| 研究生: |
蔡宜臻 Tsai, Yi-Jen |
|---|---|
| 論文名稱: |
陽離子型星狀聚胺酸接枝天然醛類作為潛在的基因傳遞載體及抗癌藥物 Cationic Star-shaped Polypeptides Grafted with Natural Aldehydes as Promising Gene Delivery Vectors and Anticancer Drugs |
| 指導教授: |
詹正雄
Jan, Jeng-Shiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 星狀聚胺酸 、賴胺酸 、天然醛類 、基因傳遞載體 、基因傳遞載體 |
| 外文關鍵詞: | Star-shaped polypeptides, poly(L-lysine), natural aldehydes, gene delivery vectors, anticancer agents |
| 相關次數: | 點閱:33 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以 Polyglycerol dendrimer (PGD) 代數二 (G2) 和代數三 (G3) 作為起始劑,
與 Z-L-Lysine (ZLL) NCAs 進行開環聚合反應,在去除保護基後,成功合成十二枝
化、二十四枝化的星狀聚賴胺酸 (Poly(L-lysine), PLL),進一步在側鏈接枝肉桂醛、
香蘭醛和茴香醛三種天然醛類疏水性官能基,鑑定分析聚胺酸之平均聚合度、接枝
比和分子量,設計一系列不同特性的陽離子型星狀聚胺酸,應用於基因之傳遞載體
和抗癌藥物。由體外細胞實驗中,可以知道雖然接枝疏水基團能增加細胞對載體的
攝取率,卻也發現其導致的溶血率和細胞毒性相對較高。基因傳遞載體的應用中,
將帶正電的星狀聚胺酸與帶負電的環狀的去氧核醣核酸,經由靜電作用力進行穩定
複合,同時還分析複合物的粒徑大小和形態,並透過載體將環狀的去氧核醣核酸送
入細胞內進行表達,得知星狀聚賴胺酸在接枝醛基後能顯著的提升轉染效率,尤其
於接枝香蘭醛中的轉染效率為最高。其次,在陽離子型星狀聚胺酸作為抗癌藥物的
應用中,研究透過傷口癒合性試驗分析星狀聚胺酸對癌細胞的遷移率,篩選出星狀
聚賴胺酸接枝香蘭醛可對癌細胞的遷移具有最高的抑制效果,進一步由光學影像觀
察癌細胞凋亡時的外觀變化,發現聚胺酸上之陽離子可選擇性的破壞癌細胞膜,使
癌細胞通透性增加,造成細胞腫脹,同時也利用螢光染色的方式分析癌細胞凋亡時
出現的細胞膜不連續、碎裂與染色質凝聚,當癌細胞在星狀聚賴胺酸接枝香蘭醛中
作用一小時,即可誘導胱天蛋白酶-3、-9 活化,引發癌細胞凋亡。綜上所述,星狀
聚賴胺酸在接枝香蘭醛後,期望可以作為潛在的新型合成性基因載體,或作為單一
的抗癌性藥物,運用於未來生物醫學領域中。
Polyglycerol dendrimer generation two and generation three (PGD G2 and PGD G3) were used to serve as initiators to synthesize 12-armed and 24-armed star-shaped poly(L-lysine) (G2-PLL and G3-PLL) via ring opening polymerization (ROP). Three different natural aldehydes which were cinnamaldehyde (CA), vanillin (VA) and 4-methoxybezaldehyde (MA) respectively were grafted on PLL. Average polymerization and grafted efficiency of polypeptides were identified and calculated by nuclear magnetic resonance spectroscopy (NMR) and gel permeation chromatography (GPC). A series cationic star-shaped polypeptides were successfully designed to evaluate the gene delivery vectors and anticancer agent application. As we know, hydrophobic group can promote cellular uptake, however, it will cause hemolysis and cytotoxicity in vitro. Cationic polypeptides served as gene delivery vectors were able to form stable complexes with deoxyribonucleic acid plasmids (pDNA). Delivery of pDNA into cells through a vector significantly elevated transfection efficiency when PLL grafted with aldehyde group, especially in G3-PLL9-g-VA0.25. Polypeptides serve as anticancer agents to inhibit migration of cancer cells, and it was found that G3-PLL9-gVA0.25 have the highest efficiency. Cationic polypeptides have ability to increase the permeability of the cancer cells and cause the cells swelling. G3-PLL9-g-VA0.25 caused cancer cell membrane discontinuity and fragmentation, besides, it also led to chromatin condensation, and induce apoptosis by activating caspase-3 and caspase-9. Above all, G3-PLL9-g-VA0.25 can be a potential gene vectors and anticancer agents applied in biomedical field in the future.
(1) Rebecca L. Siegel, MPH; Kimberly D. Miller, MPH; Hannah E. Fuchs, BS; Ahmedin Jemal, DVM, P.Cancer statistics, 2022. 2022, 72, 7–33.
(2) Tang, J.; Cai, L.; Xu, C.; Sun, S.; Liu, Y.; Rosenecker, J.; Guan, S.Nanotechnologies in Delivery of DNA and mRNA Vaccines to the Nasal and Pulmonary Mucosa. Nanomaterials 2022, 12 (2), 226.
(3) Montaño-Samaniego, M.; Bravo-Estupiñan, D. M.; Méndez-Guerrero, O.; Alarcón-Hernández, E.; Ibáñez-Hernández, M.Strategies for Targeting Gene Therapy in Cancer Cells With Tumor-Specific Promoters. Frontiers in Oncology. 2020.
(4) Somvanshi, P.; Khisty, S.Peptide-based DNA delivery system. Med. Nov. Technol. Devices 2021, 11, 100091.
(5) Chen, J.; Guan, X.; Hu, Y.; Tian, H.; Chen, X.Peptide-Based and Polypeptide-Based Gene Delivery Systems. Top. Curr. Chem. 2017, 375 (2), 1–28.
(6) Yavari, B.; Mahjub, R.; Saidijam, M.; Raigani, M.; Soleimani, M.The Potential Use of Peptides in Cancer Treatment. Curr. Protein Pept. Sci. 2018, 19 (8), 759–770.
(7) Muttenthaler, M.; King, G. F.; Adams, D. J.; Alewood, P. F.Trends in peptide drug discovery. Nat. Rev. Drug Discov. 2021 204 2021, 20 (4), 309–325.
(8) Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C.Therapeutic peptides: current applications and future directions. Signal Transduct. Target. Ther. 2022, 7 (1).
(9) Fus-Kujawa, A.; Prus, P.; Bajdak-Rusinek, K.; Teper, P.; Gawron, K.; Kowalczuk, A.; Sieron, A. L.An Overview of Methods and Tools for Transfection of Eukaryotic Cells in vitro. Front. Bioeng. Biotechnol. 2021, 9, 634.
(10) Khanna, P.Cellular microinjection for therapeutic and research applications. In MEMS for Biomedical Applications; Elsevier, 2012; o 432–448.
(11) O’Brien, J. A.; Lummis, S. C. R.Nano-biolistics: a method of biolistic transfection of cells and tissues using a gene gun with novel nanometer-sized projectiles. BMC Biotechnol. 2011, 11, 66.
(12) Li, S.Electroporation Gene Therapy: New Developments In Vivo and In Vitro. Curr. Gene Ther. 2004, 4 (3), 309–316.
(13) Kumar, P.; Nagarajan, A.; Uchil, P. D.Transfection of Mammalian Cells with Calcium Phosphate–DNA Coprecipitates. Cold Spring Harb. Protoc. 2019, 2019 (10).
(14) Huang, R.-Y.; Liu, Z.-H.; Weng, W.-H.; Chang, C.-W.Magnetic nanocomplexes for gene delivery applications. J. Mater. Chem. B 2021, 9 (21), 4267–4286.
(15) Vanaparthy, R.; Mohan, G.; Vasireddy, D.; Atluri, P.Review of COVID-19 viral vector-based vaccines and COVID-19 variants. Le Infez. Med. 2021, 29 (3), 328.
(16) Stone, D.Novel Viral Vector Systems for Gene Therapy. Viruses 2010, 2 (4), 1002.
(17) Albuquerque, T.; Faria, R.; Sousa, Â.; Neves, A. R.; Queiroz, J. A.; Costa, D.Polymer-peptide ternary systems as a tool to improve the properties of plasmid DNA vectors in gene delivery. J. Mol. Liq. 2020, 309.
(18) Mendes, L. P.; Pan, J.; Torchilin, V. P.Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 2017, 22 (9), 1–21.
(19) Wu, J.; Huang, W.; He, Z.Dendrimers as carriers for siRNA delivery and gene silencing: A review. Sci. World J. 2013, 2013.
(20) Dufès, C.; Uchegbu, I. F.; Schätzlein, A. G.Dendrimers in gene delivery. Adv. Drug Deliv. Rev. 2005, 57 (15), 2177–2202.
(21) Tornesello, A. L.; Borrelli, A.; Buonaguro, L.; Buonaguro, F. M.; Tornesello, M. L.Antimicrobial Peptides as Anticancer Agents: Functional Properties and Biological Activities. Molecules 2020, 25 (12).
(22) Tan, J.; Tay, J.; Hedrick, J.; Yang, Y. Y.Synthetic macromolecules as therapeutics that overcome resistance in cancer and microbial infection. Biomaterials 2020, 252, 120078.
(23) Schweizer, F.Cationic amphiphilic peptides with cancer-selective toxicity. Eur. J. Pharmacol. 2009, 625 (1–3), 190–194.
(24) Elmore, S.Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007, 35 (4), 495–516.
(25) Li, J.; Yuan, J.Caspases in apoptosis and beyond. Oncogene 2008 2748 2008, 27 (48), 6194–6206.
(26) Brentnall, M.; Rodriguez-Menocal, L.; DeGuevara, R. L.; Cepero, E.; Boise, L. H.Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 2013, 14 (1), 1–9.
(27) Santos, A.; Veiga, F.; Figueiras, A.Dendrimers as Pharmaceutical Excipients: Synthesis, Properties, Toxicity and Biomedical Applications. Materials (Basel). 2019, 13 (1), 65.
(28) Chaplot, S. P.; Rupenthal, I. D.Dendrimers for gene delivery - A potential approach for ocular therapy? J. Pharm. Pharmacol. 2014, 66 (4), 542–556.
(29) Barman, S. R.; Nain, A.; Jain, S.; Punjabi, N.; Mukherji, S.; Satija, J.Dendrimer as a multifunctional capping agent for metal nanoparticles for use in bioimaging, drug delivery and sensor applications. J. Mater. Chem. B 2018, 6, 2368.
(30) Yang, D. P.; Oo, M. N. N. L.; Deen, G. R.; Li, Z.; Loh, X. J.Nano-Star-Shaped Polymers for Drug Delivery Applications. Macromol. Rapid Commun. 2017, 38 (21), 1700410.
(31) Byrne, M.; Victory, D.; Hibbitts, A.; Lanigan, M.; Heise, A.; Cryan, S.-A.Molecular weight and architectural dependence of well-defined star-shaped poly(lysine) as a gene delivery vector. Biomater. Sci. 2013, 1 (12), 1223.
(32) Liu, Y.; Yin, L.α-Amino acid N-carboxyanhydride (NCA)-derived synthetic polypeptides for nucleic acids delivery. Adv. Drug Deliv. Rev. 2021, 171, 139–163.
(33) Tsai, Y. L.; Tseng, Y. C.; Chen, Y. M.; Wen, T. C.; Jan, J. S.Zwitterionic polypeptides bearing carboxybetaine and sulfobetaine: Synthesis, self-assembly, and their interactions with proteins. Polym. Chem. 2018.
(34) Mishra, A.; Gordon, V. D.; Yang, L.; Coridan, R.; Wong, G. C. L.HIV TAT forms pores in membranes by inducing saddle-splay curvature: Potential role of bidentate hydrogen bonding. Angew. Chemie - Int. Ed. 2008, 47 (16), 2986–2989.
(35) Meloni, B. P.; Mastaglia, F. L.; Knuckey, N. W.Cationic arginine-rich peptides (Carps): A novel class of neuroprotective agents with a multimodal mechanism of action. Front. Neurol. 2020, 11, 1–28.
(36) Mishra, A.; Lai, G. H.; Schmidt, N. W.; Sun, V. Z.; Rodriguez, A. R.; Tong, R.; Tang, L.; Cheng, J.; Deming, T. J.; Kamei, D. T.; Wong, G. C. L.Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (41), 16883–16888.
(37) Zhou, Y.; Han, S.; Liang, Z.; Zhao, M.; Liu, G.; Wu, J.Progress in arginine-based gene delivery systems. J. Mater. Chem. B 2020, 8 (26), 5564–5577.
(38) Luo, K.; Li, C.; Li, L.; She, W.; Wang, G.; Gu, Z.Arginine functionalized peptide dendrimers as potential gene delivery vehicles. Biomaterials 2012, 33 (19), 4917–4927.
(39) Gorzkiewicz, M.; Kopeć, O.; Janaszewska, A.; Konopka, M.; Pędziwiatr-Werbicka, E.; Tarasenko, I. I.; Bezrodnyi, V.V.; Neelov, I. M.; Klajnert-Maculewicz, B.Poly(lysine) Dendrimers Form Complexes with siRNA and Provide Its Efficient Uptake by Myeloid Cells: Model Studies for Therapeutic Nucleic Acid Delivery. Int. J. Mol. Sci. 2020, 21 (9), 3138.
(40) Ma, D.; Liu, Z. H.; Zheng, Q. Q.; Zhou, X. Y.; Zhang, Y.; Shi, Y. F.; Lin, J. T.; Xue, W.Star-shaped polymer consisting of a porphyrin core and poly(L-lysine) dendron arms: Synthesis, drug delivery, and in vitro chemo/photodynamic therapy. Macromol. Rapid Commun. 2013, 34 (6), 548–552.
(41) Ma, D.; Lin, Q.-M.; Zhang, L.-M.; Liang, Y.-Y.; Xue, W.A star-shaped porphyrin-arginine functionalized poly(l-lysine) copolymer for photo-enhanced drug and gene co-delivery. Biomaterials 2014, 35 (14), 4357–4367.
(42) Lin, Q.; Yang, Y.; Hu, Q.; Guo, Z.; Liu, T.; Xu, J.; Wu, J.; Kirk, T. B.; Ma, D.; Xue, W.Injectable supramolecular hydrogel formed from α-cyclodextrin and PEGylated arginine-functionalized poly(l-lysine) dendron for sustained MMP-9 shRNA plasmid delivery. Acta Biomater. 2017, 49, 456–471.
(43) Guidotti, G.; Brambilla, L.; Rossi, D.Cell-Penetrating Peptides: From Basic Research to Clinics. Trends Pharmacol. Sci. 2017, 38 (4), 406–424.
(44) Wang, F.; Wang, Y.; Wang, H.; Shao, N.; Chen, Y.; Cheng, Y.Synergistic effect of amino acids modified on dendrimer surface in gene delivery. Biomaterials 2014.
(45) Zeng, H.; Little, H. C.; Tiambeng, T. N.; Williams, G. A.; Guan, Z.Multifunctional dendronized peptide polymer platform for safe and effective siRNA delivery. J. Am. Chem. Soc. 2013, 135 (13), 4962–4965.
(46) Jones, A. T.; Sayers, E. J.Cell entry of cell penetrating peptides: tales of tails wagging dogs. J. Control. Release 2012, 161 (2), 582–591.
(47) McErlean, E. M.; Ziminska, M.; McCrudden, C. M.; McBride, J. W.; Loughran, S. P.; Cole, G.; Mulholland, E. J.; Kett, V.; Buckley, N. E.; Robson, T.; Dunne, N. J.; McCarthy, H. O.Rational design and characterisation of a linear cell penetrating peptide for non-viral gene delivery. J. Control. Release 2021, 330, 1288–1299.
(48) Trinidad-Calderón, P. A.; Varela-Chinchilla, C. D.; García-Lara, S.Natural Peptides Inducing Cancer Cell Death: Mechanisms and Properties of Specific Candidates for Cancer Therapeutics. Molecules 2021, 26 (24).
(49) Schaduangrat, N.; Nantasenamat, C.; Prachayasittikul, V.; Shoombuatong, W.ACPred: A Computational Tool for the Prediction and Analysis of Anticancer Peptides. Molecules 2019, 24 (10), 1973.
(50) Hwang, J. S.; Kim, S. G.; Shin, T. H.; Jang, Y. E.; Kwon, D. H.; Lee, G.Development of Anticancer Peptides Using Artificial Intelligence and Combinational Therapy for Cancer Therapeutics. Pharmaceutics 2022, 14 (5), 997.
(51) Liu, X.; Cao, R.; Wang, S.; Jia, J.; Fei, H.Amphipathicity Determines Different Cytotoxic Mechanisms of Lysine- or Arginine-Rich Cationic Hydrophobic Peptides in Cancer Cells. J. Med. Chem. 2016, 59 (11), 5238–5247.
(52) Chen, Y. F.; Chang, C. H.; Hsu, M. W.; Chang, H. M.; Chen, Y. C.; Jiang, Y. S.; Jan, J. S.Peptide Fibrillar Assemblies Exhibit Membranolytic Effects and Antimetastatic Activity on Lung Cancer Cells. Biomacromolecules 2020.
(53) Chen, Y.-F.; Shiau, A.-L.; Chang, S.-J.; Fan, N.-S.; Wang, C.-T.; Wu, C.-L.; Jan, J.-S.One-dimensional poly(L-lysine)-block-poly(L-threonine) assemblies exhibit potent anticancer activity by enhancing membranolysis. Acta Biomater. 2017, 55, 283–295.
(54) Bootorabi, F.; Jänis, J.; Valjakka, J.; Isoniemi, S.; Vainiotalo, P.; Vullo, D.; Supuran, C. T.; Waheed, A.; Sly, W. S.; Niemelä, O.; Parkkila, S.Modification of carbonic anhydrase II with acetaldehyde, the first metabolite of ethanol, leads to decreased enzyme activity. BMC Biochem. 2008, 9 (1).
(55) Attenuated total reflectance FTIR. https://www.rightek.com.tw/product_detail.php?id=167
(56) Bonduelle, C.Secondary structures of synthetic polypeptide polymers. Polym. Chem. 2018, 9 (13), 1517–1529.
(57) Blanco, M. J.; Learte, A. I. R.; Marchena, M. A.; Muñoz-Sáez, E.; Cid, M. A.; Rodríguez-Martín, I.; Sánchez-Camacho, C.Tracing gene expression through detection of β-galactosidase activity in whole mouse embryos. J. Vis. Exp. 2018, 2018 (136).
(58) Abou-Ghali, M.; Stiban, J.Regulation of ceramide channel formation and disassembly: Insights on the initiation of apoptosis. Saudi J. Biol. Sci. 2015, 22 (6), 760–772.
(59) Chan, B. A.; Xuan, S.; Horton, M.; Zhang, D.1,1,3,3-Tetramethylguanidine-Promoted Ring-Opening Polymerization of N -Butyl N -Carboxyanhydride Using Alcohol Initiators. Macromolecules 2016, 49 (6), 2002–2012.
(60) Dove, A. P.Organic catalysis for ring-opening polymerization. ACS Macro Lett. 2012, 1 (12), 1409–1412.
(61) Izawa, H.; Kinai, M.; Ifuku, S.; Morimoto, M.; Saimoto, H.Guanidinylated chitosan inspired by arginine-rich cell-penetrating peptides. Int. J. Biol. Macromol. 2019, 125, 901–905.
(62) Kong, J.; Yu, S.Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures. Acta Biochim. Biophys. Sin. (Shanghai). 2007, 39 (8), 549–559.
(63) Sadat, A.; Joye, I. J.Peak Fitting Applied to Fourier Transform Infrared and Raman Spectroscopic Analysis of Proteins. Appl. Sci. 2020, 10 (17), 5918.
(64) David C. Richardson, J. S. R.Kinemage Supplement to Introduction to Protein Structure; Taylor & Francis Group, 1999.
(65) Hellman, L. M.; Fried, M. G.Electrophoretic Mobility Shift Assay (EMSA) for Detecting Protein-Nucleic Acid Interactions. Nat. Protoc. 2007, 2 (8), 1849.
(66) Yue, Z. G.; Wei, W.; Lv, P. P.; Yue, H.; Wang, L. Y.; Su, Z. G.; Ma, G. H.Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles. Biomacromolecules 2011, 12 (7), 2440–2446.
(67) Shao, X. R.; Wei, X. Q.; Song, X.; Hao, L. Y.; Cai, X. X.; Zhang, Z. R.; Peng, Q.; Lin, Y. F.Independent effect of polymeric nanoparticle zeta potential/surface charge, on their cytotoxicity and affinity to cells. Cell Prolif. 2015, 48 (4), 465.
(68) Zhao, F.; Zhao, Y.; Liu, Y.; Chang, X.; Chen, C.; Zhao, Y.Cellular Uptake, Intracellular Trafficking, and Cytotoxicity of Nanomaterials. Small 2011, 7 (10), 1322–1337.
(69) Foroozandeh, P.; Aziz, A. A.Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Res. Lett. 2018, 13.
(70) Wang, S. H.; Lee, C. W.; Chiou, A.; Wei, P. K.Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images. J. Nanobiotechnology 2010, 8.
(71) Chithrani, B. D.; Chan, W. C. W.Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007, 7 (6), 1542–1550.
(72) Allolio, C.; Magarkar, A.; Jurkiewicz, P.; Baxová, K.; Javanainen, M.; Mason, P. E.; Šachl, R.; Cebecauer, M.; Hof, M.; Horinek, D.; Heinz, V.; Rachel, R.; Ziegler, C. M.; Schröfel, A.; Jungwirth, P.Arginine-rich cell-penetrating peptides induce membrane multilamellarity and subsequently enter via formation of a fusion pore. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (47), 11923–11928.
(73) Nikken Wiradharma , Melvin Y. S. Sng , Majad Khan , Zhan-Yuin Ong, Y.-Y. Y. *.Rationally Designed α -Helical Broad-Spectrum Antimicrobial Peptides with Idealized Facial Amphiphilicity. Macromol. Rapid Commun. 2013, 34, 74–80.
(74) Zhao, J.; Zhang, J.; Yu, M.; Xie, Y.; Huang, Y.; Wolff, D. W.; Abel, P. W.; Tu, Y.Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 2013 3240 2012, 32 (40), 4814–4824.
(75) Zampieri, L. X.; Silva-Almeida, C.; Rondeau, J. D.; Sonveaux, P.Mitochondrial Transfer in Cancer: A Comprehensive Review. Int. J. Mol. Sci. 2021, 22 (6).
(76) Chiangjong, W.; Chutipongtanate, S.; Hongeng, S.Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review). Int. J. Oncol. 2020, 57 (3), 678.