簡易檢索 / 詳目顯示

研究生: 李育誠
Lee, Yu-Cheng
論文名稱: 探討 Aurora A/hBora 複合物和 Pin1 之交互作用 對於進入有絲分裂期之調控
The interplay of Aurora A/hBora complex with Pin1 in the regulation of mitotic entry
指導教授: 呂佩融
Lu, Pei-Jung
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 156
中文關鍵詞: 脯胺酸異構酶細胞週期G2/M 過渡期Aurora A/hBora 複合物後轉譯修飾
外文關鍵詞: prolyl isomerase, G2/M transition, cell cycle, Aurora A/hBora complex, post-translational modification
相關次數: 點閱:92下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Pin1 是脯胺酸異構酶中,第一個被證明在酵母菌及哺乳類細胞中,與細胞分裂
    相關。有趣的是,Pin1 對於G2 時期,扮演著負向調控之角色,而其機制仍不清楚。
    此外,Pin1-WW domain 中Ser16 位點之磷酸化,其生理意義與細胞中哪一個激酶負
    責此位點之磷酸化也尚未知道。在此研究,針對細胞週期G2/M 過渡期中,探討Pin1
    Ser16 位點磷酸化與Aurora A/hBora 複合物調控細胞進入有絲分裂期之關係進行探
    討。我們發現在G2 時期,GSK3β 能磷酸化hBora 於Ser274 及Ser278 兩個位點上,
    其磷酸化可促進細胞進入有絲分裂期; 此外,Aurora A 可磷酸化Pin1 於Ser16 位點
    上,其磷酸化能抑制Pin1 與其受質結合的功能,而降低Pin1 在G2/M 過渡期的功能。
    有趣的是,hBora Ser274 及Ser278 的磷酸化位點,恰為Pin1 的結合位點。當過度表
    現Pin1 於細胞中,Pin1 能戰勝細胞中Aurora A 對Pin1 的抑制結果,藉由結合hBora
    而促使hBora 經由β-TrCP 而提早降解,導致Aurora A/hBora 複合物活化Plk1 之能力
    下降,而延遲細胞進入有絲分裂期。而當細胞進入有絲分裂期時,抑制Pin1 表現或
    活性,則會導致hBora 蛋白的累積而伴隨著有絲分裂進行的延遲,意味著Pin1 可以
    回饋調控有絲分裂期中hBora 蛋白的降解,而確保有絲分裂期的進行及離開。總結而
    言,此研究藉由探討Aurora A-Pin1-hBora-GSK3β 分子間的後轉譯修飾及交互作用,了解細胞如何調控進入以及離開有絲分裂期。
    此外,當細胞受到損害,Pin1 能調控p53 的穩定性,並增加p53 在DNA 損害
    下G2/M 檢查點之功能。Pin1 和Aurora A 已被報導過度表現於人類癌細胞當中,且
    皆參與G2/M 過渡期的調控。而Pin1-Ser16 磷酸化的表現,在癌細胞中尚未被分析。
    因此,Aurora A 造成Pin1-Ser16 之磷酸化,是否對於癌細胞中G2/M 檢查點功能之缺失,以及其是否與細胞易產生癌化之相關性,值得未來進一步探討。

    Pin1 is the first prolyl isomerase to be identified that is involved in cell division in
    both yeast and mammalian cells. Interestingly, the mechanism of Pin1 acts as a negative
    regulator of mitotic activity in G2 remains unclear. Besides, the biological significant and
    which kinase is responsible for Pin1-Ser16 phosphorylation in vivo also remain unknown.
    In this study, the functional link of Ser16 phosphorylation with Aurora A/hBora
    complex-mediated mitotic entry is investigated at the G2/M transition. We uncovered a
    suppressed role of Pin1 in regulating Aurora A/hBora complex activity. GSK3β-mediated
    Ser274 and Ser278 phosphorylation of hBora is involved in mitotic entry and that is
    characterized as a novel Pin1 binding protein. Aurora A phosphorylates Pin1 at Ser16 and
    suppresses Pin1 G2/M function to prevent the premature hBora degradation mediated
    by β-TrCP, whereas Pin1 overexpression can override the suppressed role of Pin1 by
    Aurora A and therefore delays mitotic entry. Furthermore, Pin1 depletion or inhibition
    results in marked hBora accumulation and concomitant with delayed mitotic progression,
    indicating that Pin1 feedback promotes hBora degradation in mitosis to ensure mitotic
    progression and exit. In conclusion, the cell cycle progression control from mitotic entry to
    exit is regulated by the post-translational modification and interaction of Aurora
    A-Pin1-hBora-GSK3β axis.
    Furthermore, when cells encounter stress, such as DNA damage, Pin1 can stabilize
    p53 and increase p53-mediated G2/M checkpoint response. In addition, Pin1 and Aurora A
    are overexpressed in human cancers and both of their function are related to G2/M
    regulation. The status of Pin1-Ser16 phosphorylation has not yet been clarified in human
    cancers. Accordingly, it is interesting to investigate whether Aurora A-mediated Pin1
    III
    Ser16 phosphorylation is associated with the impaired G2/M checkpoint response in
    cancers and whether that can increase the susceptibility of cell transformation in the future.

    Table of Contents 中文摘要...............................................................................................................................I Abstract...............................................................................................................................II 致謝....................................................................................................................................IV Table of Contents...............................................................................................................VI Table List.............................................................................................................................X Figure List...........................................................................................................................XI Abbreviations..................................................................................................................XIII Chapter I. Introduction ......................................................................................................1 1. An overview of the cell cycle.............................................................................................2 2. Regulation of G2 to Mitotic phase.....................................................................................2 3. G2/M DNA damage checkpoint.........................................................................................4 4. Aurora A kinase..................................................................................................................5 5. Aurora A cofactor-hBora protein.......................................................................................7 6. Peptidyl-prolyl isomerase Pin1..........................................................................................8 Objective and Specific Aims..............................................................................................11 Chapter II. Materials and Methods..................................................................................13 1. Cells culture......................................................................................................................14 2. Transfection.....................................................................................................................15 3. Cell synchronization.........................................................................................................15 4. Plasmid constructs and Site-directed mutagenesis...........................................................16 5. Production of recombinant proteins.................................................................................17 6. In vitro kinase assays........................................................................................................18 7. Antibodies and reagents...................................................................................................19 VII 8. Cell fractionation assay and protein stability assay..........................................................20 9. LC-MS/MS-based phosphopeptide mapping analysis.....................................................21 10. Flow Cytometry analysis................................................................................................22 11. In vitro GST pull-down assay........................................................................................22 12. In vivo co-immunoprecipitation assay...........................................................................23 13. Immunofluorescence microscopy analysis.....................................................................24 14. Statistical analysis..........................................................................................................25 Chapter III. Results............................................................................................................26 1. hBora is phosphorylated in late G2 and Mitosis..............................................................27 2. Pin1 interacts with hBora in vitro and in vivo..................................................................27 3. Ser274 and Ser278 are critical hBora phosphorylation sites in vivo...............................30 4. Both pSer274 and pSer278 of hBora are major Pin1 binding sites..................................31 5. GSK3β interacts with hBora in vitro and in vivo.............................................................32 6. GSK3β phosphorylates Ser274 and Ser278 of hBora......................................................34 7. GSK3β-mediated Ser274 and Ser278 phosphorylation of hBora is required for mitotic entry...............................................................................................................................35 8. The negative function of Pin1 in the regulation of mitotic entry.....................................37 9. Gain of Pin1 function through overexpression delays mitotic entry through reducing the hBora steady-state level..................................................................................................39 10. Pin1-mediated hBora degradation through a proteasome-dependent pathway..............40 11. Gain of Pin1 function causes hBora subcellular translocation.......................................40 12. Gain of Pin1 function promotes the β-TrCP-mediated ubiquitination and degradation of hBora.............................................................................................................................41 13. The S274A/S278A mutant hBora reduces the Pin1-mediated effect on hBora.............43 14. Impaired Pin1 function causes mitotic arrest by hBora accumulation...........................43 VIII 15. Elevated Pin1-Ser16 phosphorylation levels coincides with Aurora A activity and expression profile...........................................................................................................46 16. Aurora A interacts with and phosphorylates Pin1 at Ser16............................................47 17. Aurora A-mediated Ser16 phosphorylation suppresses the binding capacity and alters subcellular localization of Pin1......................................................................................49 18. Pin1 S16A enhances the interaction with hBora and obviously reduces hBora expression than wild-type and S16E Pin1......................................................................50 Chapter IV. Discussion......................................................................................................52 Conclusion………...............................................................................................................67 References..........................................................................................................................68 Tables..................................................................................................................................78 Figures ...............................................................................................................................79 Appendix..........................................................................................................................123 1. Appendix Table 1. The nomenclature of Aurora kinases in different species...............124 2. Appendix Table 2. Classification of WW domains based on their ligand specificity....125 3. Appendix Figure 1. The different phases of the cell cycle.............................................126 4. Appendix Figure 2. The stages of mitosis......................................................................127 5. Appendix Figure 3. The major Cyclins and Cdks in cell cycle control of mammalian cells..............................................................................................................................128 6. Appendix Figure 4. Plk1 indirectly regulates cyclin-B1/Cdk1 complex activity..........129 7. Appendix Figure 5. hBora and Aurora A cooperatively activate Plk1 and control mitotic entry.............................................................................................................................130 8. Appendix Figure 6. G2/M checkpoint pathways that block cell cycle progression after DNA damage stress......................................................................................................131 9. Appendix Figure 7. Human Aurora kinase structure.....................................................132 IX 10. Appendix Figure 8. Cdk1 feedback regulates hBoa degradation.................................133 11. Appendix Figure 9. Structure of human Pin1 protein..................................................134 12. Appendix Figure 10. The dynamic expression profile of Pin1-Ser16 phosphorylation after DNA damage checkpoint recovery......................................................................135 13. Appendix Figure 11. Endogenous TPX2 expression is increased in Pin1 overexpression mitotic cells..................................................................................................................136 14. Appendix Figure 12. Inhibition of GSK3b activity attenuates cell proliferation.........137 15. Appendix Figure 13. Gain of Pin1 function slightly increase p53 expression.............138 16. Appendix Figure 14. Inhibition of Aurora A activity can reduce Pin1-Ser16 phosphorylation and increase p53 expression..............................................................139 17. Appendix Figure 15. The interaction of endogenous Plk1 with various WW domain-containing proteins..........................................................................................140 18. Appendix Table 1. The antibodies and their reaction conditions in this study............141 19. Appendix Table 2. Primers for site-directed mutagenesis and deletion of hBora........143 20. Side project: I. The association of Pin1 and Sp1 in Neuronal differentiation..............145 21. Side project: II. The conversion of mESC into mNSC................................................149 22. Curriculum Vitae X Table List Table 1. Summary of the phosphorylation sites in hBora by LC/MS/MS-based phosphopeptide mapping assay......................................................................................78 Appendix Table 1. The antibodies and their reaction conditions in this study..................141 Appendix Table 2. Primers for site-directed mutagenesis and deletion of hBora..............143 XI Figure List Figure 1. hBora is phosphorylated in late G2 and M phase.................................................79 Figure 2. hBora interacts with Pin1 in vitro and in vivo......................................................80 Figure 3. hBora colocalizes with Pin1 both at endogenous and overexpression levels.......82 Figure 4. The interaction of hBora and Pin1 is phosphorylation- dependent manner and that is specific and selective for the WW domain of Pin1....................................................84 Figure 5. Ser274 and Ser278 are critical in vivo hBora phosphorylation sites....................86 Figure 6. hBora-Ser274 and Ser278 are major phosphorylation sites for Pin1 binding......88 Figure 7. GSK3β activity is involved in the interaction of Pin1 and hBora........................90 Figure 8. GSK3β interacts with hBora in vivo and in vitro.…............................................92 Figure 9. GSK3β phosphorylates hBora at Ser274 and Ser278...........................................93 Figure 10. S274A/S278A mutant hBora reduces the slowly migrating bands of hBora and delays the activation of Plk1..........................................................................................94 Figure 11. Loss of GSK3β function delays the activation of Plk1 and reduces mitotic index..............................................................................................................................96 Figure 12. Gain of Pin1 function delays Plk1 activation and entry into mitosis..................99 Figure 13. Loss of Pin1 function promotes premature mitotic entry.................................101 Figure 14. Pin1 reduces hBora expression through a proteasome-degradation pathway...102 Figure 15. Gain of Pin1 function alters the cytoplasmic translocation of hBora...............104 Figure 16. Pin1 promotes the premature degradation of hBora by β-TrCP.......................106 Figure 17. hBora S274A/S278A mutant can reduce Pin1-mediated effect on hBora…....108 Figure 18. Impaired Pin1 function induces mitotic arrest and hBora accumulation……..110 Figure 19. Pin1-Ser16 phosphorylation levels coincides with Aurora A activity and expression during the G2/M transition.........................................................................112 Figure 20. Inhibition of Aurora A activity by pharmacological inhibitors reduces XII Pin1-Ser16 phosphorylation.........................................................................................113 Figure 21. Manipulation of Aurora A expression can alter Pin1-Ser16 phosphorylation............................................................................................................115 Figure 22. Pin1-Ser16 phosphorylation positively correlated with Aurora A expression in ESCC cancer cell lines.………………........................................................................116 Figure 23. Pin1 co-localizes with Aurora A and interacts with Aurora A in vitro and in vivo..............................................................................................................................117 Figure 24. Aurora A phosphorylates Pin1 at Ser16 by in vitro kinase assay…………….118 Figure 25. Aurora A-mediated Pin1-Ser16 phosphorylation disrupts Pin1 binding ability and alters its subcellular localization............................................................................119 Figure 26. Pin1-S16A enhances the interaction with hBora and promotes the degradation of hBora........................................................................................................................120 Figure 27. Mechanisms regulating the interplay of Aurora A, Pin1, hBora and GSK3β for mitotic entry.................................................................................................................121

    References
    Abrieu, A., Brassac, T., Galas, S., Fisher, D., Labbe, J. C., and Doree, M. (1998).
    The Polo-like kinase Plx1 is a component of the MPF amplification loop at the
    G2/M-phase transition of the cell cycle in Xenopus eggs. J Cell Sci 111 ( Pt
    12), 1751-1757.
    Albert, A. L., Lavoie, S. B., and Vincent, M. (2004). Multisite phosphorylation of
    Pin1-associated mitotic phosphoproteins revealed by monoclonal antibodies
    MPM-2 and CC-3. BMC Cell Biol 5, 22.
    Atherton-Fessler, S., Parker, L. L., Geahlen, R. L., and Piwnica-Worms, H. (1993).
    Mechanisms of p34cdc2 regulation. Molecular and cellular biology 13,
    1675-1685.
    Bao, L., Kimzey, A., Sauter, G., Sowadski, J. M., Lu, K. P., and Wang, D. G.
    (2004). Prevalent overexpression of prolyl isomerase Pin1 in human cancers.
    Am J Pathol 164, 1727-1737.
    Barr, F. A., Sillje, H. H., and Nigg, E. A. (2004). Polo-like kinases and the
    orchestration of cell division. Nature reviews Molecular cell biology 5,
    429-440.
    Bayliss, R., Sardon, T., Vernos, I., and Conti, E. (2003). Structural basis of
    Aurora-A activation by TPX2 at the mitotic spindle. Molecular cell 12,
    851-862.
    Berdnik, D., and Knoblich, J. A. (2002). Drosophila Aurora-A is required for
    centrosome maturation and actin-dependent asymmetric protein localization
    during mitosis. Current biology : CB 12, 640-647.
    Bischoff, J. R., Anderson, L., Zhu, Y., Mossie, K., Ng, L., Souza, B., Schryver, B.,
    Flanagan, P., Clairvoyant, F., Ginther, C., et al. (1998). A homologue of
    Drosophila aurora kinase is oncogenic and amplified in human colorectal
    cancers. The EMBO journal 17, 3052-3065.
    Bunz, F., Dutriaux, A., Lengauer, C., Waldman, T., Zhou, S., Brown, J. P., Sedivy,
    J. M., Kinzler, K. W., and Vogelstein, B. (1998). Requirement for p53 and p21
    to sustain G2 arrest after DNA damage. Science 282, 1497-1501.
    Canman, C. E., and Lim, D. S. (1998). The role of ATM in DNA damage responses
    and cancer. Oncogene 17, 3301-3308.
    Chan, E. H., Santamaria, A., Sillje, H. H., and Nigg, E. A. (2008). Plk1 regulates
    mitotic Aurora A function through betaTrCP-dependent degradation of hBora.
    Chromosoma 117, 457-469.
    Chan, T. A., Hermeking, H., Lengauer, C., Kinzler, K. W., and Vogelstein, B.
    69
    (1999). 14-3-3Sigma is required to prevent mitotic catastrophe after DNA
    damage. Nature 401, 616-620.
    Crenshaw, D. G., Yang, J., Means, A. R., and Kornbluth, S. (1998). The mitotic
    peptidyl-prolyl isomerase, Pin1, interacts with Cdc25 and Plx1. The EMBO
    journal 17, 1315-1327.
    de Carcer, G., do Carmo Avides, M., Lallena, M. J., Glover, D. M., and Gonzalez,
    C. (2001). Requirement of Hsp90 for centrosomal function reflects its
    regulation of Polo kinase stability. EMBO J 20, 2878-2884.
    do Carmo Avides, M., Tavares, A., and Glover, D. M. (2001). Polo kinase and Asp
    are needed to promote the mitotic organizing activity of centrosomes. Nat Cell
    Biol 3, 421-424.
    Driver, J. A., and Lu, K. P. (2010). Pin1: a new genetic link between Alzheimer's
    disease, cancer and aging. Curr Aging Sci 3, 158-165.
    Eckerdt, F., and Maller, J. L. (2008). Kicking off the polo game. Trends in
    biochemical sciences 33, 511-513.
    Eckerdt, F., Yuan, J., Saxena, K., Martin, B., Kappel, S., Lindenau, C., Kramer, A.,
    Naumann, S., Daum, S., Fischer, G., et al. (2005). Polo-like kinase 1-mediated
    phosphorylation stabilizes Pin1 by inhibiting its ubiquitination in human cells.
    J Biol Chem 280, 36575-36583.
    Eyers, P. A., and Maller, J. L. (2004). Regulation of Xenopus Aurora A activation
    by TPX2. The Journal of biological chemistry 279, 9008-9015.
    Ferrari, S., Marin, O., Pagano, M. A., Meggio, F., Hess, D., El-Shemerly, M.,
    Krystyniak, A., and Pinna, L. A. (2005). Aurora-A site specificity: a study with
    synthetic peptide substrates. Biochem J 390, 293-302.
    Fisher, D., Krasinska, L., Coudreuse, D., and Novak, B. (2012). Phosphorylation
    network dynamics in the control of cell cycle transitions. J Cell Sci 125,
    4703-4711.
    Fu, J., Bian, M., Jiang, Q., and Zhang, C. (2007). Roles of Aurora kinases in mitosis
    and tumorigenesis. Molecular cancer research : MCR 5, 1-10.
    Fukasawa, K., Choi, T., Kuriyama, R., Rulong, S., and Vande Woude, G. F. (1996).
    Abnormal centrosome amplification in the absence of p53. Science 271,
    1744-1747.
    Fung, T. K., and Poon, R. Y. (2005). A roller coaster ride with the mitotic cyclins.
    Seminars in cell & developmental biology 16, 335-342.
    Furnari, B., Rhind, N., and Russell, P. (1997). Cdc25 mitotic inducer targeted by
    chk1 DNA damage checkpoint kinase. Science 277, 1495-1497.
    Giet, R., and Prigent, C. (1999). Aurora/Ipl1p-related kinases, a new oncogenic
    70
    family of mitotic serine-threonine kinases. Journal of cell science 112 ( Pt 21),
    3591-3601.
    Girardini, J. E., Napoli, M., Piazza, S., Rustighi, A., Marotta, C., Radaelli, E.,
    Capaci, V., Jordan, L., Quinlan, P., Thompson, A., et al. (2011). A
    Pin1/mutant p53 axis promotes aggressiveness in breast cancer. Cancer Cell 20,
    79-91.
    Giubettini, M., Asteriti, I. A., Scrofani, J., De Luca, M., Lindon, C., Lavia, P., and
    Guarguaglini, G. (2011). Control of Aurora-A stability through interaction
    with TPX2. Journal of cell science 124, 113-122.
    Glover, D. M., Leibowitz, M. H., McLean, D. A., and Parry, H. (1995). Mutations
    in aurora prevent centrosome separation leading to the formation of monopolar
    spindles. Cell 81, 95-105.
    Greene, L. A., and Tischler, A. S. (1976). Establishment of a noradrenergic clonal
    line of rat adrenal pheochromocytoma cells which respond to nerve growth
    factor. Proceedings of the National Academy of Sciences of the United States
    of America 73, 2424-2428.
    Gritsko, T. M., Coppola, D., Paciga, J. E., Yang, L., Sun, M., Shelley, S. A., Fiorica,
    J. V., Nicosia, S. V., and Cheng, J. Q. (2003). Activation and overexpression
    of centrosome kinase BTAK/Aurora-A in human ovarian cancer. Clinical
    cancer research : an official journal of the American Association for Cancer
    Research 9, 1420-1426.
    Hennig, L., Christner, C., Kipping, M., Schelbert, B., Rucknagel, K. P., Grabley, S.,
    Kullertz, G., and Fischer, G. (1998). Selective inactivation of parvulin-like
    peptidyl-prolyl cis/trans isomerases by juglone. Biochemistry 37, 5953-5960.
    Hirota, T., Kunitoku, N., Sasayama, T., Marumoto, T., Zhang, D., Nitta, M.,
    Hatakeyama, K., and Saya, H. (2003). Aurora-A and an interacting activator,
    the LIM protein Ajuba, are required for mitotic commitment in human cells.
    Cell 114, 585-598.
    Hoffmann, R., Metzger, S., Spengler, B., and Otvos, L., Jr. (1999). Sequencing of
    peptides phosphorylated on serines and threonines by post-source decay in
    matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J
    Mass Spectrom 34, 1195-1204.
    Hooper, C., Killick, R., and Lovestone, S. (2008). The GSK3 hypothesis of
    Alzheimer's disease. J Neurochem 104, 1433-1439.
    Hu, H., Columbus, J., Zhang, Y., Wu, D., Lian, L., Yang, S., Goodwin, J., Luczak,
    C., Carter, M., Chen, L., et al. (2004). A map of WW domain family
    interactions. Proteomics 4, 643-655.
    71
    Hutterer, A., Berdnik, D., Wirtz-Peitz, F., Zigman, M., Schleiffer, A., and Knoblich,
    J. A. (2006). Mitotic activation of the kinase Aurora-A requires its binding
    partner Bora. Developmental cell 11, 147-157.
    Hwang, A., and Muschel, R. J. (1998). Radiation and the G2 phase of the cell cycle.
    Radiation research 150, S52-59.
    Izawa, D., and Pines, J. (2011). How APC/C-Cdc20 changes its substrate specificity
    in mitosis. Nat Cell Biol 13, 223-233.
    Jeng, Y. M., Peng, S. Y., Lin, C. Y., and Hsu, H. C. (2004). Overexpression and
    amplification of Aurora-A in hepatocellular carcinoma. Clin Cancer Res 10,
    2065-2071.
    Katayama, H., Sasai, K., Kawai, H., Yuan, Z. M., Bondaruk, J., Suzuki, F., Fujii, S.,
    Arlinghaus, R. B., Czerniak, B. A., and Sen, S. (2004). Phosphorylation by
    aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53.
    Nature genetics 36, 55-62.
    Kimura, M., Kotani, S., Hattori, T., Sumi, N., Yoshioka, T., Todokoro, K., and
    Okano, Y. (1997). Cell cycle-dependent expression and spindle pole
    localization of a novel human protein kinase, Aik, related to Aurora of
    Drosophila and yeast Ipl1. The Journal of biological chemistry 272,
    13766-13771.
    Korur, S., Huber, R. M., Sivasankaran, B., Petrich, M., Morin, P., Jr., Hemmings, B.
    A., Merlo, A., and Lino, M. M. (2009). GSK3beta regulates differentiation and
    growth arrest in glioblastoma. PLoS One 4, e7443.
    Krystyniak, A., Garcia-Echeverria, C., Prigent, C., and Ferrari, S. (2006). Inhibition
    of Aurora A in response to DNA damage. Oncogene 25, 338-348.
    Kufer, T. A., Sillje, H. H., Korner, R., Gruss, O. J., Meraldi, P., and Nigg, E. A.
    (2002). Human TPX2 is required for targeting Aurora-A kinase to the spindle.
    The Journal of cell biology 158, 617-623.
    Kumar, J. M., Brooks, D. P., Olson, B. A., and Laping, N. J. (1999). Sgk, a putative
    serine/threonine kinase, is differentially expressed in the kidney of diabetic
    mice and humans. J Am Soc Nephrol 10, 2488-2494.
    Lane, H. A., and Nigg, E. A. (1996). Antibody microinjection reveals an essential
    role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic
    centrosomes. J Cell Biol 135, 1701-1713.
    Laurie, D. J., and Seeburg, P. H. (1994). Regional and developmental heterogeneity
    in splicing of the rat brain NMDAR1 mRNA. The Journal of neuroscience : the
    official journal of the Society for Neuroscience 14, 3180-3194.
    Lee, J., and Kim, M. S. (2007). The role of GSK3 in glucose homeostasis and the
    72
    development of insulin resistance. Diabetes Res Clin Pract 77 Suppl 1, S49-57.
    Lee, T. H., Chen, C. H., Suizu, F., Huang, P., Schiene-Fischer, C., Daum, S., Zhang,
    Y. J., Goate, A., Chen, R. H., Zhou, X. Z., and Lu, K. P. (2011a).
    Death-associated protein kinase 1 phosphorylates Pin1 and inhibits its prolyl
    isomerase activity and cellular function. Mol Cell 42, 147-159.
    Lee, T. H., Pastorino, L., and Lu, K. P. (2011b). Peptidyl-prolyl cis-trans isomerase
    Pin1 in ageing, cancer and Alzheimer disease. Expert Rev Mol Med 13, e21.
    Li, D., Zhu, J., Firozi, P. F., Abbruzzese, J. L., Evans, D. B., Cleary, K., Friess, H.,
    and Sen, S. (2003). Overexpression of oncogenic STK15/BTAK/Aurora A
    kinase in human pancreatic cancer. Clinical cancer research : an official
    journal of the American Association for Cancer Research 9, 991-997.
    Liou, Y. C., Zhou, X. Z., and Lu, K. P. (2011). Prolyl isomerase Pin1 as a molecular
    switch to determine the fate of phosphoproteins. Trends Biochem Sci 36,
    501-514.
    Littlepage, L. E., Wu, H., Andresson, T., Deanehan, J. K., Amundadottir, L. T., and
    Ruderman, J. V. (2002). Identification of phosphorylated residues that affect
    the activity of the mitotic kinase Aurora-A. Proceedings of the National
    Academy of Sciences of the United States of America 99, 15440-15445.
    Liu, F., Stanton, J. J., Wu, Z., and Piwnica-Worms, H. (1997). The human Myt1
    kinase preferentially phosphorylates Cdc2 on threonine 14 and localizes to the
    endoplasmic reticulum and Golgi complex. Molecular and cellular biology 17,
    571-583.
    Liu, J., and Maller, J. L. (2005). Xenopus Polo-like kinase Plx1: a multifunctional
    mitotic kinase. Oncogene 24, 238-247.
    Lobrich, M., and Jeggo, P. A. (2007). The impact of a negligent G2/M checkpoint
    on genomic instability and cancer induction. Nature reviews Cancer 7,
    861-869.
    Lu, K. P., Hanes, S. D., and Hunter, T. (1996). A human peptidyl-prolyl isomerase
    essential for regulation of mitosis. Nature 380, 544-547.
    Lu, K. P., and Zhou, X. Z. (2007). The prolyl isomerase PIN1: a pivotal new twist
    in phosphorylation signalling and disease. Nat Rev Mol Cell Biol 8, 904-916.
    Lu, P. J., Zhou, X. Z., Liou, Y. C., Noel, J. P., and Lu, K. P. (2002). Critical role of
    WW domain phosphorylation in regulating phosphoserine binding activity and
    Pin1 function. The Journal of biological chemistry 277, 2381-2384.
    Lu, P. J., Zhou, X. Z., Shen, M., and Lu, K. P. (1999). Function of WW domains as
    phosphoserine- or phosphothreonine-binding modules. Science 283,
    1325-1328.
    73
    Macurek, L., Lindqvist, A., Lim, D., Lampson, M. A., Klompmaker, R., Freire, R.,
    Clouin, C., Taylor, S. S., Yaffe, M. B., and Medema, R. H. (2008). Polo-like
    kinase-1 is activated by aurora A to promote checkpoint recovery. Nature 455,
    119-123.
    Matsuoka, S., Huang, M., and Elledge, S. J. (1998). Linkage of ATM to cell cycle
    regulation by the Chk2 protein kinase. Science 282, 1893-1897.
    Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B., and Seeburg, P. H. (1994).
    Developmental and regional expression in the rat brain and functional
    properties of four NMDA receptors. Neuron 12, 529-540.
    Nakajima, H., Toyoshima-Morimoto, F., Taniguchi, E., and Nishida, E. (2003).
    Identification of a consensus motif for Plk (Polo-like kinase) phosphorylation
    reveals Myt1 as a Plk1 substrate. The Journal of biological chemistry 278,
    25277-25280.
    Nakamura, K., Kosugi, I., Lee, D. Y., Hafner, A., Sinclair, D. A., Ryo, A., and Lu,
    K. P. (2012). Prolyl isomerase Pin1 regulates neuronal differentiation via
    beta-catenin. Molecular and cellular biology 32, 2966-2978.
    Nigg, E. A. (2001). Mitotic kinases as regulators of cell division and its checkpoints.
    Nature reviews Molecular cell biology 2, 21-32.
    O'Farrell, P. H. (2001). Triggering the all-or-nothing switch into mitosis. Trends in
    cell biology 11, 512-519.
    Ohkura, H., Hagan, I. M., and Glover, D. M. (1995). The conserved
    Schizosaccharomyces pombe kinase plo1, required to form a bipolar spindle,
    the actin ring, and septum, can drive septum formation in G1 and G2 cells.
    Genes Dev 9, 1059-1073.
    Okamoto, S., Sherman, K., Bai, G., and Lipton, S. A. (2002). Effect of the
    ubiquitous transcription factors, SP1 and MAZ, on NMDA receptor subunit
    type 1 (NR1) expression during neuronal differentiation. Brain research
    Molecular brain research 107, 89-96.
    Peng, C. Y., Graves, P. R., Thoma, R. S., Wu, Z., Shaw, A. S., and Piwnica-Worms,
    H. (1997). Mitotic and G2 checkpoint control: regulation of 14-3-3 protein
    binding by phosphorylation of Cdc25C on serine-216. Science 277,
    1501-1505.
    Pietenpol, J. A., and Stewart, Z. A. (2002). Cell cycle checkpoint signaling: cell
    cycle arrest versus apoptosis. Toxicology 181-182, 475-481.
    Pizarro, J. G., Folch, J., Esparza, J. L., Jordan, J., Pallas, M., and Camins, A. (2009).
    A molecular study of pathways involved in the inhibition of cell proliferation
    in neuroblastoma B65 cells by the GSK-3 inhibitors lithium and SB-415286.
    74
    Journal of cellular and molecular medicine 13, 3906-3917.
    Pugacheva, E. N., Jablonski, S. A., Hartman, T. R., Henske, E. P., and Golemis, E.
    A. (2007). HEF1-dependent Aurora A activation induces disassembly of the
    primary cilium. Cell 129, 1351-1363.
    Qian, Y. W., Erikson, E., Li, C., and Maller, J. L. (1998). Activated polo-like kinase
    Plx1 is required at multiple points during mitosis in Xenopus laevis. Mol Cell
    Biol 18, 4262-4271.
    Qian, Y. W., Erikson, E., and Maller, J. L. (1999). Mitotic effects of a constitutively
    active mutant of the Xenopus polo-like kinase Plx1. Mol Cell Biol 19,
    8625-8632.
    Raina, A. K., Monteiro, M. J., McShea, A., and Smith, M. A. (1999). The role of
    cell cycle-mediated events in Alzheimer's disease. International journal of
    experimental pathology 80, 71-76.
    Rippmann, J. F., Hobbie, S., Daiber, C., Guilliard, B., Bauer, M., Birk, J., Nar, H.,
    Garin-Chesa, P., Rettig, W. J., and Schnapp, A. (2000).
    Phosphorylation-dependent proline isomerization catalyzed by Pin1 is essential
    for tumor cell survival and entry into mitosis. Cell growth & differentiation :
    the molecular biology journal of the American Association for Cancer
    Research 11, 409-416.
    Roshak, A. K., Capper, E. A., Imburgia, C., Fornwald, J., Scott, G., and Marshall, L.
    A. (2000). The human polo-like kinase, PLK, regulates cdc2/cyclin B through
    phosphorylation and activation of the cdc25C phosphatase. Cell Signal 12,
    405-411.
    Ryo, A., Liou, Y. C., Wulf, G., Nakamura, M., Lee, S. W., and Lu, K. P. (2002).
    PIN1 is an E2F target gene essential for Neu/Ras-induced transformation of
    mammary epithelial cells. Molecular and cellular biology 22, 5281-5295.
    Sanchez, Y., Bachant, J., Wang, H., Hu, F., Liu, D., Tetzlaff, M., and Elledge, S. J.
    (1999). Control of the DNA damage checkpoint by chk1 and rad53 protein
    kinases through distinct mechanisms. Science 286, 1166-1171.
    Sanchez, Y., Wong, C., Thoma, R. S., Richman, R., Wu, Z., Piwnica-Worms, H.,
    and Elledge, S. J. (1997). Conservation of the Chk1 checkpoint pathway in
    mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science
    277, 1497-1501.
    Schlessinger, K., and Hall, A. (2004). GSK-3beta sets Snail's pace. Nat Cell Biol 6,
    913-915.
    Seki, A., Coppinger, J. A., Du, H., Jang, C. Y., Yates, J. R., 3rd, and Fang, G.
    (2008a). Plk1- and beta-TrCP-dependent degradation of Bora controls mitotic
    75
    progression. J Cell Biol 181, 65-78.
    Seki, A., Coppinger, J. A., Jang, C. Y., Yates, J. R., and Fang, G. (2008b). Bora and
    the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic
    entry. Science 320, 1655-1658.
    Sen, S., Zhou, H., and White, R. A. (1997). A putative serine/threonine kinase
    encoding gene BTAK on chromosome 20q13 is amplified and overexpressed
    in human breast cancer cell lines. Oncogene 14, 2195-2200.
    Sen, S., Zhou, H., Zhang, R. D., Yoon, D. S., Vakar-Lopez, F., Ito, S., Jiang, F.,
    Johnston, D., Grossman, H. B., Ruifrok, A. C., et al. (2002).
    Amplification/overexpression of a mitotic kinase gene in human bladder
    cancer. J Natl Cancer Inst 94, 1320-1329.
    Shen, M., Stukenberg, P. T., Kirschner, M. W., and Lu, K. P. (1998). The essential
    mitotic peptidyl-prolyl isomerase Pin1 binds and regulates mitosis-specific
    phosphoproteins. Genes & development 12, 706-720.
    Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996). Mass spectrometric
    sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68,
    850-858.
    Siepe, D., and Jentsch, S. (2009). Prolyl isomerase Pin1 acts as a switch to control
    the degree of substrate ubiquitylation. Nature cell biology 11, 967-972.
    Smits, V. A., Klompmaker, R., Arnaud, L., Rijksen, G., Nigg, E. A., and Medema,
    R. H. (2000). Polo-like kinase-1 is a target of the DNA damage checkpoint.
    Nature cell biology 2, 672-676.
    Stukenberg, P. T., and Kirschner, M. W. (2001). Pin1 acts catalytically to promote a
    conformational change in Cdc25. Mol Cell 7, 1071-1083.
    Sudol, M., and Hunter, T. (2000). NeW wrinkles for an old domain. Cell 103,
    1001-1004.
    Sudol, M., Sliwa, K., and Russo, T. (2001). Functions of WW domains in the
    nucleus. FEBS Lett 490, 190-195.
    Suizu, F., Ryo, A., Wulf, G., Lim, J., and Lu, K. P. (2006). Pin1 regulates
    centrosome duplication, and its overexpression induces centrosome
    amplification, chromosome instability, and oncogenesis. Mol Cell Biol 26,
    1463-1479.
    Takahashi-Yanaga, F., and Sasaguri, T. (2008). GSK-3beta regulates cyclin D1
    expression: a new target for chemotherapy. Cellular signalling 20, 581-589.
    Tanaka, E., Hashimoto, Y., Ito, T., Okumura, T., Kan, T., Watanabe, G., Imamura,
    M., Inazawa, J., and Shimada, Y. (2005). The clinical significance of
    Aurora-A/STK15/BTAK expression in human esophageal squamous cell
    76
    carcinoma. Clin Cancer Res 11, 1827-1834.
    Tapia, C., Kutzner, H., Mentzel, T., Savic, S., Baumhoer, D., and Glatz, K. (2006).
    Two mitosis-specific antibodies, MPM-2 and phospho-histone H3 (Ser28),
    allow rapid and precise determination of mitotic activity. Am J Surg Pathol 30,
    83-89.
    Tighe, A., Ray-Sinha, A., Staples, O. D., and Taylor, S. S. (2007). GSK-3 inhibitors
    induce chromosome instability. BMC Cell Biol 8, 34.
    Tong, T., Zhong, Y., Kong, J., Dong, L., Song, Y., Fu, M., Liu, Z., Wang, M., Guo,
    L., Lu, S., et al. (2004). Overexpression of Aurora-A contributes to malignant
    development of human esophageal squamous cell carcinoma. Clin Cancer Res
    10, 7304-7310.
    Toyoshima-Morimoto, F., Taniguchi, E., and Nishida, E. (2002). Plk1 promotes
    nuclear translocation of human Cdc25C during prophase. EMBO reports 3,
    341-348.
    van der Horst, A., and Khanna, K. K. (2009). The peptidyl-prolyl isomerase Pin1
    regulates cytokinesis through Cep55. Cancer Res 69, 6651-6659.
    Vermeulen, K., Van Bockstaele, D. R., and Berneman, Z. N. (2003). The cell cycle:
    a review of regulation, deregulation and therapeutic targets in cancer. Cell
    Prolif 36, 131-149.
    Vincent, I., Jicha, G., Rosado, M., and Dickson, D. W. (1997). Aberrant expression
    of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer's
    disease brain. J Neurosci 17, 3588-3598.
    Walter, A. O., Seghezzi, W., Korver, W., Sheung, J., and Lees, E. (2000). The
    mitotic serine/threonine kinase Aurora2/AIK is regulated by phosphorylation
    and degradation. Oncogene 19, 4906-4916.
    Wang, X. W., Zhan, Q., Coursen, J. D., Khan, M. A., Kontny, H. U., Yu, L.,
    Hollander, M. C., O'Connor, P. M., Fornace, A. J., Jr., and Harris, C. C. (1999).
    GADD45 induction of a G2/M cell cycle checkpoint. Proceedings of the
    National Academy of Sciences of the United States of America 96, 3706-3711.
    Watanabe, N., Arai, H., Nishihara, Y., Taniguchi, M., Hunter, T., and Osada, H.
    (2004a). M-phase kinases induce phospho-dependent ubiquitination of somatic
    Wee1 by SCFbeta-TrCP. Proc Natl Acad Sci U S A 101, 4419-4424.
    Watanabe, N., Arai, H., Nishihara, Y., Taniguchi, M., Watanabe, N., Hunter, T.,
    and Osada, H. (2004b). M-phase kinases induce phospho-dependent
    ubiquitination of somatic Wee1 by SCFbeta-TrCP. Proceedings of the National
    Academy of Sciences of the United States of America 101, 4419-4424.
    Winkler, K. E., Swenson, K. I., Kornbluth, S., and Means, A. R. (2000).
    77
    Requirement of the prolyl isomerase Pin1 for the replication checkpoint.
    Science 287, 1644-1647.
    Wulf, G. M., Liou, Y. C., Ryo, A., Lee, S. W., and Lu, K. P. (2002). Role of Pin1 in
    the regulation of p53 stability and p21 transactivation, and cell cycle
    checkpoints in response to DNA damage. The Journal of biological chemistry
    277, 47976-47979.
    Yaffe, M. B., Schutkowski, M., Shen, M., Zhou, X. Z., Stukenberg, P. T., Rahfeld, J.
    U., Xu, J., Kuang, J., Kirschner, M. W., Fischer, G., et al. (1997).
    Sequence-specific and phosphorylation-dependent proline isomerization: a
    potential mitotic regulatory mechanism. Science 278, 1957-1960.
    Yeh, E. S., and Means, A. R. (2007). PIN1, the cell cycle and cancer. Nat Rev
    Cancer 7, 381-388.
    Zacchi, P., Gostissa, M., Uchida, T., Salvagno, C., Avolio, F., Volinia, S., Ronai, Z.,
    Blandino, G., Schneider, C., and Del Sal, G. (2002). The prolyl isomerase Pin1
    reveals a mechanism to control p53 functions after genotoxic insults. Nature
    419, 853-857.
    Zhao, Z. S., Lim, J. P., Ng, Y. W., Lim, L., and Manser, E. (2005). The
    GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A.
    Molecular cell 20, 237-249.
    Zheng, H., You, H., Zhou, X. Z., Murray, S. A., Uchida, T., Wulf, G., Gu, L., Tang,
    X., Lu, K. P., and Xiao, Z. X. (2002). The prolyl isomerase Pin1 is a regulator
    of p53 in genotoxic response. Nature 419, 849-853.
    Zhou, H., Kuang, J., Zhong, L., Kuo, W. L., Gray, J. W., Sahin, A., Brinkley, B. R.,
    and Sen, S. (1998). Tumour amplified kinase STK15/BTAK induces
    centrosome amplification, aneuploidy and transformation. Nature genetics 20,
    189-193.

    無法下載圖示 校內:2023-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE