| 研究生: |
陳淑眉 Chen, Shu-Mei |
|---|---|
| 論文名稱: |
利用替代的重組反轉錄病毒來探討C型肝炎病毒核心蛋白在病毒組裝的機制 Investigating the assembly of HCV core protein in a surrogate recombinant flavi/retro-virus |
| 指導教授: |
王憲威
Wang, Shainn-Wei 張定宗 Chang, Ting-Tsung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | C型肝炎 、病毒組裝 |
| 外文關鍵詞: | HCV core |
| 相關次數: | 點閱:66 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
C型肝炎病毒(HCV)與愛滋病病毒(HIV)都屬於RNA病毒,由於缺乏治療藥物以及預防性疫苗,因此對於公共衛生安全具有嚴重的威脅性。本研究的目標是想要發展一個可以攜帶HCV次基因複製體(subgenomic replicon)的重組flavi/retroviral嵌合載體,用來表現RNAi或是細胞激素(cytokine)以探討研發治療性抗病毒疫苗或預防性疫苗的可能性。我們利用反轉錄病毒設計了一個新穎的假核組裝系統(pseudocore assembly system,PCAS),利用HIV-1次基因質體(僅含gag-pol讀碼框架),將HIV結構蛋白Gag中的核鞘蛋白(nucleocapsid,NC)或是鞘蛋白及核鞘蛋白(capsid-nucleocapsid,CA-NC)置換成HCV核心蛋白(core)的序列,產生一個沒有感染性的HIV/HCV重組病毒的結構蛋白顆粒體(virus-like particles,VLP),以便初步探討HCV core在此重組病毒顆粒體上的組裝及RNA包裝的功用。我們將HIV NC或CA-NC之基因序列置換成不同區段的HCV core基因序列(分別為1-79及1-191a.a.相對應的基因序列)建構出許多嵌合質體,並且其重組基因序列也經由定序而確認。有報導指出將HIV NC置換成白胺酸區域(leucine zipper domain)可以支持HIV-1進行組裝,因此我們認為HCV core所提供的同型類白胺酸區域(leucine-like homotypic region)或許也可驅使HIV進行組裝。我們將這些嵌合質體轉染至293T細胞,利用西方墨點法以及同位密度蔗糖梯度(isotypic sucrose gradient)離心來分析細胞內或細胞外釋放出的嵌合病毒蛋白質以及可能形成的類病毒顆粒(virus-like particles,VLPs)。此外由於HIV蛋白酶(HIV protease)的活性會影響HIV類病毒顆粒組裝的穩定性而減低病毒顆粒形成,我們也發現額外帶有protease缺失的重組病毒載體,可有效的形成VLPs,進一步證實了這個假核系統用以研究HCV core組裝機制的可行性與疫苗發展的潛力。我們目前正用重組病毒載體來分析是否有任何的遺傳物質包裹在此嵌合病毒蛋白形成的VLPs中,並預測此嵌合病毒之結構蛋白僅對HCV genome有專一親和性的功能。未來我們也將探討VLPs在組裝時,是否能將可表達綠色螢光(GFP)或細胞激素的HCV RNA次基因複製體包裝至在VLPs中。這個研究最終的目標是要利用此假核系統去定義在HIV以及HCV core當中有那段序列是病毒組裝的功能性區域,以用來縮小嵌合病毒載體的大小或增加HCV core在RNA包裝上的專一性,以方便未來HIV/HCV疫苗的研發。
HCV and HIV are RNA viruses and both pose serious threats to the public health which demands therapeutic drugs or preventive vaccines urgently. Our goal is to develop a recombinant flavi/retroviral vector that is capable of delivering HCV subgenomic replicons expressing RNAi or cytokines for antiviral research and vaccine development. A novel retroviral (HIV) pseudocore assembly system (PCAS) was designed to generate HIV/HCV genetic constructs using subgenomic HIV proviral backbone (gag-pol frame) for the preliminary investigation of the role of HCV core in replacing HIV nucleocapsid (NC) or capsid-nucleocapsid (CA-NC) for virus-like particle (VLP) assembly and RNA packaging in vivo. Several HIV/HCV genetic constructs via swapping the HIV-1 NC or CA-NC regions with HCV core in the HIV gag-pol frame were constructed and their sequences were confirmed by automatic sequencing. Since exchanging HIV-NC with leucine zipper domain supports HIV-1 assembly, it is most likely that the core provided by HCV with its homotypic leucine zipper-like domains will drive particle assembly. We transfected these chimera viral vectors into 293T cells and investigated the intracellular and extracellular protein production of these chimeric VLPs using Western blot and sucrose fractionation analysis. Because the HIV protease activity is known to affect Gag protein processing and assembly, deletion of the protease functional domain from the recombinant HIV/HCV constructs was found to efficiently facilitate particle formation. Our results clearly demonstrated the feasibility of using PAS system to study HCV core assembly and RNA packaging as well as to develop recombinant HIV/HCV vaccine. We are currently analyzing if any kind of genetic materials is carried into the VLPs. We will also investigate whether trans-provided HCV subgenomic RNA expressing GFP or cytokines can be actively packaged into the viral particles for subsequent replication and expression in HCV infected cells. Our ultimate goal is to define the functional motifs in HCV core for viral assembly and packaging using the PAS system and to develop HIV-HCV chimeric VLPs for vaccine research.
Accola, M. A., B. Strack, and H. G. Gottlinger. 2000. Efficient particle production by minimal Gag constructs which retain the carboxy-terminal domain of human immunodeficiency virus type 1 capsid-p2 and a late assembly domain. J Virol 74:5395-402.
Acosta-Rivero, N., A. Musacchio, L. Lorenzo, C. Alvarez, and J. Morales. 2002. Processing of the Hepatitis C virus precursor protein expressed in the methylotrophic yeast Pichia pastoris. Biochem Biophys Res Commun 295:81-4.
Adamson, C. S., and I. M. Jones. 2004. The molecular basis of HIV capsid assembly--five years of progress. Rev Med Virol 14:107-21.
Aldovini, A., and R. A. Young. 1990. Mutations of RNA and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus. J Virol 64:1920-6.
Baumert, T. F., S. Ito, D. T. Wong, and T. J. Liang. 1998. Hepatitis C virus structural proteins assemble into viruslike particles in insect cells. J Virol 72:3827-36.
Berkowitz, R., J. Fisher, and S. P. Goff. 1996. RNA packaging. Curr Top Microbiol Immunol 214:177-218.
Blanchard, E., D. Brand, S. Trassard, A. Goudeau, and P. Roingeard. 2002. Hepatitis C virus-like particle morphogenesis. J Virol 76:4073-9.
Blight, K. J., J. A. McKeating, J. Marcotrigiano, and C. M. Rice. 2003. Efficient replication of hepatitis C virus genotype 1a RNAs in cell culture. J Virol 77:3181-90.
Blight, K. J., J. A. McKeating, and C. M. Rice. 2002. Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J Virol 76:13001-14.
Campbell, S., and V. M. Vogt. 1995. Self-assembly in vitro of purified CA-NC proteins from Rous sarcoma virus and human immunodeficiency virus type 1. J Virol 69:6487-97.
Clavel, F., and J. M. Orenstein. 1990. A mutant of human immunodeficiency virus with reduced RNA packaging and abnormal particle morphology. J Virol 64:5230-4.
Cristofari, G., R. Ivanyi-Nagy, C. Gabus, S. Boulant, J. P. Lavergne, F. Penin, and J. L. Darlix. 2004. The hepatitis C virus Core protein is a potent nucleic acid chaperone that directs dimerization of the viral (+) strand RNA in vitro. Nucleic Acids Res 32:2623-31. Print 2004.
Darlix, J. L., M. Lapadat-Tapolsky, H. de Rocquigny, and B. P. Roques. 1995. First glimpses at structure-function relationships of the nucleocapsid protein of retroviruses. J Mol Biol 254:523-37.
Fan, Z., Q. R. Yang, J. S. Twu, and A. H. Sherker. 1999. Specific in vitro association between the hepatitis C viral genome and core protein. J Med Virol 59:131-4.
Fisher, A. G., E. Collalti, L. Ratner, R. C. Gallo, and F. Wong-Staal. 1985. A molecular clone of HTLV-III with biological activity. Nature 316:262–265.
Fried, M.W. et al. 2002. Peg interferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N. Engl. J. Med. 347:975-982.
Fuller M, Anson DS. Helper plasmids for production of HIV-1-derived vectors. Hum Gene Ther. 2001 Nov 20;12(17):2081-93.
Ganser, B. K., S. Li, V. Y. Klishko, J. T. Finch, and W. I. Sundquist. 1999. Assembly and analysis of conical models for the HIV-1 core. Science 283:80-3.
Garnier, L., J. B. Bowzard, and J. W. Wills. 1998. Recent advances and remaining problems in HIV assembly. Aids 12 Suppl A:S5-16.
Gitti, R. K., B. M. Lee, J. Walker, M. F. Summers, S. Yoo, and W. I. Sundquist. 1996. Structure of the amino-terminal core domain of the HIV-1 capsid protein. Science 273:231-5.
Grakoui, A., D. W. McCourt, C. Wychowski, S. M. Feinstone, and C. M. Rice. 1993. Characterization of the hepatitis C virus-encoded serine proteinase: determination of proteinase-dependent polyprotein cleavage sites. J Virol 67:2832-43.
Hijikata, M., N. Kato, Y. Ootsuyama, M. Nakagawa, and K. Shimotohno. 1991. Gene mapping of the putative structural region of the hepatitis C virus genome by in vitro processing analysis. Proc Natl Acad Sci U S A 88:5547-51.
Hijikata, M., H. Mizushima, Y. Tanji, Y. Komoda, Y. Hirowatari, T. Akagi, N. Kato, K. Kimura, and K. Shimotohno. 1993. Proteolytic processing and membrane association of putative nonstructural proteins of hepatitis C virus. Proc Natl Acad Sci U S A 90:10773-7.
Honda, M., R. Rijnbrand, G. Abell, D. Kim, and S. M. Lemon. 1999. Natural variation in translational activities of the 5' nontranslated RNAs of hepatitis C virus genotypes 1a and 1b: evidence for a long-range RNA-RNA interaction outside of the internal ribosomal entry site. J Virol 73:4941-51.
Ikeda, M., M. Yi, K. Li, and S. M. Lemon. 2002. Selectable subgenomic and genome-length dicistronic RNAs derived from an infectious molecular clone of the HCV-N strain of hepatitis C virus replicate efficiently in cultured Huh7 cells. J Virol 76:2997-3006.
Jones, C. T., L. Ma, J. W. Burgner, T. D. Groesch, C. B. Post, and R. J. Kuhn. 2003. Flavivirus capsid is a dimeric alpha-helical protein. J Virol 77:7143-9.
Khromykh, A. A., and E. G. Westaway. 1996. RNA binding properties of core protein of the flavivirus Kunjin. Arch Virol 141:685-99.
Kien, F., J. D. Abraham, C. Schuster, and M. P. Kieny. 2003. Analysis of the subcellular localization of hepatitis C virus E2 glycoprotein in live cells using EGFP fusion proteins. J Gen Virol 84:561-6.
Kolykhalov, A. A., K. Mihalik, S. M. Feinstone, and C. M. Rice. 2000. Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3' nontranslated region are essential for virus replication in vivo. J Virol 74:2046-51.
Kummerer, B. M., and C. M. Rice. 2002. Mutations in the yellow fever virus nonstructural protein NS2A selectively block production of infectious particles. J Virol 76:4773-84.
Kunkel, M., M. Lorinczi, R. Rijnbrand, S. M. Lemon, and S. J. Watowich. 2001. Self-assembly of nucleocapsid-like particles from recombinant hepatitis C virus core protein. J Virol 75:2119-29.
Lauer, G. M., and B. D. Walker. 2001. Hepatitis C virus infection. N Engl J Med 345:41-52.
Lever, A., H. Gottlinger, W. Haseltine, and J. Sodroski. 1989. Identification of a sequence required for efficient packaging of human immunodeficiency virus type 1 RNA into virions. J Virol 63:4085-7.
Lindenbach, B. D. R., M. C. 2001. Flaviviridae: The Viruses and Their Replication, p. 991-1041. In D. M. Knipe, Howley, P. M., Griffin, D. E., Martin, M.A., Lamb, R. A., Roizman B., and Straus, S. E. (ed.), Fields Virology, 4th ed, vol. 1. Lippincott Williams & Wilkins, Philadelphia, PA 19106 USA.
Lo, S. Y., M. J. Selby, and J. H. Ou. 1996. Interaction between hepatitis C virus core protein and E1 envelope protein. J Virol 70:5177-82.
Lohmann, V., F. Korner, A. Dobierzewska, and R. Bartenschlager. 2001. Mutations in hepatitis C virus RNAs conferring cell culture adaptation. J Virol 75:1437-49.
Ma, L., C. T. Jones, T. D. Groesch, R. J. Kuhn, and C. B. Post. 2004. Solution structure of dengue virus capsid protein reveals another fold. Proc Natl Acad Sci U S A 101:3414-9. Epub 2004 Mar 01.
Majeau, N., V. Gagne, A. Boivin, M. Bolduc, J. A. Majeau, D. Ouellet, and D. Leclerc. 2004. The N-terminal half of the core protein of hepatitis C virus is sufficient for nucleocapsid formation. J Gen Virol 85:971-81.
McLauchlan, J. 2000. Properties of the hepatitis C virus core protein: a structural protein that modulates cellular processes. J Viral Hepat 7:2-14.
Mellor, J., E. C. Holmes, L. M. Jarvis, P. L. Yap, and P. Simmonds. 1995. Investigation of the pattern of hepatitis C virus sequence diversity in different geographical regions: implications for virus classification. The International HCV Collaborative Study Group. J Gen Virol 76:2493-507.
Nolandt, O., V. Kern, H. Muller, E. Pfaff, L. Theilmann, R. Welker, and H. G. Krausslich. 1997. Analysis of hepatitis C virus core protein interaction domains. J Gen Virol 78:1331-40.
Rein, A. 1994. Retroviral RNA packaging: a review. Arch Virol Suppl 9:513-22.
Rein, A., L. E. Henderson, and J. G. Levin. 1998. Nucleic-acid-chaperone activity of retroviral nucleocapsid proteins: significance for viral replication. Trends Biochem Sci 23:297-301.
Reynolds, J. E., A. Kaminski, H. J. Kettinen, K. Grace, B. E. Clarke, A. R. Carroll, D. J. Rowlands, and R. J. Jackson. 1995. Unique features of internal initiation of hepatitis C virus RNA translation. Embo J 14:6010-20.
Rice, C. M., E. M. Lenches, S. R. Eddy, S. J. Shin, R. L. Sheets, and J. H. Strauss. 1985. Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229:726-33.
Rijnbrand, R., P. Bredenbeek, T. van der Straaten, L. Whetter, G. Inchauspe, S. Lemon, and W. Spaan. 1995. Almost the entire 5' non-translated region of hepatitis C virus is required for cap-independent translation. FEBS Lett 365:115-9.
Sandefur, S., R. M. Smith, V. Varthakavi, and P. Spearman. 2000. Mapping and characterization of the N-terminal I domain of human immunodeficiency virus type 1 Pr55(Gag). J Virol 74:7238-49.
Shimoike, T., S. Mimori, H. Tani, Y. Matsuura, and T. Miyamura. 1999. Interaction of hepatitis C virus core protein with viral sense RNA and suppression of its translation. J Virol 73:9718-25.
Swanstrom, R. a. W., J. W. 1997. Synthesis, assembly, and processing of viral proteins, p. 263-334. In J. M. Coffin, Hughes, S. H., and Varmus, H. E. (ed.), Retroviruses. Cold Spring Harbor Laboratory Press, Plainview, N.Y.
Tanaka, Y., T. Shimoike, K. Ishii, R. Suzuki, T. Suzuki, H. Ushijima, Y. Matsuura, and T. Miyamura. 2000. Selective binding of hepatitis C virus core protein to synthetic oligonucleotides corresponding to the 5' untranslated region of the viral genome. Virology 270:229-36.
von Schwedler, U. K., T. L. Stemmler, V. Y. Klishko, S. Li, K. H. Albertine, D. R. Davis, and W. I. Sundquist. 1998. Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly. Embo J 17:1555-68.
Wang, S. H., W. J. Syu, and S. T. Hu. 2004. Identification of the homotypic interaction domain of the core protein of dengue virus type 2. J Gen Virol 85:2307-14.
Wang, S. W., and A. Aldovini. 2002. RNA incorporation is critical for retroviral particle integrity after cell membrane assembly of Gag complexes. J Virol 76:11853-65.
Wang, S. W., K. Noonan, and A. Aldovini. 2004. Nucleocapsid-RNA interactions are essential to structural stability but not to assembly of retroviruses. J Virol 78:716-23.
Yamada, N., K. Tanihara, A. Takada, T. Yorihuzi, M. Tsutsumi, H. Shimomura, T. Tsuji, and T. Date. 1996. Genetic organization and diversity of the 3' noncoding region of the hepatitis C virus genome. Virology 223:255-61.
Yanagi, M., M. St Claire, S. U. Emerson, R. H. Purcell, and J. Bukh. 1999. In vivo analysis of the 3' untranslated region of the hepatitis C virus after in vitro mutagenesis of an infectious cDNA clone. Proc Natl Acad Sci U S A 96:2291-5.
Yasui, K., T. Wakita, K. Tsukiyama-Kohara, S. I. Funahashi, M. Ichikawa, T. Kajita, D. Moradpour, J. R. Wands, and M. Kohara. 1998. The native form and maturation process of hepatitis C virus core protein. J Virol 72:6048-55.
Zhang, Y., H. Qian, Z. Love, and E. Barklis. 1998. Analysis of the assembly function of the human immunodeficiency virus type 1 gag protein nucleocapsid domain. J Virol 72:1782-9.
Zhao, W., G. Y. Liao, Y. J. Jiang, and S. D. Jiang. 2003. No requirement of HCV 5'NCR for HCV-like particles assembly in insect cells. World J Gastroenterol 9:2226-31.