| 研究生: |
蔡依蓉 Tsai, I-Jung |
|---|---|
| 論文名稱: |
在阿基里斯腱給予振動刺激對於坐到站動作的影響 Effects of Achilles tendon vibration on sit-to-stand movement |
| 指導教授: |
林桑伊
Lin, Sang-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 物理治療學系 Department of Physical Therapy |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 本體感覺 、坐到站動作 、雙腳位置 |
| 外文關鍵詞: | foot placement, sit-to-stand, proprioceptive inputs |
| 相關次數: | 點閱:99 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景與目的:坐到站的動作過程中,雙腳擺放的位置對於動作表現有相當大的影響,而踝關節的本體感覺訊息可提供我們感知雙腳的位置。並且利用振動肌腱可活化第一型傳入纖維而產生錯誤的本體感覺,產生肌肉伸長的錯覺。因此,本研究主要探討藉由振動阿基里斯腱給予錯誤的本體感覺訊息對於坐到站動作的影響。方法:共收取25位健康年輕受試者,受試者需在沒有振動刺激 (no vibration, NV)、雙邊振動 (bilateral vibration, BV)、單邊振動,即慣用邊振動 (unilateral vibration, UV)情況下進行本體感覺測試,以及執行坐到站的動作。本體感覺測試的部份,受試者必須戴眼罩且手持一長棍,並在不同的情況下指出大腳趾最前方的位置。而坐到站測試時,受試者必須戴上眼罩、雙手抱胸,以自行選擇的速度站起。主要以動作分析系統及測力板紀錄肢體動作與反作用力情形。並分析在不同振動情況下,本體感覺測試結果,以及坐到站完成動作時間、離開椅面時間、軀幹肢段前傾的角度、最大瞬時速度、最大瞬時加速度,以及最大向上地面反作用力和足底壓力中心的移動特徵。統計方面則採用重複量數變異數分析,p值訂於0.05。結果:本體感覺測試發現雙邊振動的情況下,受試者所感覺雙腳位置比沒有振動和單邊振動時顯著向後,而單邊振動情況下與沒有振動無顯著差異。坐到站測試部份,在完成動作時間、軀幹肢段最大前傾角度以及最大向上反作用力方面、以及足底壓力中心最大前後方向移動距離方面,三種情況之間沒有差異。而雙邊振動和單邊振動都比沒有振動的情況提早離開椅面、有較大的軀幹前傾速度和加速度,最大向上反作用力的時間也較早。而雙邊振動的總移動軌跡和最大左右向距離小於單邊振動和沒有振動的情況,且單邊振動的情況下足底壓力中心偏向非振動邊的比例較高。結論:本篇利用雙邊振動刺激改變踝關節的本體感覺輸入來探討對於動作的影響,結果發現雙邊踝關節振動刺激不僅會造成受試者雙腳位置感覺的錯誤;在坐到站的過程中,會影響坐到站動作發生的時間點以及施力點的移動。而單邊踝關節振動雖不能使受試者產生振動邊足部位置改變的感覺,然而單邊踝關節的振動刺激會使足底壓力中心偏移至非振動邊,並可應用於中風病人臨床訓練上,以增強患側下肢的使用。
Background and purpose: Sit-to-stand movement is an important functional task in our daily life. Factors which would influence sit-to-stand movement are worth of investigation. Proprioceptive inputs from the ankle joint provide information regarding the foot placement, which is known to affect the sit-to-stand movement. Thus, the aim of this study was to investigate how additional proprioceptive inputs from bilateral sides and unilateral side of ankle joint affected the performance of sit-to-stand. Methods: 25 healthy young adults required to perform proprioceptive test and sit-to-stand test under 3 conditions: no vibration (NV), bilateral vibration (BV), and unilateral vibration (UV). Mechanical vibrators were placed on the Achilles tendons to induce erroneous proprioceptive inputs. In proprioceptive test, subjects with blindfold needed to point out the anterior site of big toe. In sit-to-stand test, subjects required to stand up with the blindfold and arms across the chest at their selected speeds. VICON system and force plate were used to collect performance of sit-to-stand. Results of proprioceptive test, and sit-to-stand characteristics including task duration, seat-off time, trunk inclination, maximum trunk segment forward velocity, maximum trunk segment forward acceleration, peak vertical ground reaction force, onset of peak vertical ground reaction force, and movement characteristics of center of pressure were used to analysis. Repeated measure ANOVA was used to compare the difference between three conditions. Significant level was p<0.05. Results: In proprioceptive test, subjects in BV showed erroneous sensation of foot placement which was posterior than real position. In sit-to-stand test, subjects in BV and UV showed earlier seat-off and onset of peak vertical ground reaction force than NV. BV and UV also show larger trunk inclination forward velocity and acceleration than NV. In addition, BV showed less COP trajectory and peak to peak range in medial-lateral direction than NV and UV. However, there was no significant difference between three conditions in task duration, trunk inclination forward displacement, and peak vertical ground reaction force. Conclusion: In this study, we found out vibration-induced erroneous proprioceptive inputs from bilateral ankle joints could cause illusory sensation of posterior foot placement. In addition, erroneous proprioceptive inputs from bilateral ankle joints could affect events onset and location of force application on sit-to-stand movement. On the other hand, though unilateral ankle joint vibration could not affect sensation of foot placement, it could modify the location of force application which shifted to the non-vibrated side on sit-to-stand. And we could apply the results on stroke patients to improve the use of affected-side lower limb.
1. Alberts JL, Saling M, Adler CH, Stelmach GE. Disruptions in the reach-to-grasp actions of Parkinson's patients. Exp Brain Res. 134(3):353-62, 2000.
2. Arborelius UP, Wretenberg P, Lindberg F. The effects of armrests and high seat heights on lower-limb joint load and muscular activity during sitting and rising. Ergonomics. 35(11):1377-1391, 1992.
3. Bagesteiro LB, Sarlegna FR, Sainburg RL. Differential influence of vision and proprioception on control of movement distance. Exp Brain Res. 171(3):358-370, 2006.
4. Blouin J, Vercher JL, Gauthier GM, Paillard J, Bard C, Lamarre Y. Perception of passive whole-body rotations in the absence of neck and body proprioception. J Neurophysiol. 74(5):2216-2219, 1995.
5. Brumagne S, Cordo P, Lysens R, Verschueren S, Swinnen S. The role of paraspinal muscle spindles in lumbosacral position sense in individuals with and without low back pain. Spine 25(8):989-994, 2000.
6. Brumagne S, Cordo P, Verschueren S. Proprioceptive weighting changes in persons with low back pain and elderly persons during upright standing. Neurosci Lett. 366(1): 63-66, 2004.
7. Brunt D, Greenberg B, Wankadia S, Trimble MA, Shechtman O. The effect of foot placement on sit to stand in healthy young subjects and patients with hemiplegia. Arch Phys Med Rehabil. 83(7):924-929, 2002.
8. Canning CG, Ada L, Johnson JJ, McWhirter S. Walking capacity in mild to moderate Parkinson's disease. Arch Phys Med Rehabil. 87(3):371-375, 2006.
9. Capaday C, Cooke JD. The effects of muscle vibration on the attainment of intended final position during voluntary human arm movements. Exp Brain Res. 42(2):228-230, 1981.
10. Carr J, Shepherd R. Neurological rehabilitation: optimizing motor performance. Butterworth-Heinemann, Oxford. pp72-79, 2002.
11. Cheng PT, Liaw MY, Wong MK, Tang FT, Lee MY, Lin PS. The sit-to-stand movement in stroke patients and its correlation with falling. Arch Phys Med Rehabil. 79(9):1043-1046, 1998.
12. Chou SW, Wong AM, Leong CP, Hong WS, Tang FT, Lin TH. Postural control during sit-to stand and gait in stroke patients. Am J Phys Med Rehabil. 82(1):42-47, 2003.
13. Cordo P, Carlton L, Bevan L, Carlton M, Kerr GK. Proprioceptive coordination of movement sequences: role of velocity and position information. J Neurophysiol. 71(5):1848-1861, 1994.
14. Cordo P, Gurfinkel VS, Bevan L, Kerr GK. Proprioceptive consequences of tendon vibration during movement. J Neurophysio. 74(4):1675-1688, 1995.
15. Courtine G, Pozzo T, Lucas B, Schieppati M. Continuous, bilateral Achilles' tendon vibration is not detrimental to human walk. Brain Research Bulletin. 55(1):107-115, 2001.
16. Cromwell RL, Newton RA, Forrest G. Head stability in older adults during walking with and without visual input. J Vestib Res. 11(2):105-114, 2001.
17. Diener HC, Dichgans J. On the role of vestibular, visual and somatosensory information for dynamic postural control in humans. Prog Brain Res. 76:253-262, 1988.
18. Eils E, Nolte S, Tewes M, Thorwesten L, Volker K, Rosenbaum D. Modified pressure distribution patterns in walking following reduction of plantar sensation. J Biomech. 35(10):1307-1313, 2002.
19. Eng JJ. Chu KS. Reliability and comparison of weight-bearing ability during standing tasks for individuals with chronic stroke. Arch Phy Med Rehabil. 83(8):1138-1144, 2002.
20. Garsden LR, Bullock-Saxton JE. Joint reposition sense in subjects with unilateral osteoarthritis of the knee. Clin Rehabil. ; 13(2): 148-155, 1999.
21. Gill TM, Williams CS, Tinetti ME. Assessing risk for the onset of functional dependence among older adults: the role of physical performance. J Am Geriatr Soc. 43(6):603-609, 1995.
22. Glasauer S, Amorim MA, Vitte E, Berthoz A. Goal-directed linear locomotion in normal and labyrinthine-defective subjects. Exp Brain Res. 98(2):323-335, 1994.
23. Goodwin GM, McCloskey DI, Matthews PB.The contribution of muscle afferents to kinaesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain. 95(4):705-748, 1972.
24. Hatzitaki V, Pavlou M, Bronstein AM. The integration of multiple proprioceptive information: effect of ankle tendon vibration on postural responses to platform tilt. Exp Brain Res. 154(3):345-354, 2004.
25. Hirschfeld H, Thorsteinsdottir M, Olsson E. Coordinated ground forces exerted by buttocks and feet are adequately programmed for weight transfer during sit-to-stand. J Neurophysiol. 82(6):3021-3029, 1999.
26. Hollands MA, Marple-Horvat DE. Visually guided stepping under conditions of step cycle-related denial of visual information. Exp Brain Res. 109(2):343-356, 1996.
27. Hughey LK, Fung J. Postural responses triggered by multidirectional leg lifts and surface tilts. Exp Brain Res. 165(2):152-166, 2005.
28. Ikeda ER, Schenkman ML, Riley PO, Hodge WA. Influence of age on dynamics of rising from a chair. Phys Ther. 71(6):473-481, 1991.
29. Imai S, Hase K, Imanaka K, Suzuki E, Tanaka N, Liu M. Motor strategies responsible for maintaining standing posture after deafferentation of the unilateral leg. Arch Phys Med Rehabil. 86(10):2027-2033, 2005.
30. Inglis JT, Frank JS. The effect of agonist/antagonist muscle vibration on human position sense. Exp Brain Res. 81(3):573-580, 1990.
31. Ivanenko YP, Grasso R, Lacquaniti F. Influence of leg muscle vibration on human walking. J Neurophysio. 84(4):1737-1747, 2000.
32. Kawagoe S, Tajima N, Chosa E. Biomechanical analysis of effects of foot placement with varying chair height on the motion of standing up. J Orthop Sci. 5(2):124-133, 2000.
33. Kerr KM, White JA, Barr DA, Mollan RA. Analysis of the sit-stand-sit movement cycle in normal subjects. Clin Biomech. 12(4):236-245, 1997.
34. Khemlani MM, Carr JH, Crosbie WJ. Muscle synergies and joint linkages in sit-to-stand under two initial foot positions. Clin Biomech. 14(4):236-246, 1999.
35. Kotake T, Dohi N, Kajiwara T, Sumi N, Koyama Y, Miura T. An analysis of sit-to-stand movements. Arch Phys Med Rehabil. 74(10):1095-1099, 1993.
36. Lindemann U, Claus H, Stuber M, Augat P, Muche R, Nikolaus T, et al. Measuring power during the sit-to-stand transfer. Eur J Appl Physiol. 89(5):466-470, 2003.
37. Lomaglio MJ, Eng JJ. Muscle strength and weight-bearing symmetry relate to sit-to-stand performance in individuals with stroke. Gait Posture. 22(2):126-131, 2005.
38. Lord SR, Murray SM, Chapman K, Munro B, Tiedemann A. Sit-to-stand performance depends on sensation, speed, balance, and psychological status in addition to strength in older people. J Gerontol A Biol Sci Med Sci. 57(8):M539-M543, 2002.
39. Mak MK, Levin O, Mizrahi J, Hui-Chan CW. Joint torques during sit-to-stand in healthy subjects and people with Parkinson's disease. Clin Biomech. 18(3):197-206, 2003.
40. Mathiyakom W, McNitt-Gray JL, Requejo P, Costa K. Modifying center of mass trajectory during sit-to-stand tasks redistributes the mechanical demand across the lower extremity joints. Clin Biomech. 20(1):105-111, 2005.
41. Menz HB, Morris ME, Lord SR. Foot and ankle characteristics associated with impaired balance and functional ability in older people. J Gerontol A Biol Sci Med Sci. 60(12):1546-1552, 2005.
42. Mergner T, Huber W, Becker W. Vestibular-neck interaction and transformation of sensory coordinates. J Vestib Res. 7(4):347-367, 1997.
43. Messier J, Adamovich S, Berkinblit M, Tunik E, Poizner H. Influence of movement speed on accuracy and coordination of reaching movements to memorized targets in three-dimensional space in a deafferented subject. Exp Brain Res. 150(4):399-416, 2003.
44. Millington PJ, Myklebust BM, Shambes GM. Biomechanical analysis of the sit-to-stand motion in elderly persons. Arch Phys Med Rehabil. 73(7):609-617, 1992.
45. Mourey F, Grishin A, d'Athis P, Pozzo T, Stapley P. Standing up from a chair as a dynamic equilibrium task: a comparison between young and elderly subjects. J Gerontol A Biol Sci Med Sci. 55(9):B425-B431, 2000.
46. Mourey F, Pozzo T, Rouhier-Marcer I, Didier JP. A kinematic comparison between elderly and young subjects standing up from and sitting down in a chair. Age Ageing. 27(2):137-146, 1998.
47. Pai YC, Rogers MW. Control of body mass transfer as a function of speed of ascent in sit-to-stand. Med Sci Sports Exerc. 22(3):378-384, 1990.
48. Pai YC, Rogers MW. Speed variation and resultant joint torques during sit-to-stand. Arch Phys Med Rehabil. 72(11):881-885, 1991.
49. Pang MY, Yang JF. The initiation of the swing phase in human infant stepping: importance of hip position and leg loading. J Physiol. 528( Pt 2):389-404, 2000.
50. Rosenbaum, David A. Human motor control. In Ch2: physiological foundations. Academic Press, San Diego, pp36-58, 1991.
51. Rothwell J. Control of human voluntary movement. In Ch4: Proprioceptors in muscles, joints and skin. Chapman & Hall. London, pp86-117, 1994.
52. Roy G, Nadeau S, Gravel D, Malouin F, McFadyen BJ, Piotte F. The effect of foot position and chair height on the asymmetry of vertical forces during sit-to-stand and stand-to-sit tasks in individuals with hemiparesis. Clin Biomech. 21(6):585-593, 2006.
53. Schenkman M, Berger RA, Riley PO, Mann RW, Hodge WA. Whole-body movements during rising to standing from sitting. Phys Ther. 70(10):638-648, 1990.
54. Schenkman M, Riley PO, Pieper C. Sit to stand from progressively lower seat heights -- alterations in angular velocity. Clin Biomech. 11(3):153-158, 1996.
55. Schuldt K, Ekholm J, Nemeth G, Arborelius UP, Harms-Ringdahl K. Knee load and muscle activity during exercises in rising. Scand J Rehabil Med (Suppl. 9):174-188, 1983.
56. Shepherd RB, Koh HP. Some biomechanical consequences of varying foot placement in sit-to-stand in young women. Scan J Rehabil Med. 28(2):79-88, 1996.
57. Shumway-Cook A, Woollacott MH. Motor control: theory and practical applications. In Ch3: Physiology of motor control. In Ch12: Control of normal mobility. 2nd Ed, Lippincott Williams & Wilkins, Philadelphia. pp50-89, pp330-333, 2001.
58. Stevens C, Bojsen-Moller F, Soames RW. The influence of initial posture on the sit-to-stand movement. Eur J Appl Physiol Occup Physiol. 58(7):687-692, 1989.
59. Tsutsumi T, Inaoka H, Fukuoka Y, Ishida A, Kitamura K. Contribution of the vestibular apparatus to postural control when rising from a chair. Acta Otolaryngol. 123(9):1054-1059, 2003.
60. Tsutsumi T, Nozawa M, Inaoka H, Fukuoka Y, Ishida A, Kitamura K. Time course analysis of angular control of the body and head while rising from a chair. Acta Otolaryngol. 124(7):798-802, 2004.
61. van der Esch M, Steultjens M, Harlaar J, Knol D, Lems W, Dekker J. Joint proprioception, muscle strength, and functional ability in patients with osteoarthritis of the knee. Arthritis Rheum. 57(5):787-793, 2007.
62. van Deursen RW, Simoneau GG. Foot and ankle sensory neuropathy, proprioception, and postural stability. J Orthop Sports Phys Ther. 29(2):718-726, 1999.
63. Vander Linden DW. Brunt D. McCulloch MU. Variant and invariant characteristics of the sit-to-stand task in healthy elderly adults. Arch Physi Med Rehabil. 75(6):653-60, 1994.
64. Verschueren SM, Swinnen SP, Desloovere K, Duysens J. Effects of tendon vibration on the spatiotemporal characteristics of human locomotion. Experimental Brain Research. 143(2):231-239, 2002.
65. Verschueren SM, Swinnen SP, Desloovere K, Duysens J. Vibration-induced changes in EMG during human locomotion. Journal of Neurophysiology. 89(3):1299-1307, 2003.
66. Wang Y, Zatsiorsky VM, Latash ML. Muscle synergies involved in shifting the center of pressure while making a first step. Exp Brain Res. 167(2):196-210, 2005.
67. Wierzbicka MM, Gilhodes JC, Roll JP. Vibration-induced postural posteffects. Journal of Neurophysiology. 79(1):143-150, 1998.
68. Yamada T, Demura S. Influence of the relative difference in chair seat height according to different lower thigh length on floor reaction force and lower-limb strength during sit-to-stand movement. J Physiol Anthropol Appl Human Sci. 23(6):197-203, 2004.
69. Zackowski KM, Thach WT, Jr., Bastian AJ. Cerebellar subjects show impaired coupling of reach and grasp movements. Exp Brain Res. 146(4):511-522, 2002.