簡易檢索 / 詳目顯示

研究生: 蘇俊豪
Su, Jyun-Hao
論文名稱: 快速退火影響非晶矽材料在不同結構非致冷式微輻射遠紅外線感測器應用之研究
Effect of RTA on amorphous silicon for different structures infrared microbolometer application
指導教授: 方炎坤
Fang, Yean-Kuen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 99
中文關鍵詞: 遠紅外線微輻射熱感測器非晶矽微機電技術溫度電阻係數TCR
外文關鍵詞: far-infrared radiant, microbolometer, amorphous silicon, temperature of the coefficient
相關次數: 點閱:92下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在探討快速退火(RTA)對於以非晶矽材料(α-Si)為感測元件的遠紅外線微輻射熱感測器的影響。人利用不同光罩設計出九種不同正方形之元件結構。同時改變元件尺寸,由15um至50um,以5um為一個,共得8種不同尺寸。最後,使用各種不同溫度的快速熱退火 (分別為400oC、450 oC、500 oC、550 oC,保持退火時間為1分鐘)去探討此72種元件之電性與溫度電阻係數(TCR)之變化。
    此外,利用SEM分別量測薄膜結晶及觀察表面結構和厚度藉以探討α-Si薄膜材料的特性及做最佳製程選擇。元件I-V特性則以HP4156半導體量測分析儀來進行量測,並利用變溫系統控制量測腔體之溫度。實驗結果發現:隨著退火溫度之提升,感測層α-Si之電阻有明顯下降且TCR值皆大於最低需求的2%;因而元件感測能力也隨著操作溫度升高而增加。但當退火溫度提高至550 oC時,雖然電阻值仍然下降,但其TCR值卻小於2%,也就是元件已被損壞。
    歸納不同設計元件之測量數據,吾人發現Type P (金屬與α-Si皆為 double leg 者)為最佳設計。雖然其雙層皆為Double Leg設計,電阻值會較大, 但此設計的熱隔絕也較佳,因此可得較高TCR值來彌補。又當雙層之設計越緊密吻合時,元件對於溫度感測之TCR特性及靈敏度也較高。再結合懸浮結構,可得到特性最佳之微輻感測器。

    In this thesis, we discuss the effect of using rapid thermal anneal (RTA) on the amorphous silicon (α-Si) applied in different structures infrared microbolometers as sensing element. Using various masks, we have designed nine split structures for the infrared sensor, i.e., a square structure with size length from 15um to 50um increased with a step of 5um. Then we investigated electrical resistance and TCR (temperature coefficient of resistance) of the α-Si element, and the sensing characteristics of the sensors. The HP4156 semiconductor element measuring analyzer was applied to explore electrical and TCR values of the α-Si after a RTA with annealing temperature from 400˚C to 550 ˚C varied per 50 ˚C and kept all of the annealing time at 1 minute. We found that, as increasing the anneal temperature, the α-Si sensing layer resistance decreased significantly, but their TCR values were all still above the 2% minimum requirement. In addition, among the all designs, the type P has gained the best sensing performance. Even in this design, its resistance is large for the double leg structure used in both metal contact and α-Si sensing layers, but the double leg can achieve a better thermal isolation, and thus obtains a higher TCR value to compensate the decreased resistance value. Besides, the less space between the legs, the higher in sensitivity and the better in TCR characteristics have been observed.

    目錄 中文摘要.....III EXTENT ABSTRACT.....V 致謝.....X 目錄.....XI 圖表目錄.....XIII 第一章 導論.....1 1.1研究背景.....1 1.2研究動機.....3 1.3論文架構.....5 第二章 基礎理論.....6 2.1紅外線感測系統.....6 2.1.1輻射理論.....6 2.1.2紅外線簡介.....7 2.2元件基礎理論.....8 2.2.1紅外線感測器分類.....8 2.2.2微輻感測器之介紹.....12 2.2.3參數討論.....16 2.3光罩設計.....18 第三章 實驗與量測儀器和製程步驟.....20 3.1感測器成長系統.....20 3.1.1 FSE Cluster PVD-多層金屬濺鍍系統.....20 3.1.2快速退火系統(Rapid Thermal Annealing System)..... 24 3.1.3高密度電漿化學氣相沉積系統(HDPCVD).....25 3.1.4 Mattson ASPEN Asher乾式光阻去除機.....26 3.2感測器量測系統 .....28 3.2.1高解析場發射掃描式電子顯微鏡(FE-SEM).....28 3.2.2 HP4156半導體參數分析儀.....28 3.2.3變溫系統.....29 3.3製程步驟.....30 3.3.1電阻式微輻感測器.....30 3.3.2懸浮式微輻感測器.....30 3.4量測實驗.....32 第四章 結果與討論.....33 4.1元件設計介紹.....33 4.2 PIXEL SIZE電性分析.....33 4.3光罩設計之電性分析.....34 4.4快速熱退火(RTA)之電性比較分析.....35 4.5實驗結果分析.....37 第五章 結論與未來展望.....38 5.1 結論 .....38 5.2 未來展望.....40 ※參考文獻.....41 ※附表.....43 ※附圖.....52

    ※參考文獻
    [1]Rogalski, Antoni., "Infrared detectors 2nd ed,"Taylor&Francis Group,2011.
    [2]C. Li, G. D. Skidmore, C. Howard, C. J. Han, L. Wood, D. Peysha, et al., "Recent development of ultra small pixel uncooled focal plane arrays at DRS," 2007, pp. 65421Y-65421Y-12.
    [3]M. L. Hai, M. Hesan, J. Lin, Q. Cheng, M. Jalal, A. J. Syllaios, et al., "Uncooled Silicon Germanium Oxide (SixGeyO1-x-y) Thin Films for Infrared Detection," Infrared Technology and Applications Xxxviii, Pts 1 and 2, vol. 8353, 2012.
    [4]C. Li, G. D. Skidmore, and C. J. Han, "Uncooled Infrared Sensor Development Trends and Challenges," Infrared Sensors, Devices, and Applications and Single Photon Imaging Ii, vol. 8155, 2011.
    [5]M. Almasri, X. Bai, and J. Castracane, "Amorphous silicon two-color microbolometer for uncooled IR detection," IEEE Sensors Journal, vol. 6, pp. 293-300, 2006.
    [6]C. Li, G. D. Skidmore, and C. J. Han, "Uncooled VOx Infrared Sensor Development and Application," Infrared Technology and Applications Xxxvii, vol. 8012, 2011.
    [7]Y. S. Kim, T. H. Kim, G. T. Kim, B. T. Lim, S. K. Lim, H. D. Lee, et al., "Uncooled Microbolometer Arrays With High Responsivity Using Meshed Leg Structure," Ieee Photonics Technology Letters, vol. 25, pp. 2108-2110, Nov 1 2013.
    [8]P. W. Kruse, "Can the 300K radiating background noise limit be attained by uncooled thermal imagers?," Infrared Technology and Applications Xxx, vol. 5406, pp. 437-446, 2004.
    [9]H. Oulachgar, L. Marchese, C. Alain, P. Topart, B. Tremblay, S. Ilias, et al., "Development of MEMS Microbolometer Detector for THz Applications," 35th International Conference on Infrared, Millimeter, and Terahertz Waves (Irmmw-Thz 2010), 2010.
    [10]P. Lambkin, B. Lane, I. O'Heifearnan, J. Gillham, and R. Watton, "Characterisation of CMOS compatible uncooled microbolometers," 2000 Ieee/Leos International Conference on Optical Mems, pp. 99-100, 2000.
    [11]F. Niklaus, C. Jansson, A. Decharat, J. E. Kallhammer, H. Pettersson, and G. Stemme, "Uncooled infrared bolometer arrays operating in a low to medium vacuum atmosphere: Performance model and tradeoffs," Infrared Technology and Applications Xxxiii, vol. 6542, 2007.
    [12]E. Mottin, A. Bain, J.-L. Martin, J.-L. Ouvrier-Buffet, S. Bisotto, J.-J. Yon, et al., "Uncooled amorphous silicon technology enhancement for 25-μm pixel pitch achievement," 2003, pp. 200-207.
    [13]D. Fujisawa, T. Maegawa, Y. Ohta, Y. Kosasayama, T. Ohnakado, H. Hata, et al., "Two-million-pixel SOI diode uncooled IRFPA with 15μm pixel pitch," 2012, pp. 83531G-83531G-13.
    [14]R. Murphy, M. Kohin, B. Backer, N. Butler, R. Blackwell, and T. Allen, "Recent developments in uncooled IR technology," Infrared Detectors and Focal Plane Arrays Vi, vol. 4028, pp. 12-16, 2000.
    [15]F. Niklaus, J. Pejnefors, M. Dainese, M. Haggblad, P. E. Hellstrom, U. Wallgren, et al., "Characterization of transfer bonded silicon bolometer arrays," Infrared Technology and Applications Xxx, vol. 5406, pp. 521-530, 2004.
    [16]S. Han, C. H. Chun, C. S. Han, and S. M. Park, "Parameterized Simulation Program with Integrated Circuit Emphasis Modeling of Two-level Microbolometer," Journal of Electrical Engineering & Technology, vol. 6, pp. 270-274, Mar 2011.
    [17]C. Li, C. J. Han, and G. Skidmore, "Overview of DRS uncooled VOx infrared detector development," Optical Engineering, vol. 50, Jun 2011.
    [18]C. J. Alicandro and R. W. DeMarco, "1024 x 768 XGA Uncooled Camera Core achieves new levels of performance in a small package," Infrared Technology and Applications Xxxvii, vol. 8012, 2011.
    [19]B. Szentpáli, "Noise Limitations of Miniature Thermistors and Bolometers
    " in Noise Limitations of Miniature Thermistors and Bolometers, Prof. Unil Perera (Ed.), Ed., ed, 2012.
    [20]K. V. Chizh, V. A. Chapnin, V. P. Kalinushkin, V. Y. Resnik, M. S. Storozhevykh, and V. A. Yuryev, "Metal silicide/poly-Si Schottky diodes for uncooled microbolometers," Nanoscale Research Letters, vol. 8, Apr 17 2013.
    [21]F. Niklaus, C. Vieider, and H. Jakobsen, "MEMS-Based uncooled infrared bolometer Arrays - A review," Mems/Moems Technologies and Applications Iii, vol. 6836, 2008.
    [22]G. D. Skidmore, C. J. Han, and C. Li, "Uncooled Microbolometers at DRS and Elsewhere Through 2013," Image Sensing Technologies: Materials, Devices, Systems, and Applications, vol. 9100, 2014.
    [23]C. Li, C. J. Han, G. D. Skidmore, G. Cook, K. Kubala, R. Bates, et al., "Low Cost Uncooled VOx Infrared Camera Development," Infrared Technology and Applications Xxxix, vol. 8704, 2013

    無法下載圖示 校內:2020-06-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE