of travel patterns can be used as basic information for urban spatial planning.
Arana, P., Cabezudo, S., & Peñalba, M. (2014). Influence of weather conditions on transit ridership: A statistical study using data from Smartcards. Transportation Research Part A: Policy and Practice, 59, 1-12. https://doi.org/10.1016/j.tra.2013.10.019
Ashqar, H. I., Elhenawy, M., & Rakha, H. A. (2019). Modeling bike counts in a bike-sharing system considering the effect of weather conditions. Case studies on transport policy, 7(2), 261-268. https://doi.org/10.1016/j.cstp.2019.02.011
Böcker, L., Anderson, E., Uteng, T. P., & Throndsen, T. (2020). Bike sharing use in conjunction to public transport: Exploring spatiotemporal, age and gender dimensions in Oslo, Norway. Transportation Research Part A: Policy and Practice, 138, 389-401. https://doi.org/10.1016/j.tra.2020.06.009
Bao, J., Xu, C., Liu, P., & Wang, W. (2017). Exploring bikesharing travel patterns and trip purposes using smart card data and online point of interests. Networks and Spatial Economics, 17(4), 1231-1253. https://doi.org/10.1007/s11067-017-9366-x
Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics-Theory and Experiment. https://doi.org/10.48550/arXiv.0803.0476
Cao, W., Feng, X., & Zhang, H. (2019). The structural and spatial properties of the high-speed railway network in China: A complex network perspective. Journal of Rail Transport Planning & Management, 9, 46-56. https://doi.org/10.1016/j.jrtpm.2018.10.001
Chapin Jr, F. S. (1997). Urban Land Use Planning. University of Illinois Press.
Dadashpoor, H., Afaghpoor, A., & Allan, A. (2015). A methodology to assess the spatial configuration of urban systems in Iran from an interaction perspective. GeoJournal, 82(1), 109-129. https://doi.org/10.1007/s10708-015-9671-1
Deng, Y., Liu, J., Liu, Y., & Luo, A. (2019). Detecting Urban Polycentric Structure from POI Data. ISPRS International Journal of Geo-Information, 8(6), 283. https://doi.org/10.3390/ijgi8060283
Ding, H., Sze, N., Li, H., & Guo, Y. (2020). Roles of infrastructure and land use in bicycle crash exposure and frequency: a case study using Greater London bike sharing data. Accident Analysis & Prevention, 144, 105652. https://doi.org/10.1016/j.aap.2020.105652
Ducruet, C., & Beauguitte, L. (2013). Spatial Science and Network Science: Review and Outcomes of a Complex Relationship. Networks and Spatial Economics, 14(3-4), 297-316. https://doi.org/10.1007/s11067-013-9222-6
Duran-Rodas, D., Chaniotakis, E., & Antoniou, C. (2019). Built Environment Factors Affecting Bike Sharing Ridership: Data-Driven Approach for Multiple Cities. Transportation Research Record: Journal of the Transportation Research Board, 2673(12), 55-68. https://doi.org/10.1177/0361198119849908
Duran-Rodas, D., Wright, B., Pereira, F. C., & Wulfhorst, G. (2021). Demand And/oR Equity (DARE) method for planning bike-sharing. Transportation Research Part D: Transport and Environment, 97, 102914. https://doi.org/https://doi.org/10.1016/j.trd.2021.102914
El-Geneidy, A., van Lierop, D., & Wasfi, R. (2016). Do people value bicycle sharing? A multilevel longitudinal analysis capturing the impact of bicycle sharing on residential sales in Montreal, Canada. Transport Policy, 51, 174-181. https://doi.org/10.1016/j.tranpol.2016.01.009
Engelfriet, L., & Koomen, E. (2018). The impact of urban form on commuting in large Chinese cities. Transportation, 45(5), 1269-1295. https://doi.org/10.1007/s11116-017-9762-6
Etienne, C., & Latifa, O. (2014). Model-Based Count Series Clustering for Bike Sharing System Usage Mining A Case Study with the Vélib’ System of Paris. Acm Transactions on Intelligent Systems and Technology, 5(3). https://doi.org/10.1145/2560188
Faghih-Imani, A., Eluru, N., El-Geneidy, A. M., Rabbat, M., & Haq, U. (2014). How land-use and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in Montreal. Journal of Transport Geography, 41, 306-314. https://doi.org/10.1016/j.jtrangeo.2014.01.013
Faghih-Imani, A., Hampshire, R., Marla, L., & Eluru, N. (2017). An empirical analysis of bike sharing usage and rebalancing: Evidence from Barcelona and Seville. Transportation Research Part a-Policy and Practice, 97, 177-191. https://doi.org/10.1016/j.tra.2016.12.007
Fishman, E., Washington, S., & Haworth, N. (2014). Bike share's impact on car use: Evidence from the United States, Great Britain, and Australia [Article]. Transportation Research Part D-Transport and Environment, 31, 13-20. https://doi.org/10.1016/j.trd.2014.05.013
Gao, K., Yang, Y., Li, A., & Qu, X. (2021). Spatial heterogeneity in distance decay of using bike sharing: An empirical large-scale analysis in Shanghai. Transportation Research Part D: Transport and Environment, 94. https://doi.org/10.1016/j.trd.2021.102814
Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of the national academy of sciences, 99(12), 7821-7826. https://doi.org/10.1073/pnas.122653799
Golledge, R. G. (1997). Spatial behavior: A geographic perspective. Guilford Press.
Guo, Y., Yang, L., & Chen, Y. (2022). Bike Share Usage and the Built Environment: A Review. Frontiers in public health, 10, 848169-848169. https://doi.org/10.3389/fpubh.2022.848169
Heinen, E., Maat, K., & Van Wee, B. (2011). The role of attitudes toward characteristics of bicycle commuting on the choice to cycle to work over various distances. Transportation Research Part D: Transport and Environment, 16(2), 102-109. https://doi.org/10.1016/j.trd.2010.08.010
Hägerstrand, T. (1970). What about people in Regional Science? Papers of the Regional Science Association, 24(1), 6-21. https://doi.org/10.1007/BF01936872
Hu, Y., & Han, Y. (2019). Identification of Urban Functional Areas Based on POI Data: A Case Study of the Guangzhou Economic and Technological Development Zone. Sustainability, 11(5), 1385. https://doi.org/10.3390/su11051385
Kager, R., Bertolini, L., & Te Brömmelstroet, M. (2016). Characterisation of and reflections on the synergy of bicycles and public transport. Transportation Research Part A: Policy and Practice, 85, 208-219. https://doi.org/10.1016/j.tra.2016.01.015
Kou, Z., & Cai, H. (2019). Understanding bike sharing travel patterns: An analysis of trip data from eight cities. Physica A: Statistical Mechanics and its Applications, 515, 785-797. https://doi.org/10.1016/j.physa.2018.09.123
Lee, J., Yu, K., & Kim, J. (2021). Public Bike Trip Purpose Inference Using Point-of-Interest Data. ISPRS International Journal of Geo-Information, 10(5). https://doi.org/10.3390/ijgi10050352
Legros, B. (2019). Dynamic repositioning strategy in a bike-sharing system; how to prioritize and how to rebalance a bike station. European Journal of Operational Research, 272(2), 740-753. https://doi.org/10.1016/j.ejor.2018.06.051
Li, S., Zhuang, C., Tan, Z., Gao, F., Lai, Z., & Wu, Z. (2021). Inferring the trip purposes and uncovering spatio-temporal activity patterns from dockless shared bike dataset in Shenzhen, China. Journal of Transport Geography, 91. https://doi.org/10.1016/j.jtrangeo.2021.102974
Li, W., Wang, S., Zhang, X., Jia, Q., & Tian, Y. (2020). Understanding intra-urban human mobility through an exploratory spatiotemporal analysis of bike-sharing trajectories. International Journal of Geographical Information Science, 34(12), 2451-2474. https://doi.org/10.1080/13658816.2020.1712401
Lin, J.-J., Wang, N.-L., & Feng, C.-M. (2017). Public bike system pricing and usage in Taipei. International Journal of Sustainable Transportation, 11(9), 633-641. https://doi.org/https://doi.org/10.1080/15568318.2017.1301601
Lin, J.-J., Zhao, P., Takada, K., Li, S., Yai, T., & Chen, C.-H. (2018). Built environment and public bike usage for metro access: A comparison of neighborhoods in Beijing, Taipei, and Tokyo. Transportation Research Part D: Transport and Environment, 63, 209-221. https://doi.org/10.1016/j.trd.2018.05.007
Liu, H.-C., & Lin, J.-J. (2019). Associations of built environments with spatiotemporal patterns of public bicycle use. Journal of Transport Geography, 74, 299-312. https://doi.org/10.1016/j.jtrangeo.2018.12.010
MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability,
McMillen, D. P. (2001). Nonparametric Employment Subcenter Identification. Journal of Urban Economics, 50(3), 448-473. https://doi.org/https://doi.org/10.1006/juec.2001.2228
Meier, R. L. (1962). A communications theory of urban growth. Cambridge, MA: Pub. for the Joint Center for Urban Studies of the Massachusetts Institute of Technology and Harvard University by MIT Press.
Moreno, J. L. (1953). Who shall survive? : foundations of sociometry, group psychotherapy, and sociodrama. Mental Health Resources.
Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167-256. https://doi.org/10.1137/S003614450342480
Newman, M. E. J. (2004). Analysis of weighted networks. Physical Review E, 70(5), 056131. https://doi.org/10.1103/PhysRevE.70.056131
Nosal, T., & Miranda-Moreno, L. F. (2014). The effect of weather on the use of North American bicycle facilities: A multi-city analysis using automatic counts. Transportation Research Part A: Policy and Practice, 66, 213-225. https://doi.org/10.1016/j.tra.2014.04.012
O’Brien, O., Cheshire, J., & Batty, M. (2014). Mining bicycle sharing data for generating insights into sustainable transport systems. Journal of Transport Geography, 34, 262-273. https://doi.org/10.1016/j.jtrangeo.2013.06.007
Otte, E., & Rousseau, R. (2002). Social network analysis: a powerful strategy, also for the information sciences. Journal of Information Science, 28(6), 441-453. https://doi.org/10.1177/016555150202800601
Sun, F., Chen, P., & Jiao, J. (2018). Promoting public bike-sharing: A lesson from the unsuccessful Pronto system. Transportation Research Part D: Transport and Environment, 63, 533-547. https://doi.org/10.1016/j.trd.2018.06.021
Te Pai, J., & Ying Pai, S. (2015). User Behaviour Analysis of the Public Bike System in Taipei. International Review for Spatial Planning and Sustainable Development, 3(2), 39-52. https://doi.org/10.14246/irspsd.3.2_39
Wang, K., & Chen, Y.-J. (2020). Joint analysis of the impacts of built environment on bikeshare station capacity and trip attractions. Journal of Transport Geography, 82, 102603. https://doi.org/10.1016/j.jtrangeo.2019.102603
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of 'small-world' networks. Nature, 393(6684), 440-442. https://doi.org/10.1038/30918
Wegener, M., & Fuerst, F. (2004). Land-Use Transport Interaction: State of the Art. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1434678
Woodcock, J., Tainio, M., Cheshire, J., O'Brien, O., & Goodman, A. (2014). Health effects of the London bicycle sharing system: health impact modelling study. BMJ, 348, g425. https://doi.org/https://doi.org/10.1136/bmj.g425
Wu, C., Chung, H., Liu, Z., & Kim, I. (2021). Examining the effects of the built environment on topological properties of the bike-sharing network in Suzhou, China. International Journal of Sustainable Transportation, 15(5), 338-350. https://doi.org/10.1080/15568318.2020.1780652
Wu, C., & Kim, I. (2020). Analyzing the structural properties of bike-sharing networks: Evidence from the United States, Canada, and China. Transportation Research Part A: Policy and Practice, 140, 52-71. https://doi.org/10.1016/j.tra.2020.07.018
Yang, Y., Heppenstall, A., Turner, A., & Comber, A. (2020). Using graph structural information about flows to enhance short-term demand prediction in bike-sharing systems. Computers, Environment and Urban Systems, 83, 101521. https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2020.101521
Yu, Z., Duan, Y., Zhang, S., Liu, X., Li, K., & Chen, X. (2021). A Spatiotemporal Prediction Model for Regional Scheduling of Shared Bicycles Based on the INLA Method. Journal of Advanced Transportation, 2021, 1-10. https://doi.org/10.1155/2021/4959504
Yuan, J. (2012). Discovering regions of different functions in a city using human mobility and POIs. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 186-194). https://doi.org/https://doi.org/10.1145/2339530.2339561
Zaltz Austwick, M., O'Brien, O., Strano, E., & Viana, M. (2013). The structure of spatial networks and communities in bicycle sharing systems. PLoS One, 8(9), e74685. https://doi.org/10.1371/journal.pone.0074685
Zhang, D., Yu, C., Desai, J., Lau, H. Y. K., & Srivathsan, S. (2017). A time-space network flow approach to dynamic repositioning in bicycle sharing systems. Transportation Research Part B: Methodological, 103, 188-207. https://doi.org/10.1016/j.trb.2016.12.006
Zhang, H., Zhuge, C., Jia, J., Shi, B., & Wang, W. (2021). Green travel mobility of dockless bike-sharing based on trip data in big cities: A spatial network analysis. Journal of Cleaner Production, 313. https://doi.org/10.1016/j.jclepro.2021.127930
Zhang, X., Li, W., Zhang, F., Liu, R., & Du, Z. (2018). Identifying Urban Functional Zones Using Public Bicycle Rental Records and Point-of-Interest Data. ISPRS International Journal of Geo-Information, 7(12). https://doi.org/10.3390/ijgi7120459
Zhang, X., Shen, Y., & Zhao, J. (2021). The mobility pattern of dockless bike sharing: A four-month study in Singapore. Transportation Research Part D: Transport and Environment, 98. https://doi.org/10.1016/j.trd.2021.102961
Zhang, Y., & Mi, Z. (2018). Environmental benefits of bike sharing: A big data-based analysis. Applied Energy, 220, 296-301. https://doi.org/10.1016/j.apenergy.2018.03.101
Zhao, P., & Li, S. (2017). Bicycle-metro integration in a growing city: The determinants of cycling as a transfer mode in metro station areas in Beijing. Transportation Research Part A: Policy and Practice, 99, 46-60. https://doi.org/10.1016/j.tra.2017.03.003
Zheng, D., & Li, C. (2020). Research on Spatial Pattern and Its Industrial Distribution of Commercial Space in Mianyang Based on POI Data. Journal of Data Analysis and Information Processing, Vol.08No.01, 20, Article 97827. https://doi.org/10.4236/jdaip.2020.81002
Zhou, X. (2015). Understanding Spatiotemporal Patterns of Biking Behavior by Analyzing Massive Bike Sharing Data in Chicago. PLoS One, 10(10), e0137922. https://doi.org/10.1371/journal.pone.0137922
Zhou, Y., & Huang, Y. (2018). Context Aware Flow Prediction of Bike Sharing Systems. 2018 IEEE International Conference on Big Data (Big Data), 2393-2402. https://doi.org/10.1109/BigData.2018.8621918
Zuo, T., Wei, H., Chen, N., & Zhang, C. (2020). First-and-last mile solution via bicycling to improving transit accessibility and advancing transportation equity. Cities, 99, 102614. https://doi.org/10.1016/j.cities.2020.102614
王少谷. (2015). 公共自行車租用與都市土地使用型態關聯性之探討 國立成功大學]. 台南市. https://hdl.handle.net/11296/wm258z
張辰尉. (2016). 臺北市公共自行車站點需求分析之研究 國立政治大學]. 台北市. https://hdl.handle.net/11296/s2c4b9
羅先豪. (2020). 應用非負矩陣分解技術探討公共自行車使用之基本型態與租賃站點區位因素之影響 國立成功大學]. 台南市. https://hdl.handle.net/11296/wjug74