| 研究生: |
李育誠 Lee, Yu-Cheng |
|---|---|
| 論文名稱: |
探討 Aurora A/hBora 複合物和 Pin1 之交互作用
對於進入有絲分裂期之調控 The interplay of Aurora A/hBora complex with Pin1 in the regulation of mitotic entry |
| 指導教授: |
呂佩融
Lu, Pei-Jung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 156 |
| 中文關鍵詞: | 脯胺酸異構酶 、細胞週期 、G2/M 過渡期 、Aurora A/hBora 複合物 、後轉譯修飾 |
| 外文關鍵詞: | prolyl isomerase, G2/M transition, cell cycle, Aurora A/hBora complex, post-translational modification |
| 相關次數: | 點閱:92 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Pin1 是脯胺酸異構酶中,第一個被證明在酵母菌及哺乳類細胞中,與細胞分裂
相關。有趣的是,Pin1 對於G2 時期,扮演著負向調控之角色,而其機制仍不清楚。
此外,Pin1-WW domain 中Ser16 位點之磷酸化,其生理意義與細胞中哪一個激酶負
責此位點之磷酸化也尚未知道。在此研究,針對細胞週期G2/M 過渡期中,探討Pin1
Ser16 位點磷酸化與Aurora A/hBora 複合物調控細胞進入有絲分裂期之關係進行探
討。我們發現在G2 時期,GSK3β 能磷酸化hBora 於Ser274 及Ser278 兩個位點上,
其磷酸化可促進細胞進入有絲分裂期; 此外,Aurora A 可磷酸化Pin1 於Ser16 位點
上,其磷酸化能抑制Pin1 與其受質結合的功能,而降低Pin1 在G2/M 過渡期的功能。
有趣的是,hBora Ser274 及Ser278 的磷酸化位點,恰為Pin1 的結合位點。當過度表
現Pin1 於細胞中,Pin1 能戰勝細胞中Aurora A 對Pin1 的抑制結果,藉由結合hBora
而促使hBora 經由β-TrCP 而提早降解,導致Aurora A/hBora 複合物活化Plk1 之能力
下降,而延遲細胞進入有絲分裂期。而當細胞進入有絲分裂期時,抑制Pin1 表現或
活性,則會導致hBora 蛋白的累積而伴隨著有絲分裂進行的延遲,意味著Pin1 可以
回饋調控有絲分裂期中hBora 蛋白的降解,而確保有絲分裂期的進行及離開。總結而
言,此研究藉由探討Aurora A-Pin1-hBora-GSK3β 分子間的後轉譯修飾及交互作用,了解細胞如何調控進入以及離開有絲分裂期。
此外,當細胞受到損害,Pin1 能調控p53 的穩定性,並增加p53 在DNA 損害
下G2/M 檢查點之功能。Pin1 和Aurora A 已被報導過度表現於人類癌細胞當中,且
皆參與G2/M 過渡期的調控。而Pin1-Ser16 磷酸化的表現,在癌細胞中尚未被分析。
因此,Aurora A 造成Pin1-Ser16 之磷酸化,是否對於癌細胞中G2/M 檢查點功能之缺失,以及其是否與細胞易產生癌化之相關性,值得未來進一步探討。
Pin1 is the first prolyl isomerase to be identified that is involved in cell division in
both yeast and mammalian cells. Interestingly, the mechanism of Pin1 acts as a negative
regulator of mitotic activity in G2 remains unclear. Besides, the biological significant and
which kinase is responsible for Pin1-Ser16 phosphorylation in vivo also remain unknown.
In this study, the functional link of Ser16 phosphorylation with Aurora A/hBora
complex-mediated mitotic entry is investigated at the G2/M transition. We uncovered a
suppressed role of Pin1 in regulating Aurora A/hBora complex activity. GSK3β-mediated
Ser274 and Ser278 phosphorylation of hBora is involved in mitotic entry and that is
characterized as a novel Pin1 binding protein. Aurora A phosphorylates Pin1 at Ser16 and
suppresses Pin1 G2/M function to prevent the premature hBora degradation mediated
by β-TrCP, whereas Pin1 overexpression can override the suppressed role of Pin1 by
Aurora A and therefore delays mitotic entry. Furthermore, Pin1 depletion or inhibition
results in marked hBora accumulation and concomitant with delayed mitotic progression,
indicating that Pin1 feedback promotes hBora degradation in mitosis to ensure mitotic
progression and exit. In conclusion, the cell cycle progression control from mitotic entry to
exit is regulated by the post-translational modification and interaction of Aurora
A-Pin1-hBora-GSK3β axis.
Furthermore, when cells encounter stress, such as DNA damage, Pin1 can stabilize
p53 and increase p53-mediated G2/M checkpoint response. In addition, Pin1 and Aurora A
are overexpressed in human cancers and both of their function are related to G2/M
regulation. The status of Pin1-Ser16 phosphorylation has not yet been clarified in human
cancers. Accordingly, it is interesting to investigate whether Aurora A-mediated Pin1
III
Ser16 phosphorylation is associated with the impaired G2/M checkpoint response in
cancers and whether that can increase the susceptibility of cell transformation in the future.
References
Abrieu, A., Brassac, T., Galas, S., Fisher, D., Labbe, J. C., and Doree, M. (1998).
The Polo-like kinase Plx1 is a component of the MPF amplification loop at the
G2/M-phase transition of the cell cycle in Xenopus eggs. J Cell Sci 111 ( Pt
12), 1751-1757.
Albert, A. L., Lavoie, S. B., and Vincent, M. (2004). Multisite phosphorylation of
Pin1-associated mitotic phosphoproteins revealed by monoclonal antibodies
MPM-2 and CC-3. BMC Cell Biol 5, 22.
Atherton-Fessler, S., Parker, L. L., Geahlen, R. L., and Piwnica-Worms, H. (1993).
Mechanisms of p34cdc2 regulation. Molecular and cellular biology 13,
1675-1685.
Bao, L., Kimzey, A., Sauter, G., Sowadski, J. M., Lu, K. P., and Wang, D. G.
(2004). Prevalent overexpression of prolyl isomerase Pin1 in human cancers.
Am J Pathol 164, 1727-1737.
Barr, F. A., Sillje, H. H., and Nigg, E. A. (2004). Polo-like kinases and the
orchestration of cell division. Nature reviews Molecular cell biology 5,
429-440.
Bayliss, R., Sardon, T., Vernos, I., and Conti, E. (2003). Structural basis of
Aurora-A activation by TPX2 at the mitotic spindle. Molecular cell 12,
851-862.
Berdnik, D., and Knoblich, J. A. (2002). Drosophila Aurora-A is required for
centrosome maturation and actin-dependent asymmetric protein localization
during mitosis. Current biology : CB 12, 640-647.
Bischoff, J. R., Anderson, L., Zhu, Y., Mossie, K., Ng, L., Souza, B., Schryver, B.,
Flanagan, P., Clairvoyant, F., Ginther, C., et al. (1998). A homologue of
Drosophila aurora kinase is oncogenic and amplified in human colorectal
cancers. The EMBO journal 17, 3052-3065.
Bunz, F., Dutriaux, A., Lengauer, C., Waldman, T., Zhou, S., Brown, J. P., Sedivy,
J. M., Kinzler, K. W., and Vogelstein, B. (1998). Requirement for p53 and p21
to sustain G2 arrest after DNA damage. Science 282, 1497-1501.
Canman, C. E., and Lim, D. S. (1998). The role of ATM in DNA damage responses
and cancer. Oncogene 17, 3301-3308.
Chan, E. H., Santamaria, A., Sillje, H. H., and Nigg, E. A. (2008). Plk1 regulates
mitotic Aurora A function through betaTrCP-dependent degradation of hBora.
Chromosoma 117, 457-469.
Chan, T. A., Hermeking, H., Lengauer, C., Kinzler, K. W., and Vogelstein, B.
69
(1999). 14-3-3Sigma is required to prevent mitotic catastrophe after DNA
damage. Nature 401, 616-620.
Crenshaw, D. G., Yang, J., Means, A. R., and Kornbluth, S. (1998). The mitotic
peptidyl-prolyl isomerase, Pin1, interacts with Cdc25 and Plx1. The EMBO
journal 17, 1315-1327.
de Carcer, G., do Carmo Avides, M., Lallena, M. J., Glover, D. M., and Gonzalez,
C. (2001). Requirement of Hsp90 for centrosomal function reflects its
regulation of Polo kinase stability. EMBO J 20, 2878-2884.
do Carmo Avides, M., Tavares, A., and Glover, D. M. (2001). Polo kinase and Asp
are needed to promote the mitotic organizing activity of centrosomes. Nat Cell
Biol 3, 421-424.
Driver, J. A., and Lu, K. P. (2010). Pin1: a new genetic link between Alzheimer's
disease, cancer and aging. Curr Aging Sci 3, 158-165.
Eckerdt, F., and Maller, J. L. (2008). Kicking off the polo game. Trends in
biochemical sciences 33, 511-513.
Eckerdt, F., Yuan, J., Saxena, K., Martin, B., Kappel, S., Lindenau, C., Kramer, A.,
Naumann, S., Daum, S., Fischer, G., et al. (2005). Polo-like kinase 1-mediated
phosphorylation stabilizes Pin1 by inhibiting its ubiquitination in human cells.
J Biol Chem 280, 36575-36583.
Eyers, P. A., and Maller, J. L. (2004). Regulation of Xenopus Aurora A activation
by TPX2. The Journal of biological chemistry 279, 9008-9015.
Ferrari, S., Marin, O., Pagano, M. A., Meggio, F., Hess, D., El-Shemerly, M.,
Krystyniak, A., and Pinna, L. A. (2005). Aurora-A site specificity: a study with
synthetic peptide substrates. Biochem J 390, 293-302.
Fisher, D., Krasinska, L., Coudreuse, D., and Novak, B. (2012). Phosphorylation
network dynamics in the control of cell cycle transitions. J Cell Sci 125,
4703-4711.
Fu, J., Bian, M., Jiang, Q., and Zhang, C. (2007). Roles of Aurora kinases in mitosis
and tumorigenesis. Molecular cancer research : MCR 5, 1-10.
Fukasawa, K., Choi, T., Kuriyama, R., Rulong, S., and Vande Woude, G. F. (1996).
Abnormal centrosome amplification in the absence of p53. Science 271,
1744-1747.
Fung, T. K., and Poon, R. Y. (2005). A roller coaster ride with the mitotic cyclins.
Seminars in cell & developmental biology 16, 335-342.
Furnari, B., Rhind, N., and Russell, P. (1997). Cdc25 mitotic inducer targeted by
chk1 DNA damage checkpoint kinase. Science 277, 1495-1497.
Giet, R., and Prigent, C. (1999). Aurora/Ipl1p-related kinases, a new oncogenic
70
family of mitotic serine-threonine kinases. Journal of cell science 112 ( Pt 21),
3591-3601.
Girardini, J. E., Napoli, M., Piazza, S., Rustighi, A., Marotta, C., Radaelli, E.,
Capaci, V., Jordan, L., Quinlan, P., Thompson, A., et al. (2011). A
Pin1/mutant p53 axis promotes aggressiveness in breast cancer. Cancer Cell 20,
79-91.
Giubettini, M., Asteriti, I. A., Scrofani, J., De Luca, M., Lindon, C., Lavia, P., and
Guarguaglini, G. (2011). Control of Aurora-A stability through interaction
with TPX2. Journal of cell science 124, 113-122.
Glover, D. M., Leibowitz, M. H., McLean, D. A., and Parry, H. (1995). Mutations
in aurora prevent centrosome separation leading to the formation of monopolar
spindles. Cell 81, 95-105.
Greene, L. A., and Tischler, A. S. (1976). Establishment of a noradrenergic clonal
line of rat adrenal pheochromocytoma cells which respond to nerve growth
factor. Proceedings of the National Academy of Sciences of the United States
of America 73, 2424-2428.
Gritsko, T. M., Coppola, D., Paciga, J. E., Yang, L., Sun, M., Shelley, S. A., Fiorica,
J. V., Nicosia, S. V., and Cheng, J. Q. (2003). Activation and overexpression
of centrosome kinase BTAK/Aurora-A in human ovarian cancer. Clinical
cancer research : an official journal of the American Association for Cancer
Research 9, 1420-1426.
Hennig, L., Christner, C., Kipping, M., Schelbert, B., Rucknagel, K. P., Grabley, S.,
Kullertz, G., and Fischer, G. (1998). Selective inactivation of parvulin-like
peptidyl-prolyl cis/trans isomerases by juglone. Biochemistry 37, 5953-5960.
Hirota, T., Kunitoku, N., Sasayama, T., Marumoto, T., Zhang, D., Nitta, M.,
Hatakeyama, K., and Saya, H. (2003). Aurora-A and an interacting activator,
the LIM protein Ajuba, are required for mitotic commitment in human cells.
Cell 114, 585-598.
Hoffmann, R., Metzger, S., Spengler, B., and Otvos, L., Jr. (1999). Sequencing of
peptides phosphorylated on serines and threonines by post-source decay in
matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J
Mass Spectrom 34, 1195-1204.
Hooper, C., Killick, R., and Lovestone, S. (2008). The GSK3 hypothesis of
Alzheimer's disease. J Neurochem 104, 1433-1439.
Hu, H., Columbus, J., Zhang, Y., Wu, D., Lian, L., Yang, S., Goodwin, J., Luczak,
C., Carter, M., Chen, L., et al. (2004). A map of WW domain family
interactions. Proteomics 4, 643-655.
71
Hutterer, A., Berdnik, D., Wirtz-Peitz, F., Zigman, M., Schleiffer, A., and Knoblich,
J. A. (2006). Mitotic activation of the kinase Aurora-A requires its binding
partner Bora. Developmental cell 11, 147-157.
Hwang, A., and Muschel, R. J. (1998). Radiation and the G2 phase of the cell cycle.
Radiation research 150, S52-59.
Izawa, D., and Pines, J. (2011). How APC/C-Cdc20 changes its substrate specificity
in mitosis. Nat Cell Biol 13, 223-233.
Jeng, Y. M., Peng, S. Y., Lin, C. Y., and Hsu, H. C. (2004). Overexpression and
amplification of Aurora-A in hepatocellular carcinoma. Clin Cancer Res 10,
2065-2071.
Katayama, H., Sasai, K., Kawai, H., Yuan, Z. M., Bondaruk, J., Suzuki, F., Fujii, S.,
Arlinghaus, R. B., Czerniak, B. A., and Sen, S. (2004). Phosphorylation by
aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53.
Nature genetics 36, 55-62.
Kimura, M., Kotani, S., Hattori, T., Sumi, N., Yoshioka, T., Todokoro, K., and
Okano, Y. (1997). Cell cycle-dependent expression and spindle pole
localization of a novel human protein kinase, Aik, related to Aurora of
Drosophila and yeast Ipl1. The Journal of biological chemistry 272,
13766-13771.
Korur, S., Huber, R. M., Sivasankaran, B., Petrich, M., Morin, P., Jr., Hemmings, B.
A., Merlo, A., and Lino, M. M. (2009). GSK3beta regulates differentiation and
growth arrest in glioblastoma. PLoS One 4, e7443.
Krystyniak, A., Garcia-Echeverria, C., Prigent, C., and Ferrari, S. (2006). Inhibition
of Aurora A in response to DNA damage. Oncogene 25, 338-348.
Kufer, T. A., Sillje, H. H., Korner, R., Gruss, O. J., Meraldi, P., and Nigg, E. A.
(2002). Human TPX2 is required for targeting Aurora-A kinase to the spindle.
The Journal of cell biology 158, 617-623.
Kumar, J. M., Brooks, D. P., Olson, B. A., and Laping, N. J. (1999). Sgk, a putative
serine/threonine kinase, is differentially expressed in the kidney of diabetic
mice and humans. J Am Soc Nephrol 10, 2488-2494.
Lane, H. A., and Nigg, E. A. (1996). Antibody microinjection reveals an essential
role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic
centrosomes. J Cell Biol 135, 1701-1713.
Laurie, D. J., and Seeburg, P. H. (1994). Regional and developmental heterogeneity
in splicing of the rat brain NMDAR1 mRNA. The Journal of neuroscience : the
official journal of the Society for Neuroscience 14, 3180-3194.
Lee, J., and Kim, M. S. (2007). The role of GSK3 in glucose homeostasis and the
72
development of insulin resistance. Diabetes Res Clin Pract 77 Suppl 1, S49-57.
Lee, T. H., Chen, C. H., Suizu, F., Huang, P., Schiene-Fischer, C., Daum, S., Zhang,
Y. J., Goate, A., Chen, R. H., Zhou, X. Z., and Lu, K. P. (2011a).
Death-associated protein kinase 1 phosphorylates Pin1 and inhibits its prolyl
isomerase activity and cellular function. Mol Cell 42, 147-159.
Lee, T. H., Pastorino, L., and Lu, K. P. (2011b). Peptidyl-prolyl cis-trans isomerase
Pin1 in ageing, cancer and Alzheimer disease. Expert Rev Mol Med 13, e21.
Li, D., Zhu, J., Firozi, P. F., Abbruzzese, J. L., Evans, D. B., Cleary, K., Friess, H.,
and Sen, S. (2003). Overexpression of oncogenic STK15/BTAK/Aurora A
kinase in human pancreatic cancer. Clinical cancer research : an official
journal of the American Association for Cancer Research 9, 991-997.
Liou, Y. C., Zhou, X. Z., and Lu, K. P. (2011). Prolyl isomerase Pin1 as a molecular
switch to determine the fate of phosphoproteins. Trends Biochem Sci 36,
501-514.
Littlepage, L. E., Wu, H., Andresson, T., Deanehan, J. K., Amundadottir, L. T., and
Ruderman, J. V. (2002). Identification of phosphorylated residues that affect
the activity of the mitotic kinase Aurora-A. Proceedings of the National
Academy of Sciences of the United States of America 99, 15440-15445.
Liu, F., Stanton, J. J., Wu, Z., and Piwnica-Worms, H. (1997). The human Myt1
kinase preferentially phosphorylates Cdc2 on threonine 14 and localizes to the
endoplasmic reticulum and Golgi complex. Molecular and cellular biology 17,
571-583.
Liu, J., and Maller, J. L. (2005). Xenopus Polo-like kinase Plx1: a multifunctional
mitotic kinase. Oncogene 24, 238-247.
Lobrich, M., and Jeggo, P. A. (2007). The impact of a negligent G2/M checkpoint
on genomic instability and cancer induction. Nature reviews Cancer 7,
861-869.
Lu, K. P., Hanes, S. D., and Hunter, T. (1996). A human peptidyl-prolyl isomerase
essential for regulation of mitosis. Nature 380, 544-547.
Lu, K. P., and Zhou, X. Z. (2007). The prolyl isomerase PIN1: a pivotal new twist
in phosphorylation signalling and disease. Nat Rev Mol Cell Biol 8, 904-916.
Lu, P. J., Zhou, X. Z., Liou, Y. C., Noel, J. P., and Lu, K. P. (2002). Critical role of
WW domain phosphorylation in regulating phosphoserine binding activity and
Pin1 function. The Journal of biological chemistry 277, 2381-2384.
Lu, P. J., Zhou, X. Z., Shen, M., and Lu, K. P. (1999). Function of WW domains as
phosphoserine- or phosphothreonine-binding modules. Science 283,
1325-1328.
73
Macurek, L., Lindqvist, A., Lim, D., Lampson, M. A., Klompmaker, R., Freire, R.,
Clouin, C., Taylor, S. S., Yaffe, M. B., and Medema, R. H. (2008). Polo-like
kinase-1 is activated by aurora A to promote checkpoint recovery. Nature 455,
119-123.
Matsuoka, S., Huang, M., and Elledge, S. J. (1998). Linkage of ATM to cell cycle
regulation by the Chk2 protein kinase. Science 282, 1893-1897.
Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B., and Seeburg, P. H. (1994).
Developmental and regional expression in the rat brain and functional
properties of four NMDA receptors. Neuron 12, 529-540.
Nakajima, H., Toyoshima-Morimoto, F., Taniguchi, E., and Nishida, E. (2003).
Identification of a consensus motif for Plk (Polo-like kinase) phosphorylation
reveals Myt1 as a Plk1 substrate. The Journal of biological chemistry 278,
25277-25280.
Nakamura, K., Kosugi, I., Lee, D. Y., Hafner, A., Sinclair, D. A., Ryo, A., and Lu,
K. P. (2012). Prolyl isomerase Pin1 regulates neuronal differentiation via
beta-catenin. Molecular and cellular biology 32, 2966-2978.
Nigg, E. A. (2001). Mitotic kinases as regulators of cell division and its checkpoints.
Nature reviews Molecular cell biology 2, 21-32.
O'Farrell, P. H. (2001). Triggering the all-or-nothing switch into mitosis. Trends in
cell biology 11, 512-519.
Ohkura, H., Hagan, I. M., and Glover, D. M. (1995). The conserved
Schizosaccharomyces pombe kinase plo1, required to form a bipolar spindle,
the actin ring, and septum, can drive septum formation in G1 and G2 cells.
Genes Dev 9, 1059-1073.
Okamoto, S., Sherman, K., Bai, G., and Lipton, S. A. (2002). Effect of the
ubiquitous transcription factors, SP1 and MAZ, on NMDA receptor subunit
type 1 (NR1) expression during neuronal differentiation. Brain research
Molecular brain research 107, 89-96.
Peng, C. Y., Graves, P. R., Thoma, R. S., Wu, Z., Shaw, A. S., and Piwnica-Worms,
H. (1997). Mitotic and G2 checkpoint control: regulation of 14-3-3 protein
binding by phosphorylation of Cdc25C on serine-216. Science 277,
1501-1505.
Pietenpol, J. A., and Stewart, Z. A. (2002). Cell cycle checkpoint signaling: cell
cycle arrest versus apoptosis. Toxicology 181-182, 475-481.
Pizarro, J. G., Folch, J., Esparza, J. L., Jordan, J., Pallas, M., and Camins, A. (2009).
A molecular study of pathways involved in the inhibition of cell proliferation
in neuroblastoma B65 cells by the GSK-3 inhibitors lithium and SB-415286.
74
Journal of cellular and molecular medicine 13, 3906-3917.
Pugacheva, E. N., Jablonski, S. A., Hartman, T. R., Henske, E. P., and Golemis, E.
A. (2007). HEF1-dependent Aurora A activation induces disassembly of the
primary cilium. Cell 129, 1351-1363.
Qian, Y. W., Erikson, E., Li, C., and Maller, J. L. (1998). Activated polo-like kinase
Plx1 is required at multiple points during mitosis in Xenopus laevis. Mol Cell
Biol 18, 4262-4271.
Qian, Y. W., Erikson, E., and Maller, J. L. (1999). Mitotic effects of a constitutively
active mutant of the Xenopus polo-like kinase Plx1. Mol Cell Biol 19,
8625-8632.
Raina, A. K., Monteiro, M. J., McShea, A., and Smith, M. A. (1999). The role of
cell cycle-mediated events in Alzheimer's disease. International journal of
experimental pathology 80, 71-76.
Rippmann, J. F., Hobbie, S., Daiber, C., Guilliard, B., Bauer, M., Birk, J., Nar, H.,
Garin-Chesa, P., Rettig, W. J., and Schnapp, A. (2000).
Phosphorylation-dependent proline isomerization catalyzed by Pin1 is essential
for tumor cell survival and entry into mitosis. Cell growth & differentiation :
the molecular biology journal of the American Association for Cancer
Research 11, 409-416.
Roshak, A. K., Capper, E. A., Imburgia, C., Fornwald, J., Scott, G., and Marshall, L.
A. (2000). The human polo-like kinase, PLK, regulates cdc2/cyclin B through
phosphorylation and activation of the cdc25C phosphatase. Cell Signal 12,
405-411.
Ryo, A., Liou, Y. C., Wulf, G., Nakamura, M., Lee, S. W., and Lu, K. P. (2002).
PIN1 is an E2F target gene essential for Neu/Ras-induced transformation of
mammary epithelial cells. Molecular and cellular biology 22, 5281-5295.
Sanchez, Y., Bachant, J., Wang, H., Hu, F., Liu, D., Tetzlaff, M., and Elledge, S. J.
(1999). Control of the DNA damage checkpoint by chk1 and rad53 protein
kinases through distinct mechanisms. Science 286, 1166-1171.
Sanchez, Y., Wong, C., Thoma, R. S., Richman, R., Wu, Z., Piwnica-Worms, H.,
and Elledge, S. J. (1997). Conservation of the Chk1 checkpoint pathway in
mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science
277, 1497-1501.
Schlessinger, K., and Hall, A. (2004). GSK-3beta sets Snail's pace. Nat Cell Biol 6,
913-915.
Seki, A., Coppinger, J. A., Du, H., Jang, C. Y., Yates, J. R., 3rd, and Fang, G.
(2008a). Plk1- and beta-TrCP-dependent degradation of Bora controls mitotic
75
progression. J Cell Biol 181, 65-78.
Seki, A., Coppinger, J. A., Jang, C. Y., Yates, J. R., and Fang, G. (2008b). Bora and
the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic
entry. Science 320, 1655-1658.
Sen, S., Zhou, H., and White, R. A. (1997). A putative serine/threonine kinase
encoding gene BTAK on chromosome 20q13 is amplified and overexpressed
in human breast cancer cell lines. Oncogene 14, 2195-2200.
Sen, S., Zhou, H., Zhang, R. D., Yoon, D. S., Vakar-Lopez, F., Ito, S., Jiang, F.,
Johnston, D., Grossman, H. B., Ruifrok, A. C., et al. (2002).
Amplification/overexpression of a mitotic kinase gene in human bladder
cancer. J Natl Cancer Inst 94, 1320-1329.
Shen, M., Stukenberg, P. T., Kirschner, M. W., and Lu, K. P. (1998). The essential
mitotic peptidyl-prolyl isomerase Pin1 binds and regulates mitosis-specific
phosphoproteins. Genes & development 12, 706-720.
Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996). Mass spectrometric
sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68,
850-858.
Siepe, D., and Jentsch, S. (2009). Prolyl isomerase Pin1 acts as a switch to control
the degree of substrate ubiquitylation. Nature cell biology 11, 967-972.
Smits, V. A., Klompmaker, R., Arnaud, L., Rijksen, G., Nigg, E. A., and Medema,
R. H. (2000). Polo-like kinase-1 is a target of the DNA damage checkpoint.
Nature cell biology 2, 672-676.
Stukenberg, P. T., and Kirschner, M. W. (2001). Pin1 acts catalytically to promote a
conformational change in Cdc25. Mol Cell 7, 1071-1083.
Sudol, M., and Hunter, T. (2000). NeW wrinkles for an old domain. Cell 103,
1001-1004.
Sudol, M., Sliwa, K., and Russo, T. (2001). Functions of WW domains in the
nucleus. FEBS Lett 490, 190-195.
Suizu, F., Ryo, A., Wulf, G., Lim, J., and Lu, K. P. (2006). Pin1 regulates
centrosome duplication, and its overexpression induces centrosome
amplification, chromosome instability, and oncogenesis. Mol Cell Biol 26,
1463-1479.
Takahashi-Yanaga, F., and Sasaguri, T. (2008). GSK-3beta regulates cyclin D1
expression: a new target for chemotherapy. Cellular signalling 20, 581-589.
Tanaka, E., Hashimoto, Y., Ito, T., Okumura, T., Kan, T., Watanabe, G., Imamura,
M., Inazawa, J., and Shimada, Y. (2005). The clinical significance of
Aurora-A/STK15/BTAK expression in human esophageal squamous cell
76
carcinoma. Clin Cancer Res 11, 1827-1834.
Tapia, C., Kutzner, H., Mentzel, T., Savic, S., Baumhoer, D., and Glatz, K. (2006).
Two mitosis-specific antibodies, MPM-2 and phospho-histone H3 (Ser28),
allow rapid and precise determination of mitotic activity. Am J Surg Pathol 30,
83-89.
Tighe, A., Ray-Sinha, A., Staples, O. D., and Taylor, S. S. (2007). GSK-3 inhibitors
induce chromosome instability. BMC Cell Biol 8, 34.
Tong, T., Zhong, Y., Kong, J., Dong, L., Song, Y., Fu, M., Liu, Z., Wang, M., Guo,
L., Lu, S., et al. (2004). Overexpression of Aurora-A contributes to malignant
development of human esophageal squamous cell carcinoma. Clin Cancer Res
10, 7304-7310.
Toyoshima-Morimoto, F., Taniguchi, E., and Nishida, E. (2002). Plk1 promotes
nuclear translocation of human Cdc25C during prophase. EMBO reports 3,
341-348.
van der Horst, A., and Khanna, K. K. (2009). The peptidyl-prolyl isomerase Pin1
regulates cytokinesis through Cep55. Cancer Res 69, 6651-6659.
Vermeulen, K., Van Bockstaele, D. R., and Berneman, Z. N. (2003). The cell cycle:
a review of regulation, deregulation and therapeutic targets in cancer. Cell
Prolif 36, 131-149.
Vincent, I., Jicha, G., Rosado, M., and Dickson, D. W. (1997). Aberrant expression
of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer's
disease brain. J Neurosci 17, 3588-3598.
Walter, A. O., Seghezzi, W., Korver, W., Sheung, J., and Lees, E. (2000). The
mitotic serine/threonine kinase Aurora2/AIK is regulated by phosphorylation
and degradation. Oncogene 19, 4906-4916.
Wang, X. W., Zhan, Q., Coursen, J. D., Khan, M. A., Kontny, H. U., Yu, L.,
Hollander, M. C., O'Connor, P. M., Fornace, A. J., Jr., and Harris, C. C. (1999).
GADD45 induction of a G2/M cell cycle checkpoint. Proceedings of the
National Academy of Sciences of the United States of America 96, 3706-3711.
Watanabe, N., Arai, H., Nishihara, Y., Taniguchi, M., Hunter, T., and Osada, H.
(2004a). M-phase kinases induce phospho-dependent ubiquitination of somatic
Wee1 by SCFbeta-TrCP. Proc Natl Acad Sci U S A 101, 4419-4424.
Watanabe, N., Arai, H., Nishihara, Y., Taniguchi, M., Watanabe, N., Hunter, T.,
and Osada, H. (2004b). M-phase kinases induce phospho-dependent
ubiquitination of somatic Wee1 by SCFbeta-TrCP. Proceedings of the National
Academy of Sciences of the United States of America 101, 4419-4424.
Winkler, K. E., Swenson, K. I., Kornbluth, S., and Means, A. R. (2000).
77
Requirement of the prolyl isomerase Pin1 for the replication checkpoint.
Science 287, 1644-1647.
Wulf, G. M., Liou, Y. C., Ryo, A., Lee, S. W., and Lu, K. P. (2002). Role of Pin1 in
the regulation of p53 stability and p21 transactivation, and cell cycle
checkpoints in response to DNA damage. The Journal of biological chemistry
277, 47976-47979.
Yaffe, M. B., Schutkowski, M., Shen, M., Zhou, X. Z., Stukenberg, P. T., Rahfeld, J.
U., Xu, J., Kuang, J., Kirschner, M. W., Fischer, G., et al. (1997).
Sequence-specific and phosphorylation-dependent proline isomerization: a
potential mitotic regulatory mechanism. Science 278, 1957-1960.
Yeh, E. S., and Means, A. R. (2007). PIN1, the cell cycle and cancer. Nat Rev
Cancer 7, 381-388.
Zacchi, P., Gostissa, M., Uchida, T., Salvagno, C., Avolio, F., Volinia, S., Ronai, Z.,
Blandino, G., Schneider, C., and Del Sal, G. (2002). The prolyl isomerase Pin1
reveals a mechanism to control p53 functions after genotoxic insults. Nature
419, 853-857.
Zhao, Z. S., Lim, J. P., Ng, Y. W., Lim, L., and Manser, E. (2005). The
GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A.
Molecular cell 20, 237-249.
Zheng, H., You, H., Zhou, X. Z., Murray, S. A., Uchida, T., Wulf, G., Gu, L., Tang,
X., Lu, K. P., and Xiao, Z. X. (2002). The prolyl isomerase Pin1 is a regulator
of p53 in genotoxic response. Nature 419, 849-853.
Zhou, H., Kuang, J., Zhong, L., Kuo, W. L., Gray, J. W., Sahin, A., Brinkley, B. R.,
and Sen, S. (1998). Tumour amplified kinase STK15/BTAK induces
centrosome amplification, aneuploidy and transformation. Nature genetics 20,
189-193.
校內:2023-01-01公開