簡易檢索 / 詳目顯示

研究生: 張茗慧
Chang, Ming-Hui
論文名稱: 探討麩醯胺酸合成酶及麩醯胺酸酶在麩醯胺酸缺乏環境下對於胰腺導管腺癌初級纖毛生成、脂肪酸攝取及化療抗藥性的調控作用
The role of glutamine synthetase and glutaminase in regulating ciliogenesis, fatty acid uptake, and chemoresistance in pancreatic ductal adenocarcinoma cells under glutamine deprivation
指導教授: 彭怡禎
Peng, I-Chen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 72
中文關鍵詞: 胰腺導管腺癌麩醯胺酸合成酶麩醯胺酸酶初級纖毛脂肪酸攝取化學治療抗性
外文關鍵詞: PDAC, GS, GLS1, Primary cilia, FA uptake, chemoresistance
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 惡性腫瘤長期佔據全球死因第一位,其中胰臟癌由於初期不易診斷與治療困難導致高死亡率,傳統治療胰臟癌的方法包含了手術切除、化學藥物治療以及放射線治療,因手術切除復發機率高,通常會配合化學藥物進行複合治療。化學藥物治療雖能抑制癌細胞,但癌細胞能透過代謝重整減弱療效並增強化學藥物抗性。代謝重整是癌症典型特徵,細胞會大量利用葡萄糖、脂質、胺基酸等快速產生能量支持其增殖,而在缺乏血管新生的腫瘤內部,呈現一個低氧、低營養素的環境,此時腫瘤內部細胞可能會改變其代謝模式來適應此環境,使得傳統治療的效果不如以往,先前研究已指出具有化學藥物抗性的胰臟癌細胞會生成更多的初級纖毛,並且在存活期較短的胰臟癌病患的組織切片染色中也有發現初級纖毛的存在,而癌細胞高度仰賴麩醯胺酸促進生長。本實驗中將胰臟癌細胞培養在缺乏麩醯胺酸的環境中三個月後進行後續實驗 (以下簡稱-QQ細胞),實驗結果發現在缺乏麩醯胺酸環境中,-QQ細胞會增加麩醯胺酸代謝 (GS、GLS1)、初級纖毛生成 (IFT88、IFT43、KIF7) 相關基因以及脂肪酸轉位酶 (CD36) 的表達量,並減少脂質生合成基因 (ACC1、FAS、SREBP1) 的表達量,同時發現脂肪酸攝取變多,Cisplatin (CPT) IC50上升,但麩醯胺酸缺乏、初級纖毛生成與抗藥性之間的關聯性仍有待探討。在-QQ細胞中敲低IFT88後CD36表達下降,也減少了脂肪酸攝取與CPT IC50,此結果顯示,-QQ細胞增強了對於CPT的抗性有可能是透過IFT88促進CD36表達增強脂肪酸攝取,進一步影響CD36表達與脂肪酸攝取;而敲低-QQ細胞中的CD36實驗結果顯示,細胞降低了脂肪酸攝取與CPT抗性;在-QQ細胞中分別敲低GS與GLS1,發現IFT88與CD36表達量皆有上升,也增加了脂肪酸攝取與CPT抗性。給予-QQ細胞不同種類的高濃度脂肪酸會抑制細胞生長,而給予細胞不同種類的低濃度脂肪酸與CPT共同處理,發現OA、LA、ALA、EPA以及DHA降低細胞對於CPT的敏感性。綜合上述結果顯示,-QQ細胞中IFT88透過調控CD36影響細胞脂肪酸攝取,進而增加細胞對於CPT的抗性,而GS與GLS1共同在其中扮演負調控的角色,抑制IFT88與CD36的表達量,而給予低濃度OA、LA、ALA、EPA以及DHA增加了細胞對於CPT的抗性。

    Malignant tumors have consistently ranked as the leading cause of death worldwide. Among these, pancreatic cancer exhibits high mortality rates due to difficulties in early diagnosis and treatment. Conventional treatments for pancreatic cancer include surgical resection, chemotherapy, and radiation therapy. However, because of the high recurrence rate after surgery, combination therapy with chemotherapy is often employed. While chemotherapy can inhibit cancer cells, these cells often adapt through metabolic reprogramming, reducing drug efficacy and enhancing resistance. Metabolic reprogramming is a hallmark of cancer, as cancer cells extensively utilize glucose, lipids, and amino acids to rapidly generate energy to sustain their proliferation. Within tumors lacking angiogenesis, the internal environment is often hypoxic and nutrient-deprived. Under these conditions, tumor cells may alter their metabolic pathways to adapt, thereby reducing the effectiveness of traditional treatments. Previous studies have indicated that chemoresistant pancreatic cancer cells produce more primary cilia and that primary cilia are also observed in tissue samples from patients with shorter survival times. Additionally, cancer cells heavily rely on glutamine to promote growth. In this study, pancreatic cancer cells were cultured in a glutamine-deprived environment for three months (hereafter referred to as -QQ cells) for subsequent experiments. Results showed that under glutamine-deprived conditions, -QQ cells exhibited increased expression of genes associated with glutamine metabolism (GS, GLS1), primary cilia formation (IFT88, IFT43, KIF7), and fatty acid translocase (CD36), while genes related to lipid biosynthesis (ACC1, FAS, SREBP1) were downregulated. Furthermore, increased fatty acid uptake and a higher Cisplatin (CPT) IC50 were observed. However, the relationship between glutamine deprivation, primary cilia formation, and drug resistance remains to be clarified. Knockdown of IFT88 in -QQ cells resulted in decreased CD36 expression, reduced fatty acid uptake, and a lower CPT IC50. This finding suggests that the enhanced CPT resistance in -QQ cells may be mediated by IFT88 promoting CD36 expression to increase fatty acid uptake, which further influences CPT resistance. Additionally, knockdown of CD36 in -QQ cells showed a reduction in both fatty acid uptake and CPT resistance. When GS and GLS1 were separately knocked down in -QQ cells, both IFT88 and CD36 expression levels were elevated, along with increased fatty acid uptake and enhanced CPT resistance. Treating -QQ cells with different types of high-concentration fatty acids inhibited cell growth. When -QQ cells were co-treated with various low-concentration fatty acids and CPT, it was observed that OA, LA, ALA, EPA, and DHA reduced the cells' sensitivity to CPT. These results collectively indicate that IFT88 in -QQ cells influence fatty acid uptake through the regulation of CD36, thereby contributing to increased CPT resistance. GS and GLS1 act as negative regulators in this process by suppressing the expression of IFT88 and CD36. Treatment with low concentrations of OA, LA, ALA, EPA, and DHA increased the cells' resistance to CPT.

    摘要 I 誌謝 V 目錄 VI 圖目錄 IX 縮寫表 X 一、研究背景 12 1. 胰臟癌 12 1.1 人體中胰臟的功能 12 1.2 胰臟癌的進程 12 1.3 胰臟癌的代謝重整 13 1.4 胰臟癌的治療方法 13 2. 麩醯胺酸 14 2.1 麩醯胺酸的來源與代謝 14 2.2 癌細胞中麩醯胺酸的功能 15 3. 胰臟癌的初級纖毛 15 3.1 初級纖毛的結構 15 3.2 胰臟癌中初級纖毛的重要性 16 4. 細胞脂質代謝 16 4.1 細胞中脂肪酸來源 16 4.2 細胞中脂肪酸利用 16 4.3 脂質與癌症抗藥性的關聯 17 4.4人體中的脂肪酸 17 4.5不同脂肪酸的功能以及對癌症的影響 18 二、研究目的 19 三、材料與方法 20 1. 細胞株培養 20 2. 細胞株之藥物處理 20 3. 細胞株之基因沉默 21 4. Bodipy FL C16 22 5. MTT assay 22 6. 免疫螢光染色 23 7. RNA萃取與RT-PCR 23 8. Real-time quantitative polymerase chain reaction (qPCR) 24 9. 蛋白質萃取與樣品製備 26 9.1 蛋白質萃取 26 9.2 樣品製備 27 10. Western blot 27 11. 統計分析 29 12. 實驗材料與試劑 30 四、實驗結果 33 1. 麩醯胺酸 (Gln) 缺乏會促進PANC-1細胞中麩醯胺酸代謝與初級纖毛新生相關基因mRNA及蛋白質表達,並增強脂肪酸攝取及降低化學治療敏感性 33 2. 在-QQ細胞中敲落IFT88,會降低CD36表達,導致脂肪酸攝取量下降,增加化學治療敏感性 33 3. 在-QQ細胞中敲落CD36,會降低CD36表達,導致脂肪酸攝取量下降,增加化學治療敏感性 33 4. 在-QQ細胞中敲落GS,會促進IFT88及CD36表達,導致脂肪酸攝取量上升,降低化學治療敏感性 34 5. 在-QQ細胞中敲落GLS1,會促進IFT88及CD36表達,導致脂肪酸攝取量增加,減少化學治療敏感性 34 6. -QQ細胞經由不同高濃度脂肪酸處理會抑制細胞生長 34 7. 在10% FBS no glutamine培養環境下添加不同脂肪酸與CPT共同處理-QQ細胞,OA、LA、ALA、EPA與DHA降低-QQ細胞對於CPT處理的敏感性 34 8. 在1%FBS培養環境下以不同高濃度脂肪酸處理PANC-1、shIFT88 PANC-1以及CPTR PANC-1細胞會抑制其生長 35 9. 在1% FBS培養環境下添加不同脂肪酸與CPT共同處理PANC-1,LA與ALA會增加PANC-1對於CPT處理的敏感性, DHA則降低CPT處理的敏感性 35 10. 在1% FBS培養環境下添加不同脂肪酸與CPT共同處理shIFT88 PANC-1,SA、LA與DHA會增加shIFT88 PANC-1對於CPT處理的敏感性,PA、OA、ALA與EPA則降低CPT處理的敏感性 35 11. 在1% FBS培養環境下添加不同脂肪酸與CPT共同處理CPTR PANC-1,PA、SA、OA、LA、ALA、EPA與DHA會增加CPTR PANC-1對於CPT處理的敏感性 36 12. 在0.05% FA-free BSA培養環境下以不同高濃度脂肪酸處理PANC-1、shIFT88 PANC-1以及CPTR PANC-1細胞會抑制其生長 36 13. 在0.05% FA-free BSA培養環境下添加不同脂肪酸與CPT共同處理PANC-1,PA、SA、OA、EPA以及DHA會增加CPT處理的敏感性,LA則降低CPT處理的敏感性 36 14. 在0.05% FA-free BSA培養環境下添加不同脂肪酸與CPT共同處理shIFT88 PANC-1,PA、SA、OA、LA、ALA、EPA以及DHA會增加CPT處理的敏感性 36 15. 在0.05% FA-free BSA培養環境下添加不同脂肪酸與CPT共同處理CPTR PANC-1,ALA會增加CPT處理的敏感性,SA、EPA以及DHA則降低CPT處理的敏感性 37 五、討論 38 參考文獻 40 附圖 48

    Abegaz, F., Martines, A. M. F., Vieira-Lara, M. A., Rios-Morales, M., Reijngoud, D. J., Wit, E. C., & Bakker, B. M. (2021). Bistability in fatty-acid oxidation resulting from substrate inhibition. PLoS Comput Biol, 17(8), e1009259. https://doi.org/10.1371/journal.pcbi.1009259
    Adeva, M. M., Souto, G., Blanco, N., & Donapetry, C. (2012). Ammonium metabolism in humans. Metabolism, 61(11), 1495-1511. https://doi.org/10.1016/j.metabol.2012.07.007
    Akella, N. M., Ciraku, L., & Reginato, M. J. (2019). Fueling the fire: emerging role of the hexosamine biosynthetic pathway in cancer. BMC Biology, 17(1), 52. https://doi.org/10.1186/s12915-019-0671-3
    Altman, B. J., Stine, Z. E., & Dang, C. V. (2016). From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer, 16(10), 619-634. https://doi.org/10.1038/nrc.2016.71
    Batchuluun, B., Pinkosky, S. L., & Steinberg, G. R. (2022). Lipogenesis inhibitors: therapeutic opportunities and challenges. Nature Reviews Drug Discovery, 21(4), 283-305. https://doi.org/10.1038/s41573-021-00367-2
    Bauerschlag, D. O., Maass, N., Leonhardt, P., Verburg, F. A., Pecks, U., Zeppernick, F., Morgenroth, A., Mottaghy, F. M., Tolba, R., Meinhold-Heerlein, I., & Bräutigam, K. (2015). Fatty acid synthase overexpression: target for therapy and reversal of chemoresistance in ovarian cancer. J Transl Med, 13, 146. https://doi.org/10.1186/s12967-015-0511-3
    Bechmann, L. P., Hannivoort, R. A., Gerken, G., Hotamisligil, G. S., Trauner, M., & Canbay, A. (2012). The interaction of hepatic lipid and glucose metabolism in liver diseases. Journal of Hepatology, 56(4), 952-964. https://doi.org/https://doi.org/10.1016/j.jhep.2011.08.025
    Broadfield, L. A., Pane, A. A., Talebi, A., Swinnen, J. V., & Fendt, S. M. (2021). Lipid metabolism in cancer: New perspectives and emerging mechanisms. Dev Cell, 56(10), 1363-1393. https://doi.org/10.1016/j.devcel.2021.04.013
    Brouwer, I. A. (2008). 10 - Fish, omega-3 fatty acids and heart disease. In T. Børresen (Ed.), Improving Seafood Products for the Consumer (pp. 165-181). Woodhead Publishing. https://doi.org/https://doi.org/10.1533/9781845694586.2.165
    Brozos-Vázquez, E., Toledano-Fonseca, M., Costa-Fraga, N., García-Ortiz, M. V., Díaz-Lagares, Á., Rodríguez-Ariza, A., Aranda, E., & López-López, R. (2024). Pancreatic cancer biomarkers: A pathway to advance in personalized treatment selection. Cancer Treat Rev, 125, 102719. https://doi.org/10.1016/j.ctrv.2024.102719
    Brunner, M., Wu, Z., Krautz, C., Pilarsky, C., Grützmann, R., & Weber, G. F. (2019). Current Clinical Strategies of Pancreatic Cancer Treatment and Open Molecular Questions. Int J Mol Sci, 20(18). https://doi.org/10.3390/ijms20184543
    Bullón-Vela, M. V., Abete, I., Alfredo Martínez, J., & Angeles Zulet, M. (2018). Chapter 6 - Obesity and Nonalcoholic Fatty Liver Disease: Role of Oxidative Stress. In A. M. del Moral & C. M. Aguilera García (Eds.), Obesity (pp. 111-133). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-812504-5.00006-4
    Cao, Y. (2019). Adipocyte and lipid metabolism in cancer drug resistance. J Clin Invest, 129(8), 3006-3017. https://doi.org/10.1172/jci127201
    Carta, G., Murru, E., Banni, S., & Manca, C. (2017). Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications. Front Physiol, 8, 902. https://doi.org/10.3389/fphys.2017.00902
    Chao, Y. Y., Huang, B. M., Peng, I. C., Lee, P. R., Lai, Y. S., Chiu, W. T., Lin, Y. S., Lin, S. C., Chang, J. H., Chen, P. S., Tsai, S. J., & Wang, C. Y. (2022). ATM- and ATR-induced primary ciliogenesis promotes cisplatin resistance in pancreatic ductal adenocarcinoma. J Cell Physiol, 237(12), 4487-4503. https://doi.org/10.1002/jcp.30898
    Chen, H. C., & Farese, R. V. (2005). Inhibition of Triglyceride Synthesis as a Treatment Strategy for Obesity. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(3), 482-486. https://doi.org/10.1161/01.ATV.0000151874.81059.ad
    Chen, R., Lai, L. A., Sullivan, Y., Wong, M., Wang, L., Riddell, J., Jung, L., Pillarisetty, V. G., Brentnall, T. A., & Pan, S. (2017). Disrupting glutamine metabolic pathways to sensitize gemcitabine-resistant pancreatic cancer. Sci Rep, 7(1), 7950. https://doi.org/10.1038/s41598-017-08436-6
    Cluntun, A. A., Lukey, M. J., Cerione, R. A., & Locasale, J. W. (2017). Glutamine Metabolism in Cancer: Understanding the Heterogeneity. Trends Cancer, 3(3), 169-180. https://doi.org/10.1016/j.trecan.2017.01.005
    Cruzat, V., Macedo Rogero, M., Noel Keane, K., Curi, R., & Newsholme, P. (2018). Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients, 10(11). https://doi.org/10.3390/nu10111564
    Cui, Q., Wang, J. Q., Assaraf, Y. G., Ren, L., Gupta, P., Wei, L., Ashby, C. R., Jr., Yang, D. H., & Chen, Z. S. (2018). Modulating ROS to overcome multidrug resistance in cancer. Drug Resist Updat, 41, 1-25. https://doi.org/10.1016/j.drup.2018.11.001
    Del Chiaro, M., Sugawara, T., Karam, S. D., & Messersmith, W. A. (2023). Advances in the management of pancreatic cancer. Bmj, 383, e073995. https://doi.org/10.1136/bmj-2022-073995
    Dierge, E., Debock, E., Guilbaud, C., Corbet, C., Mignolet, E., Mignard, L., Bastien, E., Dessy, C., Larondelle, Y., & Feron, O. (2021). Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects. Cell Metabolism, 33(8), 1701-1715.e1705. https://doi.org/https://doi.org/10.1016/j.cmet.2021.05.016
    Emoto, K., Masugi, Y., Yamazaki, K., Effendi, K., Tsujikawa, H., Tanabe, M., Kitagawa, Y., & Sakamoto, M. (2014). Presence of primary cilia in cancer cells correlates with prognosis of pancreatic ductal adenocarcinoma. Hum Pathol, 45(4), 817-825. https://doi.org/10.1016/j.humpath.2013.11.017
    Evans, L. M., Cowey, S. L., Siegal, G. P., & Hardy, R. W. (2009). Stearate preferentially induces apoptosis in human breast cancer cells. Nutr Cancer, 61(5), 746-753. https://doi.org/10.1080/01635580902825597
    Farhangnia, P., Khorramdelazad, H., Nickho, H., & Delbandi, A. A. (2024). Current and future immunotherapeutic approaches in pancreatic cancer treatment. J Hematol Oncol, 17(1), 40. https://doi.org/10.1186/s13045-024-01561-6
    Fitzpatrick, K. C. (2011). 10 - Health Benefits of Flaxseed. In E. M. Hernandez & M. Hosokawa (Eds.), Omega-3 Oils (pp. 213-264). AOCS Press. https://doi.org/https://doi.org/10.1016/B978-1-893997-82-0.50013-X
    Glatz, J. F. C., & Luiken, J. (2018). Dynamic role of the transmembrane glycoprotein CD36 (SR-B2) in cellular fatty acid uptake and utilization. J Lipid Res, 59(7), 1084-1093. https://doi.org/10.1194/jlr.R082933
    Guerrero-Rodríguez, S. L., Mata-Cruz, C., Pérez-Tapia, S. M., & Velasco-Velázquez, M. A. (2022). Role of CD36 in cancer progression, stemness, and targeting. Front Cell Dev Biol, 10, 1079076. https://doi.org/10.3389/fcell.2022.1079076
    Harjes, U. (2021). Glutamylation is good for stability. Nature Reviews Cancer, 21(8), 479-479. https://doi.org/10.1038/s41568-021-00385-7
    He, K., Ma, X., Xu, T., Li, Y., Hodge, A., Zhang, Q., Torline, J., Huang, Y., Zhao, J., Ling, K., & Hu, J. (2018). Axoneme polyglutamylation regulated by Joubert syndrome protein ARL13B controls ciliary targeting of signaling molecules. Nature Communications, 9(1), 3310. https://doi.org/10.1038/s41467-018-05867-1
    Higgins, M., Obaidi, I., & McMorrow, T. (2019). Primary cilia and their role in cancer. Oncol Lett, 17(3), 3041-3047. https://doi.org/10.3892/ol.2019.9942
    Hoy, A. J., Nagarajan, S. R., & Butler, L. M. (2021). Tumour fatty acid metabolism in the context of therapy resistance and obesity. Nature Reviews Cancer, 21(12), 753-766. https://doi.org/10.1038/s41568-021-00388-4
    Huang, Y., Fu, Z., Dong, W., Zhang, Z., Mu, J., & Zhang, J. (2018). Serum starvation-induces down-regulation of Bcl-2/Bax confers apoptosis in tongue coating-related cells in vitro. Mol Med Rep, 17(4), 5057-5064. https://doi.org/10.3892/mmr.2018.8512
    Jin, J., Byun, J. K., Choi, Y. K., & Park, K. G. (2023). Targeting glutamine metabolism as a therapeutic strategy for cancer. Exp Mol Med, 55(4), 706-715. https://doi.org/10.1038/s12276-023-00971-9
    Jump, D. B. (2009). Mammalian fatty acid elongases. Methods Mol Biol, 579, 375-389. https://doi.org/10.1007/978-1-60761-322-0_19
    Li, L., & Ran, J. (2024). Regulation of ciliary homeostasis by intraflagellar transport-independent kinesins. Cell Death & Disease, 15(1), 47. https://doi.org/10.1038/s41419-024-06428-9
    Liem, K. F., Jr., He, M., Ocbina, P. J., & Anderson, K. V. (2009). Mouse Kif7/Costal2 is a cilia-associated protein that regulates Sonic hedgehog signaling. Proc Natl Acad Sci U S A, 106(32), 13377-13382. https://doi.org/10.1073/pnas.0906944106
    Liu, C., Chen, Y., Xie, Y., & Xiang, M. (2022). Tubulin Post-translational Modifications: Potential Therapeutic Approaches to Heart Failure. Front Cell Dev Biol, 10, 872058. https://doi.org/10.3389/fcell.2022.872058
    Long, X., Chen, L., Xiao, X., Min, X., Wu, Y., Yang, Z., & Wen, X. (2024). Structure, function, and research progress of primary cilia in reproductive physiology and reproductive diseases. Front Cell Dev Biol, 12, 1418928. https://doi.org/10.3389/fcell.2024.1418928
    Loren, P., Lugones, Y., Saavedra, N., Saavedra, K., Páez, I., Rodriguez, N., Moriel, P., & Salazar, L. A. (2022). MicroRNAs Involved in Intrinsic Apoptotic Pathway during Cisplatin-Induced Nephrotoxicity: Potential Use of Natural Products against DDP-Induced Apoptosis. Biomolecules, 12(9). https://doi.org/10.3390/biom12091206
    Mann, J., Reznik, E., Santer, M., Fongheiser, M. A., Smith, N., Hirschhorn, T., Zandkarimi, F., Soni, R. K., Dafré, A. L., Miranda-Vizuete, A., Farina, M., & Stockwell, B. R. (2024). Ferroptosis inhibition by oleic acid mitigates iron-overload-induced injury. Cell Chemical Biology, 31(2), 249-264.e247. https://doi.org/https://doi.org/10.1016/j.chembiol.2023.10.012
    Metallo, C. M., Gameiro, P. A., Bell, E. L., Mattaini, K. R., Yang, J., Hiller, K., Jewell, C. M., Johnson, Z. R., Irvine, D. J., Guarente, L., Kelleher, J. K., Vander Heiden, M. G., Iliopoulos, O., & Stephanopoulos, G. (2012). Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature, 481(7381), 380-384. https://doi.org/10.1038/nature10602
    Mill, P., Christensen, S. T., & Pedersen, L. B. (2023). Primary cilia as dynamic and diverse signalling hubs in development and disease. Nat Rev Genet, 24(7), 421-441. https://doi.org/10.1038/s41576-023-00587-9
    Mitchel, J., Bajaj, P., Patil, K., Gunnarson, A., Pourchet, E., Kim, Y. N., Skolnick, J., & Pai, S. B. (2021). Computational Identification of Stearic Acid as a Potential PDK1 Inhibitor and In Vitro Validation of Stearic Acid as Colon Cancer Therapeutic in Combination with 5-Fluorouracil. Cancer Inform, 20, 11769351211065979. https://doi.org/10.1177/11769351211065979
    Neoptolemos, J. P., Kleeff, J., Michl, P., Costello, E., Greenhalf, W., & Palmer, D. H. (2018). Therapeutic developments in pancreatic cancer: current and future perspectives. Nature Reviews Gastroenterology & Hepatology, 15(6), 333-348. https://doi.org/10.1038/s41575-018-0005-x
    Niu, B., Liao, K., Zhou, Y., Wen, T., Quan, G., Pan, X., & Wu, C. (2021). Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials, 277, 121110. https://doi.org/10.1016/j.biomaterials.2021.121110
    Olzmann, J. A., & Carvalho, P. (2019). Dynamics and functions of lipid droplets. Nature Reviews Molecular Cell Biology, 20(3), 137-155. https://doi.org/10.1038/s41580-018-0085-z
    Otter, S., & Lammert, E. (2016). Exciting Times for Pancreatic Islets: Glutamate Signaling in Endocrine Cells. Trends Endocrinol Metab, 27(3), 177-188. https://doi.org/10.1016/j.tem.2015.12.004
    Peng, S., Li, Y., Huang, M., Tang, G., Xie, Y., Chen, D., Hu, Y., Yu, T., Cai, J., Yuan, Z., Wang, H., Wang, H., Luo, Y., & Liu, X. (2022). Metabolomics reveals that CAF-derived lipids promote colorectal cancer peritoneal metastasis by enhancing membrane fluidity. Int J Biol Sci, 18(5), 1912-1932. https://doi.org/10.7150/ijbs.68484
    Qin, C., Yang, G., Yang, J., Ren, B., Wang, H., Chen, G., Zhao, F., You, L., Wang, W., & Zhao, Y. (2020). Metabolism of pancreatic cancer: paving the way to better anticancer strategies. Mol Cancer, 19(1), 50. https://doi.org/10.1186/s12943-020-01169-7
    Recouvreux, M. V., Moldenhauer, M. R., Galenkamp, K. M. O., Jung, M., James, B., Zhang, Y., Lowy, A., Bagchi, A., & Commisso, C. (2020). Glutamine depletion regulates Slug to promote EMT and metastasis in pancreatic cancer. J Exp Med, 217(9). https://doi.org/10.1084/jem.20200388
    Rocha, C., & Prinos, P. (2022). Post-transcriptional and Post-translational Modifications of Primary Cilia: How to Fine Tune Your Neuronal Antenna. Front Cell Neurosci, 16, 809917. https://doi.org/10.3389/fncel.2022.809917
    Ruse, C. I., Chin, H. G., & Pradhan, S. (2022). Polyglutamylation: biology and analysis. Amino Acids, 54(4), 529-542. https://doi.org/10.1007/s00726-022-03146-4
    Sanders, T. A. B. (2016). 1 - Introduction: The Role of Fats in Human Diet. In T. A. B. Sanders (Ed.), Functional Dietary Lipids (pp. 1-20). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-1-78242-247-1.00001-6
    Santa-María, C., López-Enríquez, S., Montserrat-de la Paz, S., Geniz, I., Reyes-Quiroz, M. E., Moreno, M., Palomares, F., Sobrino, F., & Alba, G. (2023). Update on Anti-Inflammatory Molecular Mechanisms Induced by Oleic Acid. Nutrients, 15(1). https://doi.org/10.3390/nu15010224
    Scalise, M., Pochini, L., Galluccio, M., Console, L., & Indiveri, C. (2017). Glutamine Transport and Mitochondrial Metabolism in Cancer Cell Growth. Front Oncol, 7, 306. https://doi.org/10.3389/fonc.2017.00306
    Senyilmaz-Tiebe, D., Pfaff, D. H., Virtue, S., Schwarz, K. V., Fleming, T., Altamura, S., Muckenthaler, M. U., Okun, J. G., Vidal-Puig, A., Nawroth, P., & Teleman, A. A. (2018). Dietary stearic acid regulates mitochondria in vivo in humans. Nature Communications, 9(1), 3129. https://doi.org/10.1038/s41467-018-05614-6
    Shah, M. A., & Schwartz, G. K. (2001). Cell cycle-mediated drug resistance: an emerging concept in cancer therapy. Clin Cancer Res, 7(8), 2168-2181.
    Spector, A. A., & Kim, H. Y. (2015). Discovery of essential fatty acids. J Lipid Res, 56(1), 11-21. https://doi.org/10.1194/jlr.R055095
    Stoffel, E. M., Brand, R. E., & Goggins, M. (2023). Pancreatic Cancer: Changing Epidemiology and New Approaches to Risk Assessment, Early Detection, and Prevention. Gastroenterology, 164(5), 752-765. https://doi.org/10.1053/j.gastro.2023.02.012
    Suda, A., Umaru, B. A., Yamamoto, Y., Shima, H., Saiki, Y., Pan, Y., Jin, L., Sun, J., Low, Y. L. C., Suzuki, C., Abe, T., Igarashi, K., Furukawa, T., Owada, Y., & Kagawa, Y. (2024). Polyunsaturated fatty acids-induced ferroptosis suppresses pancreatic cancer growth. Sci Rep, 14(1), 4409. https://doi.org/10.1038/s41598-024-55050-4
    Sun, Y., Wang, J., Guo, X., Zhu, N., Niu, L., Ding, X., Xie, Z., Chen, X., & Yang, F. (2021). Oleic Acid and Eicosapentaenoic Acid Reverse Palmitic Acid-induced Insulin Resistance in Human HepG2 Cells via the Reactive Oxygen Species/JUN Pathway. Genomics Proteomics Bioinformatics, 19(5), 754-771. https://doi.org/10.1016/j.gpb.2019.06.005
    Swanson, D., Block, R., & Mousa, S. A. (2012). Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr, 3(1), 1-7. https://doi.org/10.3945/an.111.000893
    Tan, Y., Li, J., Zhao, G., Huang, K.-C., Cardenas, H., Wang, Y., Matei, D., & Cheng, J.-X. (2022). Metabolic reprogramming from glycolysis to fatty acid uptake and beta-oxidation in platinum-resistant cancer cells. Nature Communications, 13(1), 4554. https://doi.org/10.1038/s41467-022-32101-w
    Tempero, M. A. (2019). NCCN Guidelines Updates: Pancreatic Cancer. J Natl Compr Canc Netw, 17(5.5), 603-605. https://doi.org/10.6004/jnccn.2019.5007
    Tian, J. L., & Gomeshtapeh, F. I. (2020). Potential Roles of O-GlcNAcylation in Primary Cilia- Mediated Energy Metabolism. Biomolecules, 10(11). https://doi.org/10.3390/biom10111504
    Tvrzicka, E., Kremmyda, L. S., Stankova, B., & Zak, A. (2011). Fatty acids as biocompounds: their role in human metabolism, health and disease--a review. Part 1: classification, dietary sources and biological functions. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 155(2), 117-130. https://doi.org/10.5507/bp.2011.038
    Vincent, A., Herman, J., Schulick, R., Hruban, R. H., & Goggins, M. (2011). Pancreatic cancer. Lancet, 378(9791), 607-620. https://doi.org/10.1016/s0140-6736(10)62307-0
    Vásquez Martínez, I. P., Pérez-Campos, E., Pérez-Campos Mayoral, L., Cruz Luis, H. I., Pina Canseco, M. D. S., Zenteno, E., Bazán Salinas, I. L., Martínez Cruz, M., Pérez-Campos Mayoral, E., & Hernández-Huerta, M. T. (2024). O-GlcNAcylation: Crosstalk between Hemostasis, Inflammation, and Cancer. Int J Mol Sci, 25(18). https://doi.org/10.3390/ijms25189896
    Wang, Z., Wang, Y., Li, Z., Xue, W., Hu, S., & Kong, X. (2023). Lipid metabolism as a target for cancer drug resistance: progress and prospects. Front Pharmacol, 14, 1274335. https://doi.org/10.3389/fphar.2023.1274335
    Watts, J. L. (2009). Fat synthesis and adiposity regulation in Caenorhabditis elegans. Trends Endocrinol Metab, 20(2), 58-65. https://doi.org/10.1016/j.tem.2008.11.002
    Whelan, J., & Fritsche, K. (2013). Linoleic acid. Adv Nutr, 4(3), 311-312. https://doi.org/10.3945/an.113.003772
    Wood, L. D., Yurgelun, M. B., & Goggins, M. G. (2019). Genetics of Familial and Sporadic Pancreatic Cancer. Gastroenterology, 156(7), 2041-2055. https://doi.org/10.1053/j.gastro.2018.12.039
    Wu, H., Fu, M., Wu, M., Cao, Z., Zhang, Q., & Liu, Z. (2024). Emerging mechanisms and promising approaches in pancreatic cancer metabolism. Cell Death & Disease, 15(8), 553. https://doi.org/10.1038/s41419-024-06930-0
    Xiang, L., Xie, G., Liu, C., Zhou, J., Chen, J., Yu, S., Li, J., Pang, X., Shi, H., & Liang, H. (2013). Knock-down of glutaminase 2 expression decreases glutathione, NADH, and sensitizes cervical cancer to ionizing radiation. Biochim Biophys Acta, 1833(12), 2996-3005. https://doi.org/10.1016/j.bbamcr.2013.08.003
    Xiang, W., Lv, H., Xing, F., Sun, X., Ma, Y., Wu, L., Lv, G., Zong, Q., Wang, L., Wu, Z., Feng, Q., Yang, W., & Wang, H. (2023). Inhibition of ACLY overcomes cancer immunotherapy resistance via polyunsaturated fatty acids peroxidation and cGAS-STING activation. Sci Adv, 9(49), eadi2465. https://doi.org/10.1126/sciadv.adi2465
    Xie, Y., Wang, B., Zhao, Y., Tao, Z., Wang, Y., Chen, G., & Hu, X. (2022). Mammary adipocytes protect triple-negative breast cancer cells from ferroptosis. J Hematol Oncol, 15(1), 72. https://doi.org/10.1186/s13045-022-01297-1
    Yang, J., Ren, B., Yang, G., Wang, H., Chen, G., You, L., Zhang, T., & Zhao, Y. (2020). The enhancement of glycolysis regulates pancreatic cancer metastasis. Cell Mol Life Sci, 77(2), 305-321. https://doi.org/10.1007/s00018-019-03278-z
    Yang, W. T., Hong, S. R., He, K., Ling, K., Shaiv, K., Hu, J., & Lin, Y. C. (2021). The Emerging Roles of Axonemal Glutamylation in Regulation of Cilia Architecture and Functions. Front Cell Dev Biol, 9, 622302. https://doi.org/10.3389/fcell.2021.622302
    Yoo, H. C., Park, S. J., Nam, M., Kang, J., Kim, K., Yeo, J. H., Kim, J. K., Heo, Y., Lee, H. S., Lee, M. Y., Lee, C. W., Kang, J. S., Kim, Y. H., Lee, J., Choi, J., Hwang, G. S., Bang, S., & Han, J. M. (2020). A Variant of SLC1A5 Is a Mitochondrial Glutamine Transporter for Metabolic Reprogramming in Cancer Cells. Cell Metab, 31(2), 267-283.e212. https://doi.org/10.1016/j.cmet.2019.11.020
    Zhang, C., Liu, J., Zhao, Y., Yue, X., Zhu, Y., Wang, X., Wu, H., Blanco, F., Li, S., Bhanot, G., Haffty, B. G., Hu, W., & Feng, Z. (2016). Glutaminase 2 is a novel negative regulator of small GTPase Rac1 and mediates p53 function in suppressing metastasis. Elife, 5, e10727. https://doi.org/10.7554/eLife.10727
    Zhang, J., Pavlova, N. N., & Thompson, C. B. (2017). Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. Embo j, 36(10), 1302-1315. https://doi.org/10.15252/embj.201696151
    Zhou, Q., & Melton, D. A. (2018). Pancreas regeneration. Nature, 557(7705), 351-358. https://doi.org/10.1038/s41586-018-0088-0
    Zhu, S., Jiao, W., Xu, Y., Hou, L., Li, H., Shao, J., Zhang, X., Wang, R., & Kong, D. (2021). Palmitic acid inhibits prostate cancer cell proliferation and metastasis by suppressing the PI3K/Akt pathway. Life Sciences, 286, 120046. https://doi.org/https://doi.org/10.1016/j.lfs.2021.120046

    無法下載圖示 校內:2030-02-07公開
    校外:2030-02-07公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE