| 研究生: |
紀省帆 Ji, Sheng-Fan |
|---|---|
| 論文名稱: |
微薄板自捲曲變形與組裝應用研究 Development of Self-rolling Heterostructure Theory for Micro-device Self-assembly |
| 指導教授: |
賴新一
Lai, Hsin-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 144 |
| 中文關鍵詞: | 自組裝 、自捲曲薄板 |
| 外文關鍵詞: | Self-assembly, Self-rolling Heterostructure |
| 相關次數: | 點閱:87 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
異質薄膜組成之自捲曲薄板結構可廣泛應用在機械、光電、生醫等領域的微元件,如微光學量測系統中的鏡面可藉由自捲薄板定位其仰角,以免除人工架設的繁瑣;而以自捲薄板組裝適宜尺寸之微型籠狀元件攫取細胞或微生物,可避免傳統微鑷鉗致動器抓取不當造成之破壞。若能有效預測而掌握自捲薄板的曲率與外型,將對設計研發微元件大有裨益。目前,薄板自捲曲的作動機制尚不明確,以往分析對於內部因素諸如晶格常數變化量、介面差排發生、不匹配應變等因素著墨不多。建構一套整體性理論,以利自捲曲薄板在微元件上的應用,乃刻不容緩的要務。薄板自捲曲組裝微元件的研究,傳統多以實作為導向並搭配經驗公式進行探討,耗時且不經濟,缺乏一套完整的模擬分析與設計程序。因此,建立系統性的理論模型、模擬方法,以及設計流程,為一極具研究價值的要務。
本研究首先根據自組裝微元件的尺度與功能,建構出考量尺寸、材料等控制變因的設計方針,並規劃薄板內應力估算方法與電腦模擬的流程。接著推估不匹配參數、臨界層厚度等控制因素,建立不匹配應變理論,並考慮製程高溫,推算薄板殘留應力分佈值,包含晶格錯位應力與溫差造成的殘留熱應力。另外在加入薄膜缺陷殘留應力的考慮,整合為自捲薄板內建殘留應力估算模型。再來以估算的殘留應力為負載條件,並考量自捲薄板的幾何非線性變形,建立有限元素模型之電腦化模擬系統,求得薄板變形曲率,並且比對模擬結果與文獻資料以及探討誤差來源。驗證理論模型與電腦化模擬系統的正確性與可行性後,深入分析製程溫度與晶格錯位各控制變因之間的影響程度,和自捲薄板尺寸、材料組合對其彎曲變形之關係。了解各參數與曲率間的定量關係後,有助於調整薄板彎曲程度。最後提出微元件設計流程,以進行在微鏡面仰角定位與特定微攫取元件結構之設計的應用。
經由本文的研究中可發現,晶格錯位造成的殘留應力佔有總應力極大的比例,藉由溫度的設定,可有效調控晶格錯位的相關影響參數,進而掌握薄板自捲曲率的微量變化。另外,不同材料組合成的薄板,由於其晶格常數大相逕庭,可搭配出不同的晶格錯位程度,亦可有效控制自捲薄板的彎曲程度。在薄板的尺寸設計方面,本研究發現長寬的影響甚微,而薄板厚度與薄膜厚度比的設定,對薄板曲率的影響甚鉅,可藉此設計出不同彎曲程度的彎曲結構。藉由此理論模型與模擬系統的提出,可提供設計上一個有效的指引。藉由微鏡面仰角定位與微攫取元件結構設計的兩項應用,證實本文理論模型與設計流程可有效率地求得符合設計需求的控制參數,也驗證本文所提理論模型與設計流程具有實用性。
Abstract
Multilayer structures are widely used in microelectronics, optics, and other engineering areas. Recently developed three-dimensional micro- and nanostructures take advantages of self-scrolling phenomenon of multilayer epitaxial with lattice mismatch. Some typical devices are fabricated in an integrated procedure by combining the deposition and the forming processes. In order not to use the method of trial and error, a method that can predict the final shape of self-scrolling structures is usually preferred. Both analytical and numerical solutions are generally used. However, these solutions obtained by traditional methods have limited applicability only for narrow strip structures. The required precision is in general not good enough for small scales. For this reason, the goal of this work is to develop a theoretical model comprising all inner factors, and to build a computerized simulation system for small scale structures. By using the derived model, the influence of various geometrical factors, fabricating temperatures, and different materials of the self-scrolling sheet on system responses can be precisely predicted.
In the model formulation process, the lattice variations for various temperature settings are taken into consideration. The degree of lattice mismatch between hetero-materials inside the sheet by misfit strain is evaluated. In addition, the value of critical layer thickness is estimated and used to revise the misfit strain. The outer, inner, and thermal residual stresses are computed and fed into a stress computing process. Afterward, the finite element model is constructed and the load conditions are given to perform stress computation. The comprehensive model for predicting the curvature of self-scrolling sheet is finally derived. The computed results obtained by using the proposed simulation system are utilized to compare with experimental data in literature. It is found that the results of the present model agree well with those given in the literature.
Once the accuracy of the computer simulation system ensured, the influence of various system parameters and curvature magnitudes caused by various sheet dimensions and materials are studied. Major factors that affect the curvature include sheet thickness, material types, and temperature settings are investigated. A design procedure based on the aforementioned study between the inner factors and self-scrolling curvatures are proposed and used for design study. A design example is given to illustrate that the procedure presented in this thesis can be used by the designer for the estimation of the scrolling type and curvature of a designated sheet characteristic. The method can also be used to provide a clear direction for further design studies.
參考文獻
1. Ansel, C.U, and Saul, K.F., Advanced Strength and Applied Elasticity, Prantice Hall, New Jersey, 2003.
2. Blackly, J.M., Sruface Physics of Materials, Academic Press, New York, 1975.
3. Deneke, C., Müller, C., Jin-Phillipp, N.Y., and Shmidt, O.G., “Diameter Scalability of Rolled-up In(Ga)As/GaAs Nanotubes” Semiconductor Science and Technology, Vol. 17, pp.1278-1281, 2002.
4. Doerner, M. F., and Nix, W. D., “Stresses and Deformation Processes in Thin Films on Substrates,”CRC Critical Review in Solid State and Materials Science, Vol. 14, pp. 225, 1988.
5. Freund, L.B., Floro, J.A., and Chason, E., “Extensions of The Stoney Formula for Substrate Curvature to Configurations with Thin Substrates or Large Deformations,” Applied Physics Letters, Vol. 74, No.8, pp. 1987-1989. 1999
6. Goodman, C.H.L., Crystal Growth, Plenum, New York, 1978.
7. Herman, M.A., and Sitter H., Molecular Beam Epitaxy, Springer, Berlin, 1996.
8. Hsueh, C.H., “Modeling of Elastic Deformation of Multilayers Due To Residual Stresses and External Bending,” Journal of Applied Physics, Vol. 91, No. 12, pp. 9652-9656, 2002.
9. Jain, S.C., Willander, M., and Maes H., “Stresses and Strains in Epilayers, Stripes and Quantum Structures of Ⅲ-ⅤCompound Semiconductors,” Semiconductor Science Technology, Vol. 11, pp. 641-671, 1996.
10. Keunjoo, K., and Young, H.L, “Temperature-dependent Critical Layer Thickness for Strained-layer Heterostructures,” Applied Physics Letters, Vol. 67, No. 15, pp. 2212-214. 1995.
11. Maciej, D., and Wlodzimierz, N., “Thermal and Molecular Stresses in Multi-layered Structures of Nitride Devices,” Semiconductor Science Technology, Vol. 18, pp.733-737, 2003.
12. Nakajima, K., “Calculation of Stresses in GaAs/Si strained heterostructures,” Journal of Crystal Growth, Vol.121, pp. 278-296, 1991
13. Nakajima, K., “Calculation of Stresses in InGaAs/InP Strained Multilayer Heterostructures,” Journal of Applied Physics, Vol.72, No.11, pp. 5213-5219, 1992.
14. Nash, L.K., Elements of Classical and Statistical Thermodynamics, Addison-Wesley, Reading Mass., 1970.
15. Nikishkov, G.P., “Curvature Estimation for multiplayer Hinged Structures With Initial trains,” Journal of Applied Physics, Vol. 94, No. 8, pp. 5333-5336, 2003.
16. Nikishkov, G.P., Khmyreva, I., and Ryzhii, V., “Finite Element Analysis of Self-positioning Microstructure and Nanostructures,” Nanotechnology, Vol. 14, pp. 820-820, 2003.
17. Prinz, V.Y., “A New Concept in Fabrication Building Blocks for Nanoelectornic and Nanomechanic Devices,” Microelectronix Engineering, Vol. 69, pp. 466-475, 2003.
18. Prinz, V.Y., Chekhovskiy, A.V., Preobrazhenskii, V.V., Semyagin, B.R., and Gutakovsky, A.K., “A Technique for Fabrication InGaAs/GaAs Nanotubes of Precisely Controlled Lengths,” Nanotechnology, Vol. 13, pp. 231-233, 2003.
19. Prinz, V.Y., Seleznev, V.A., and Gutakovsky, A.K., “Novel Technique for Fabrication of One- and Two-dimensional Systems,” Surface Science, Vol. 361, pp. 886-889, 1996.
20. Prinzn, V.Y., “New Ultra-precise Semiconductor and Metal Nanostructures: Tubes, Shells and Their Order Array,” Nanotechnology, Vol. 1, pp.199-204, 2003.
21. Reddy, J.N., An Introduction to the Finite Element Method, Mcgraw-hill, New York, 1993.
22. Schmidt, O.G., and Eberl K., “Thin Solid Films Roll Up into Nanotubes,” Nature, Vol. 410, pp. 168, 2001.
23. Schmidt, O.G., Deneke, C., Manz, Y.M., and Muller, C., “Semionductor Tubes, Rods and Rings of Nanometer and Micrometer Dimension,” Physica E, Vol. 10, pp. 969-973, 2002.
24. Sudao Adachi, GaAs and Related Material: Bulk Semiconducting and Superlattice Properties, Workd Scientific, Singapore, 1994.
25. Townsend, P.H., and Branett, D.M., “Elastic Relationships in Layered Composite Media with Approximation for The Case of Thin Films on A Thick Substrate.” Journal of Applied Physics, Vol.62. No.11, pp. 4428-4443, 1987.
26. Tsui, Y.C., and Clyne, T.W., “Analytical Model for Prediting Residual Stresses in Progressively Deposited Coatings Part 1: Planar Geometry,” Thin Solid Films, Vol. 306, pp. 23-33, 1997.
27. Vaccaro, P.O., Kubota, K., and Aida, T., “Strain-driven self-positioning of micromachined structures,” Applied Physics Letters, Vol. 78, No. 9, pp.2852-2855, 2001.
28. Vaccaro, P.O., Kubota, K., Fleischmann, T., Saravanan, S., and Aida, T., “Valley-fold and Mountain-fold in The Micro-origami technique,” Microelectronics Journal, Vol. 34, pp.447-449, 2003.
29. Volovik, B.V., Kovsh, A.R., Passenberg, W., Kuenzel, H., Grote, N., Cherkashin, N.A., Musikhin, Y.G., Ledentsov, N.N., Binberg, D., and Ustinov. V.M., “Optical and Structural Properties of Self-organized InGaAsN/GaAs Nanostructures,” Semiconductor Science and Technology, Vol. 16, pp. 186-190, 2001.
30. Vorob’ev, A.B., and Prinz, V.Y., “Directional rolling of strained heterofilms,” Semiconductor Science and Technology, Vol. 17, pp. 614-616, 2002.
31. Vorob’ev, A.B., Prinz, V., Preobrazhenskii, V., and Semyagin, B., “Free-Standing InAs/InGaAs Microtubes and Microspirals on InAs (100),” Japanese Journal of Applied Physics, Vol. 42, pp. L7-L9, 2003.
32. Wu, H.C., and Chen, T.C., “Stress and Deflection in GaAs/Si Layered Heterostructures by improved laminate theory.” Journal of Crystral Growth, Vol. 186, pp. 517-581, 1997.
33. 丁關海, 彈性力學理論, 復興書局, 台北市, 1973.
34. 山田嘉昭, 非線性有限元素基礎, 亞東書局, 台北市, 1985.
35. 余樹楨,晶體之結構與性質,渤海堂文化公司,台北市,2000.
36. 李秉傑, “分子束磊晶成長技術,” 科儀新知, 13卷, 4期, pp.26-39, 1992.
37. 洪慶章, ANSYS教學範例, 夸克工作室, 台北市, 2001.
38. 莊達人, VLSI製造技術, 高立圖書有限公司, 台北縣, 1995.
39. 黃忠良,新設計觀念與實際-工程與機械, 復漢出版社, 台南市,1994.
40. 錢偉長, 彈性力學, 亞東書局, 台北市, 1987.
41. 薛增泉, 薄膜物理, 電子工業出版社, 北京市, 1991.