| 研究生: |
周昀柔 Chou, Yun-Jou |
|---|---|
| 論文名稱: |
孟宗竹H型膠合集成梁的產製與靜曲行為 Bending behaviour and manufacturing process of glue laminated w-shape beam made of phyllostachys edulis |
| 指導教授: |
葉玉祥
Yeh, Yu-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 膠合竹 、H型梁 、孟宗竹 、靜曲行為 |
| 外文關鍵詞: | glue laminated bamboo, w-shape beam, phyllostachys edulis, bending behaviour |
| 相關次數: | 點閱:47 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來環保意識抬頭,現代木構產業盛行,但木材生長時間長,需仰賴進口,而竹材生長快速,若以竹代木能促進台灣產業也能節能減碳。台灣竹林豐富,然而天然材料易受天氣影響,無法規格化,使竹材產業沒落。隨著時代進步,竹材膠合技術成熟,能標準化出品。藉由蒐集文獻與訪談廠商可以發現,現今膠合構件型式多樣,但考量材料效益、接合型態與加工製作便利性,比起圓筒型、C型構件,H型構製作快速,並且國內外已有許多相關研究。因此本研究嘗試開發H型構件,以在地材料孟宗竹製成膠合竹板作為研究對象,主要探討其膠合竹H型構件的靜曲行為。
本研究H型梁試體尺寸為10"×" 11.5"×" 180 cm,翼板與腹板接合型態為嵌接接合,並使用高強度木工乳膠作為接著劑。配置參數為膠合板的膠合型式,有兩組試體型態,一組翼板與腹板皆使用交叉板,另一組翼板使用交叉板,腹板使用側壓板。每組各六根試體,共十二根試體。設計完成後委託國內專業廠商生產製作,包含其上下游的製程,而後進行三點抗彎試驗,將所測得數據繪製成荷載-撓度圖,探討垂直荷載與梁中心撓度的關係,統整其極限強度、降伏強度、抗彎剛度、彎曲勁度與延展性,分類梁在受力過程中的破壞模式,隨後和相關文獻延伸討論比較,評估其力學行為的異同。
實驗結果顯示,翼板使用交叉板比使用側壓板在抗彎剛度高出約5%,彎曲勁度高4%,降伏強度高11%,極限強度高4%,但在延展性方面腹板使用側壓板比使用交叉板高出約30%性能。在破壞方面,破壞型態可分為八種,分別為滑動、壓壞、分離、拉力破壞、剪力破壞、併發破壞、纖維破壞與翼板破壞。所有試體因彎矩造成剪力破壞、拉力破壞與壓壞,在腹板中性軸以上主要出現剪力破壞,破壞形態呈現Z字型破壞;腹板中性軸以下主要產生拉力破壞和些許併發破壞與纖維破壞。
為了解本研究之成效,最終數據與國外文獻試體進行比對,配合與相關研究之實驗結果的討埨,發現梁的彎曲勁度偏低,且實驗最後翼板與腹板滑動、分離,說明可能目前所採用的接著劑(高強度木工乳膠)強度不足。
This study mainly attempts to develop a glue-laminated w-shape beam made of phyllostachys edulis and evaluate its mechanical performance. All specimens are assembled with the same profiles and dimensions, and their webs and flanges are manufactured in different laminating layouts. As structural beams, the bending behaviour of glue laminated w-shape bamboo must be determined. This study proposes a three-point bending test to appraise the developed bamboo beams' stiffness, bending resistance and failure mode.
According to the load-deflection curves, two profiles of laminated bamboo beams reveal different characteristics. The load-deflection curves of the two types of beams demonstrate similar outcomes before the yield load, while the curves after the ultimate load reveal significant discrepancies. The divergent behaviour of the post-ultimate phase can be attributed to the deviation of bamboo panels or the connection between flanges and webs.
The bending test found eight modes of failure. In prior to the ultimate load, only the mode I, i.e. the relative movement between webs and flanges, occurred. This is the most representative failure before the beams failed or the load-deflection curves slumped significantly. Failure modes II to VIII generated after the ultimate load. Although they are out of the scope of normal structural analyses, their pattern and position are worthy of documentation.
To assess the effectiveness of this study, the final data were compared with relevant foreign literature. Additionally, towards the end of the experiment, sliding and separation between the flanges and webs were observed, indicating a possible inadequacy in the strength of the adhesive currently used.
[1]社團法人臺灣竹會(2020),從竹子到竹房子:給所有人的竹構築指南。
[2]行政院農業委員會林務局(2020),全國森林資源調查統計資料第四次森林資源調查報告(最新版) 。
[3]Obataya, Eiichi., Kitin, Peter., & Yamauchi, Hidefumi. (2007). Bending characteristics of bamboo (Phyllostachys pubescens) with respect to its fiber–foam composite structure. Wood Science and Technology, 41, 385-400.
[4]Chen, Meiling., Ye, Ling., Li, Hui., Wang, Ge., Chen, Qi., Fang, Changhua., Dai, Chumping., & Fei, Benhua. (2020). Flexural strength and ductility of moso bamboo. Construction and Building Materials, 246, 118414.
[5]馬子斌(1964)台灣產主要竹材之物理性質及力學性質,臺灣省林業試驗所報告。
[6]游家誠(2009)古蹟歷史建築修復施作過程竹材保護棚架系統之研擬與應用,國立成功大學建築學系碩士論文。
[7]鄭少耘(2022)台灣常用竹構接合型式分類與結構性能試驗,國立成功大學建築學系碩士論文。
[8]Correal, Juan F., Echeverry, Juan S., Ramírez, Fernando., &Yamín, Luis E. (2014). Experimental evaluation of physical and mechanical properties of Glued Laminated Guadua angustifolia Kunth. Construction and Building Materials, 73, 105-112.
[9]Wei, Yand., Chen, Si., Tang, Shuaifeng., Zheng, Kaiqi., & Wang, Jiaqing. (2022). Mechanical behavior of bamboo composite tubes under axial compression. Construction and Building Materials, 339, 127681.
[10] Paniagua, Viviana., & Moya, Roger. (2014). Flexural Performance of I-Joist Fabricated with Glue-Laminated Bamboo and Gmelina arborea Plywood. Open Journal of Civil Engineering, 4, 209-216.
[11] Chen, Si., Yang, Wei., Zhao, Kang., Dong, Fenghui., & Huang, Linjie. (2022). Experimental investigation on the flexural behavior of laminated bamboo-timber I-beams. Journal of Building Engineering, 46, 103651.
[12]林裕祥, 陳周宏, 蔡崑堭(2003)孟宗竹集成工字梁之抗彎與剪斷效應,林產工業,22卷2期,107-117。
[13]Tang, Z., Shan, B., Li, W.G., Peng, Q., & Xiao, Y. (2019). Structural behavior of glubam I-joists. Construction and Building Materials, 224, 292-305
[14] Wu, Wenqing. (2014). Experimental Analysis of Bending Resistance of Bamboo Composite I-Shaped Beam. Journal of Bridge Engineering, 10, 1061.
[15] Yang, Xiaomeng., Sun, Cong., Huo, Faren., Gong, Yong., & Sun, Yuhui. (2022). Shear Property and Uniform Vertical Load Capacity of Bamboo I-Beams. Forest, 13,826.
[16]中華民國國家標準(2013),CNS454 O2005木材抗彎試驗法Wood-Determination of static bending properties.
[17]中華人民共和國國家標準(2012),GB/T 28985-2012建築結構用木工字梁 Wood I-jiost for building structures.
[18]日本建築學會,木質構造設計規準.同解說-許容応力度.許容耐力設計法-(第四版第二刷),日本建築学会。