簡易檢索 / 詳目顯示

研究生: 李建德
Li, Jian-De
論文名稱: 微米級光固化3D列印機之實時製程觀測、分析與性能改善
Real-time observation, analysis and performance improvement in micro-scale stereolithography 3D printer
指導教授: 張仁宗
Chang, Ren-Jung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 123
中文關鍵詞: 3D列印光固化實時監控原地觀測微夾持器
外文關鍵詞: Stereolithography, 3D Printing, Real time monitoring, In situ observation, Micro gripper
相關次數: 點閱:150下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要研究微米級光固化3D列印機之製程分析與改善,透過建立實時觀測功能,並設計適當的操作流程來對製程誤差進行分析,以符合微米級光固化3D列印機對加工物件之需求。依原有之光固化3D列印機開發實時觀測功能,可以有效的針對現有光固化3D列印機之加工狀態與性能進行監控,能更即時、具體地對系統加工環境進行調整與測試,並排除製程過程中產生之不確定因素。此外對立體式微型撓性夾爪進行分析與改良,使撓性夾爪更好的應用在本實驗室之微組裝系統開發。

    This research is focused on the process analysis and improvement of stereolithography micro 3D printer. Through the establishment of real-time observation functions, and designing appropriate operating procedures to analyze the process errors, it can meet the needs of stereolithography micro 3D printer for processing objects. The real-time observation function is developed based on the original stereolithography micro 3D printer, which can effectively monitor the processing status and performance of the existing stereolithography 3D printer. Real-time observation function can adjust and test the system processing settings more instantly and specifically, and eliminate uncertain factors generated during the manufacturing process. In addition, the 3D micro flexible gripper is analyzed and improved, so that the flexible gripper can be better used in the development of the micro assembly system in our laboratory.

    摘要 I EXTENDED ABSTRACT II 致謝 V 目錄 VI 圖目錄 IX 表目錄 XII 符號表 XIII 第一章 緒論 1 1-1前言 1 1-2 研究動機 1 1-3 文獻回顧 2 1-3.1 增材製造之簡介 2 1-3.2 光固化成型技術 3 1-3.3 現有之增材製造觀測方法 6 1-4 研究方法與目標 7 1-4.1 研究方法 8 1-4.2 研究目標 9 1-5 本章總結 10 第二章 基礎理論與方法 11 2-1 前言 11 2-2 高斯光束的傳播與分光 11 2-2.1 高斯光束 11 2-2.2 高斯光束傳播 14 2-2.3 分光鏡 15 2-3 光固化與光程差之變化 17 2-3.1 光化學第一反應定律 18 2-3.2 光化學第二反應定律 18 2-3.3 光吸收定律 19 2-3.4 光固化 19 2-3.5 紫外光固化反應 22 2-3.6 折射率變化與光程差 24 2-4 相襯顯微技術 26 2-4.1 相襯顯微原理知識 27 2-5 本章總結 29 第三章 實時觀測功能之建立與測試 30 3-1 前言 30 3-2 原型機之結構與規格 30 3-3 具觀測功能之設計與安裝 32 3-3.1 分光鏡之設計與安裝 32 3-3.2 物鏡轉盤之設計與安裝 36 3-3.3 濾光片之安裝 37 3-4 新系統機構校正 39 3-4.1 新系統實體圖 39 3-4.2 雷射光路校正 40 3-5 觀測功能與加工解析度調整 45 3-5.1 觀測功能之建立與固化標準 45 3-5.2 加工解析度調整 47 3-6 控制方塊圖 48 3-7 本章總結 49 第四章 製程誤差分析與改善 50 4-1 前言 50 4-2 二維與三維之結構與製程 50 4-3 二維結構製程誤差分析與改善 52 4-3.1 XY解析度與尺寸準度 52 4-3.2 二維結構誤差因素 55 4-3.3 操作流程 58 4-3.4 厚度測量與平整度改善 60 4-3.5 雷射光強度之改善 67 4-3.6 列印機控制系統之改善 69 4-3.7 二維結構與切圖參數 76 4-4 三維製程誤差分析與改善 78 4-4.1 三維結構誤差因素 79 4-4.2 疊層測試 80 4-4.3 架橋測試 81 4-5 本章結論 82 第五章 光固化撓性夾爪製造與測試 84 5-1 前言 84 5-2 撓性夾爪之設計 84 5-2.1 撓性材料之應用 84 5-2.2 撓性夾爪之分析 87 5-2.3 新撓性夾爪之設計 92 5-3 撓性夾爪之製造 98 5-3.1 前製程 98 5-3.2 定位列印 99 5-3.3 列印模型修正 101 5-3.4 列印角度調整 103 5-3.5 夾爪後製程 105 5-3.6 夾爪運動分析 107 5-3.7 夾爪運動測試 109 5-4 撓性夾爪之改良與測試 110 5-4.1 撓性夾爪之改良 110 5-4.2 改良後之測試 111 5-5 立體式微夾持器於微組裝系統之應用 114 5-6 本章總結 117 第六章 結論與未來展望 118 6-1 前言 118 6-2 結論 118 6-3 未來展望 119 參考文獻 120

    [1] S. Sharma, A. Chauhan, and A. Narasimhulu, “A Review of Recent Developments on Stereolithography,” IJERT, Vol. 8 Issue 08, Aug. 2019.
    [2] 張栩毓,「擴增公設設計於微米級光固化3D列印機之創新與升級」,國立成功大學機械工程所碩士論文,2019。
    [3] Energetics Incorporated, Columbia, Maryland, “Measurement Science Roadmap for Metal-Based Additive Manufacturing,” NIST, 2013.
    [4] T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q Nguyen, and D. Hui, “ Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges, ” Composites B Eng. ,Vol. 143, Feb. 2018.
    [5] C. W. Hull, “Apparatus for Production of Three-dimensional Objects by Stereolithography,” U.S. Patent US4575330A, Aug. 1984.
    [6] M. Yakout, M. A. Elbestawi, and S. C. Veldhuis, “A Review of Metal Additive Manufacturing Technologies ,” Solid State Phenomena, Vol. 278, pp. 1-14, July. 2018.
    [7] G. Tapia, and A. Elwany, “A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing,” Journal of Manufacturing Scienceand Engineering, Vol. 136, No. 6, Dec. 2014.
    [8]天馬科技股份有限公司,台灣,「光固化技術SLA及DLP比較」
    [Online]. Available: https://www.taiwanteama.com.tw/, Accessed on: Jun. 2020.
    [9] E.W. Reutzel, and A.R. Nassar, “A Survey of Sensing and Control Systems for Machine and Process Monitoring of Directedenergy,” Metal-based Additive Manufacturing Rapid Prototyping Journal, vol. 21, no. 2, pp. 159-167,March. 2015.
    [10] M. Hennessy, and A. Vitale, O. Matar, and J. Cabral, “Controlling Frontal Photopolymerizaiton with Optical Attenuation and Mass Diffusion,” Physical Review E, Vol 91. Jun. 2015
    [11] X. Zhao, and D.W. Rosen, “Real-time Interferometric Monitoring and Measuring of Photopolymerization Based Stereolithographic Additive Manufacturing Process: Sensor Model and Algorithm,” Measurement Scienceand Technology, Vol. 28, No. 1, Nov. 2016.
    [12] Saleh, E. A. Bahaa, Teich, and C. Malvin, “Fiber Optics,” Fundamentals of Photonics, 2nd, pp. 272-309, Apr. 1992.
    [13] 許阿娟、朱嘉雯、林佳芬、陳志隆,「光學系統設計進階篇」,第一版,2001。
    [14] Wikipedia(2020, May), Beam splitter. Retrieved June 21, 2020, from https://en.wikipedia.org/wiki/Beam_splitter .
    [15] Wikipedia(2020, Feb), Dichroic prism. Retrieved June 21, 2020, from https://en.wikipedia.org/wiki/Dichroic_prism.
    [16] C. H. Wells, “Introduction to Molecular Photochemistry,” Springer, New York, University science books, 1973.
    [17] T. Nicholas. “Modern Molecular Photochemistry,” Springer, New York, University science books, 1991.
    [18] P. J. Ba´rtolo, “Theoretical and Modeling Aspects of Curing Reactions,” Stereolithography, 1st, Ch. 9, pp. 209-243, 2011.
    [19] P. F. Jacobs, “Fundamental Processes,” Rapid Prototyping and Manufacturing, 1st, Ch. 4, pp. 33-64, 1992.
    [20] 張琳琳,「紫外光固化成形用增韌材料的研究」,華中科技大學材料加工工程碩士論文,2006。
    [21] Joseph W. Goodman. Introduction to Fourier Optics. Roberts & Company Publishers. 2004.
    [22] Wikipedia(2020, April), Phase-contrast microscopy. Retrieved June 21, 2020, from https://en.wikipedia.org/wiki/Phase-contrast_microscopy.
    [23] T. Takagi, and N. Nakajima, “Architecture Combination by Micro Photoforming Process,” IEEE International Workshop on Micro
    Electro Mechanical System, 1994.
    [24] M. Mayyas, P. Zhang, W. H. Lee, D. Popa, and J. C. Chiao, “An Active Micro Joining Mechanism for 3D Assembly,” Micromechanics and Microengineering, Feb. 2009.
    [25] K. Alblalaihid1, J. Overton, S. Lawes, and P. Kinnell, “Corrigendum: A 3D-printed Polymer Micro-gripper with Self-defined Electrical Tracks and Thermal Actuator,” Journal of Micromechanics and Microengineering, Volume 27, No. 8, Mar. 2017.
    [26] N. W. Bartlett, M. T. Tolley, J. T. B. Overvelde, J. C. Weaver, B. Mosadegh, K.Bertoldi1, G. M. Whitesides, and R. J. Wood, “A 3D-printed, Functionally Graded Soft Robot Powered by Combustion,” Science, Vol. 349, Issue 6244, pp. 161-165, Jul 2015
    [27] 黃柏軒,「使用公設設計體系改進光固化微型3D 列印機之性能
    」,國立成功大學碩士論文,2018。
    [28] 范振唐,「光固化微型3D列印機之開發與應用」,國立成功大學碩士論文,2017。
    [29] 馮瑨,「微作業端效器之設計製造與測試」,國立成功大學碩士論文,2001。
    [30] 程永華,「壓電制動微型撓性夾持器之設計、製造與控制」,國立成功大學碩士論文,1999。

    下載圖示 校內:2023-06-30公開
    校外:2023-06-30公開
    QR CODE