簡易檢索 / 詳目顯示

研究生: 葉俊逸
Yeh, Chun-yi
論文名稱: 交流電輔助N型氮化鎵光電化學反應氧化圖形壓印之研究
AC bias-assisted photoelectrochemical oxidation of n-GaN in DI water with imprint
指導教授: 賴韋志
Lai, Wei-chih
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 72
中文關鍵詞: 壓印光電化學反應氮化鎵氧化
外文關鍵詞: imprint, photoelectrochemical, gallium oxide
相關次數: 點閱:64下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究交流電輔助光致化學氧化法在n型氮化鎵材料上的壓印。對於各種氧化的條件與壓印圖形的控制作了一系列的探討。由實驗可知,在n型氮化鎵上壓印出的氧化圖形結果與壓印時的壓力有絕對的關係,當壓印壓力值小於9kg/cm2時,無法完整在n型氮化鎵材料上壓印出氧化圖形。
    在外加交流操作偏壓值 3V以下,氧化圖形的氧化速率隨著外加的交流操作偏壓增加而增加,這是由於外加偏壓增加造成 的濃度增加所影響。繼續加大交流操作偏壓,當偏壓值大於 3V以後,氧化速率開始趨於平緩大約12 nm/min,且不再隨著偏壓的增加而有明顯的增加。
    更進一步的實驗結果顯示,氧化層厚度與氧化的時間,呈現線性關係,即使厚度高於350nm,在本實驗裡依然還沒看到飽和的情形產生。在壓力值9kg/cm2、外加交流操作偏壓 3V與 5V的壓印條件下,可以在n型氮化鎵材料表面,壓印出帶有圖形且厚度可高於350nm的氮化鎵氧化物。

    In this study, the AC applied photo-electro-chemical (PEC) oxidation is applied to n-type GaN by imprint. We would like to report the results of the AC applied PEC oxidation with different oxidation conditions. We find that the defined n-GaN oxidation areas were strongly depended on the pressure of the imprint. The imprinted n-GaN oxidation areas could not be well defined when the imprint pressure was less than 9kg/cm2.
    Oxidation rate increases with increasing the applied AC voltage as the applied voltage less than 3V and then the oxidation rate saturates at 12nm/min as the applied AC voltage larger than 3V. The increase of the oxidation rate with increasing applied AC voltage might be from the increase of concentration with increasing applied AC voltage.
    Moreover, the thickness of the oxidation layer was linearly increased with the oxidation time and saturation in oxide thickness is not observed in this study. The thickness of the imprinted gallium oxide on n-GaN layer could be more than 350 nm under an imprint pressure of 9 kg/cm2 and applied AC voltages of 3V and 5V.

    摘要 I Abstract II 致謝 III 目錄 V 表目錄 VIII 圖目錄 IX 第一章 序論 1 1.1 前言 1 1.2 研究背景 3 1.3 研究動機 6 第二章 實驗原理與量測儀器 7 2.1 實驗原理 7 2.2 量測儀器 9 2.2.2 能量散射光譜儀( EDS ) 11 2.2.3 2維表面粗度儀 (α-step) 12 第三章 實驗儀器架構與PEC壓印氧化圖形製程 13 3.1 製程儀器 13 3.1.1 紫外線固化式奈米壓印機 13 3.1.2 脈衝式電源供應器 15 3.1.3 電子束蒸鍍機 15 3.2 Mold與Sample製作 16 3.2.1 Mold 基板材料選用 16 3.2.2 mold製作 18 3.2.3 sample電極製作 21 3.3 PEC壓印氧化法實驗流程 21 第四章 結果與討論 26 4.1 壓力影響 26 4.1.1 不同壓力值對於mold影響 26 4.1.2 在不同壓力值下壓印之結果 30 4.1.3 壓印後氧化圖形線寬變化之原因 37 4.2 不同操作偏壓值下的氧化速率 39 4.3 時間對氧化厚度的影響 46 4.4 氧化圖形分析 57 4.4.1 氧化圖形邊緣突起原因 57 4.4.2 氧化圖形厚度與氧化圖形速率探討 63 第五章 結論與未來展望 68 5.1 結論 68 5.2 未來展望 69 參考文獻 70

    【1】S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures”, Jpn. J. Appl. Phys. Vol.34, L797 (1995).
    【2】 S. Nakamura, M. Senoh, S. Nagahama, and N. Iwasa, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes”, Jpn. J. Appl. Phys. Vol.35, L74, (1996).
    【3】 M. S. Shur, “GaN Based Transistors for High Power Applications”,
    Solid-State Electronics, Vol. 42, pp. 2131 (1998)
    【4】X. Wang and A. Yoshikawa, “Molecular beam epitaxy growth of GaN, AlN and InN”, Prog.Cryst.Growth Charact.Mater. Vol. 48-49, pp.42 (2004).
    【5】Yasushi Nanishi, Yoshiki Saito and Tomohiro Yamaguchi, “RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys”, Jpn. J. Appl. Phys. Part 1 Vol. 42, pp.2549(2003).
    【6】J. Wu and W. Walukiewicz, “Band gaps of InN and group III nitride
    alloys”, Superlattices Microstruct. Vol. 34, 63 (2003).
    【7】M. Passlack, N. E. J. Hunt, E. F. Schubert, G. J. Zydzik, M. Hong, J. P. Mannaerts, R. L. Opila, and R. J. Fischer, “Dielectric properties of electron-beam deposited Ga2Q3 films”, Appl. Phys. Lett. , Vol.64, pp.2715, (1994).
    【8】 M. Rebien and W. Henrion, “Optical properties of gallium oxide thin films”, Appl. Phys. Lett., vol.81, pp.250, (2002)
    【9】Myungil Kanga, Jong-Soo Leea, Sung-Kyu Sima, Byungdon Mina,“Structural and optical properties of as-synthesized, Ga2O3-coated, and Al2O3-coated GaN nanowires”,Thin Solid Films, vol.466, pp. 265– 271, (2004).
    【10】Bo Yang and Patrick Fay “Etch rate and surface morphology control in photoelectrochemical etching of GaN”,American Vacuum Society, vol.22, pp.1750, (2004).
    【11】T. Wolff, M. Rapp, “Photoelectrochemical Wet Etching and CV-Profiling of Nitride Semiconductors”, IEEE, pp.230, (2004).
    【12】Bo Yang and Patrick Fay, “Bias-enhanced lateral photoelectrochemical etching of GaN for the fabrication of undercut micromachined system structures”, American Vacuum Society, vol.24, pp.1337, (2006).
    【13】Nanako SHIOZAKI, Taketomo SATO, and Tamotsu HASHIZUME, “Formation of Thin Native Oxide Layer on n-GaN by Electrochemical Process in Mixed Solution with Glycol and Water”, Japanese Journal of Applied Physics, Vol.46, pp.1471–1473,(2007).
    【14】L.-H. Peng, C.-H. Liao, and Y.-C. Hsu, “Photoenhanced wet oxidation of gallium nitride”, Appl. Phys. Lett. , Vol,76 , pp.511, (2000).
    【15】E. ALPTEKIN, H.G.YU, E.OZBAY, and O.AKTAS, “Low Damage Etching of GaN Surfaces via Bias-Assisted Photoenhanced Electrochemical Oxidation in Deionized Water”, Journal of ELECTRONIC MATERIALS, Vol. 36, No.6, (2007).
    【16】J. W. Seo, C. S. Oh, H. S. Jeong, J. W. Yang,a) K. Y. Lim, C. J. Yoon, and H. J. Lee, “Bias-assisted photoelectrochemical oxidation of n-GaN in H2O”, Appl. Phys. Lett. , Vol,81 , pp.1029, (2002)
    【17】Fang-I LAI, Wei-Yo CHEN, Chih-Chiang KAO, Hao-Chung KUO and Shing-Chung WANG, “Light-Output Enhancement of GaN-Based Light-Emitting Diodes by Photoelectrochemical Oxidation in H2O ”, Japanese Journal of Applied Physics , vol.45, pp. 6927–6929, (2006).
    【18】Chia-Feng Lin, Zhong-Jie Yang, Jing-Hui Zheng, and Jing-Jie Dai “High-Efficiency InGaN Light-Emitting Diodes Via Sidewall Selective Etching and Oxidation”, Journal of The Electrochemical Society, vol.153, pp.39, (2006).
    【19】Yoshitaka Okada, Yoshimasa Iuchi, and Mitsuo Kawabe, “Basic properties of GaAs oxide generated by scanning probe microscope tip-induced nano-oxidation process”, journal of appled physics, vol.88, pp.1136, (2000).
    【20】A. Hirai, K.M. Itoh, “Site selective growth of Ge quantumdots on AFM-patterned Si substrates”, Physica E, vol.23, pp.248, (2004).

    下載圖示 校內:2011-08-13公開
    校外:2011-08-13公開
    QR CODE