簡易檢索 / 詳目顯示

研究生: 陸徹
Lu, Che
論文名稱: 透過模擬血管模型為血液透析患者優化氣動止血帶的止血壓力
Optimizing Hemostatic Pressure of Pneumatic Tourniquet for Hemodialysis Patients through Simulated Blood Vessel
指導教授: 陳天送
Chen, Tain-Song
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 38
中文關鍵詞: 血液透析血壓量測充氣式止血帶最佳止血壓力
外文關鍵詞: Dialysis, Blood pressure measurement, Pneumatic tourniquet system, Optimal tourniquet pressure
相關次數: 點閱:100下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在老年人口不斷成長的台灣,血液透析的人數位居世界之冠,除此之外高血糖更是在眾多死亡因子中排名第一。而造成腎功能缺失的主要原因,是因為糖尿病患者的腎臟長期處於高糖的環境,引起腎臟釋放損傷相關分子模式進而引發發炎反應,最終導致腎臟中的鮑氏囊喪失功能,這種由糖尿病誘發的腎臟病稱為糖尿病腎病。當腎臟逐漸失去代謝廢物的功能,達到慢性腎臟病的第5期時,腎臟即被視為無代謝能力,只能透過血液透析代謝體內的廢物以維持生命功能。然而由於糖尿病腎病患者在進行血液透析後需較長的時間止血,使用傳統的止血帶止血潛在著動靜脈廔管和神經損傷的風險。
    因此我們希望找出既能夠幫助患者止血,又不會對他們的動靜脈廔管和神經以及肌肉造成損傷的最佳止血壓力。我們利用由水壓幫浦和靜脈穿刺模型組成的循環系統模擬病人的手臂,進行穿刺之後,透過濕度感測器和氣壓感測器測量在特定水壓下所對應的止血帶壓力。實驗結果顯示,止血帶的最佳止血壓力的範圍在60.5和105毫米汞柱之間,均小於幫浦所驅動的水壓,我們推測是因為模型的韌性造成。最佳止血壓力會隨血壓、針頭大小上升。而3mm的血管相較5mm的血管需要更大的止血壓力。

    In Taiwan, where the elderly population is growing, the number of hemodialysis patients ranks first in the world. In addition, hyperglycemia ranks first among many death factors. The main reason for the loss of renal function is that the kidneys of diabetic patients are in a high-glucose environment for a long time, causing the kidneys to release damage-associated molecular patterns (DAMPs), which in turn triggers an inflammatory response and eventually leads to the loss of function of the Bowman's bursa in the kidneys. This kind of disease is called diabetic kidney disease (DKD). When the kidneys gradually lose the function of metabolizing wastes and develop to stage 5 of chronic kidney disease, the kidneys are considered incapable of metabolism and can only metabolize wastes in the body through hemodialysis to maintain life functions. However, since DKD patients need a longer time for hemostasis after hemodialysis, there is a potential risk of arteriovenous fistula (AVF) and neuron damage if they use traditional tourniquets.
    Therefore, we investigated the optimal hemostatic pressure that would help patients stop bleeding without causing damage to their AVF and nerves, and muscles. We used a circulatory system consisting of a water pressure pump and a venipuncture model to simulate the patient's arm. After puncturing the model, the optimal hemostatic pressure corresponding to specific water pressure is measured through a moisture sensor and an air pressure sensor. The experimental results show that the optimal hemostatic pressure range of the tourniquet is between 60.5 and 105 mmHg, less than the water pressure driven by the pump. We speculate that this is due to the toughness of the model. The optimal hemostatic pressure will increase with blood pressure and needle size. A 3mm vessel requires greater hemostatic pressure than a 5mm vessel.

    摘要 I Abstract II Chapter 1 Introduction 1 1.1 Diabetes Induced Chronic Kidney Disease 1 1.2 The Lesions of Glomerular 3 1.3 Estimated Glomerular Filtration Rate 5 1.4 Dialysis 7 1.4.1 Hemodialysis 9 1.4.2 Arteriovenous fistula 10 1.5 Prolonged Inflammation in DKD Patients 11 1.6 Hemostasis of fistula wound after hemodialysis 13 1.7 Literature Review 15 1.8 Motivation and Aim 17 Chapter 2 Material and Methods 19 2.1 Experimental Design 19 2.2 System Architecture 20 2.2.1 Four Vein Intravenous Injection Trainer 20 2.2.2 PWM Control Speed Pump 21 2.2.3 Water Pressure Monitor 22 2.2.4 Arduino UNO 23 2.2.5 Moisture Sensor 24 2.2.6 Air Pressure Sensor 25 2.2.7 Flow Chart of Pneumatic Tourniquet System 26 Chapter 3 Results and Discussion 27 3.1 The optimal hemostatic pressure 27 Chapter 4 Conclusion 36 Reference 37

    1. National Kidney Foundation. Estimated Glomerular Filtration Rate (eGFR). 2022 May 18, 2022]; Available from: https://www.kidney.org/atoz/content/gfr#.
    2. McEwen, J.A.J. Tourniquet Safety: Mechanisms and prevention of Injuries. 2022 May 30, 2022]; Available from: https://tourniquets.org/tourniquet-injuries-mechanisms-and-prevention/.
    3. Astra Vein & Endovascular Medical Care. AV Fistula Creation. 2022 May 23, 2022]; Available from: https://www.astraveinvascular.com/av-fistula-creation/.
    4. Wuri Lin Shin Hospital. Nursing care for hemostasis of fistula wound after hemodialysis. 2017 May 28, 2022]; Available from: https://reurl.cc/1ZOMAV.
    5. National Taiwan University School of Public Health. Taiwan Chronic Disease Risk Factor Ranking. 2017 May 18, 2022]; Available from: https://health.gvm.com.tw/article/63779.
    6. National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Hemodialysis. 2022 May 19, 2022]; Available from: https://www.niddk.nih.gov/health-information/kidney-disease/kidney-failure/hemodialysis.
    7. Drost, S., B.J. De Kruif, and D. Newport, Arduino control of a pulsatile flow rig. Medical Engineering & Physics, 2018. 51: p. 67-71.
    8. Alicic, R.Z., M.T. Rooney, and K.R. Tuttle, Diabetic Kidney Disease. Clinical Journal of the American Society of Nephrology, 2017. 12(12): p. 2032.
    9. Petkovic, M., et al., Mechanistic Actions of microRNAs in Diabetic Wound Healing. Cells, 2020. 9(10): p. 2228.
    10. Tang, S.C.W. and W.H. Yiu, Innate immunity in diabetic kidney disease. Nat Rev Nephrol, 2020. 16(4): p. 206-222.
    11. Bonner, R., et al., Diabetic Kidney Disease. Prim Care, 2020. 47(4): p. 645-659.
    12. Benzing, T. and D. Salant, Insights into Glomerular Filtration and Albuminuria. N Engl J Med, 2021. 384(15): p. 1437-1446.
    13. Meyer, T.W. and T.H. Hostetter, Uremia. N Engl J Med, 2007. 357(13): p. 1316-25.
    14. Ronco, C. and W.R. Clark, Haemodialysis membranes. Nat Rev Nephrol, 2018. 14(6): p. 394-410.
    15. Zazzeroni, L., et al., Comparison of Quality of Life in Patients Undergoing Hemodialysis and Peritoneal Dialysis: a Systematic Review and Meta-Analysis. Kidney Blood Press Res, 2017. 42(4): p. 717-727.
    16. Uribarri, J., An aspirational diet for dialysis patients: Evidence and theory. Semin Dial, 2018. 31(3): p. 236-243.
    17. Perez-Favila, A., et al., Current Therapeutic Strategies in Diabetic Foot Ulcers. Medicina, 2019. 55(11): p. 714.
    18. Cheng, K.-Y., et al., Wound Healing in Streptozotocin-Induced Diabetic Rats Using Atmospheric-Pressure Argon Plasma Jet. Scientific Reports, 2018. 8(1): p. 12214.
    19. Pradhan, L., et al., Inflammation and neuropeptides: the connection in diabetic wound healing. Expert Rev Mol Med, 2009. 11: p. e2.
    20. Masri, B.A., et al., Tourniquet-induced nerve compression injuries are caused by high pressure levels and gradients - a review of the evidence to guide safe surgical, pre-hospital and blood flow restriction usage. BMC Biomed Eng, 2020. 2: p. 7.
    21. Liu, H.-y., et al., Development of adaptive pneumatic tourniquet systems based on minimal inflation pressure for upper limb surgeries. BioMedical Engineering OnLine, 2013. 12(1): p. 92.
    22. Ovbiagele, B., et al., Level of Systolic Blood Pressure Within the Normal Range and Risk of Recurrent Stroke. JAMA, 2011. 306(19): p. 2137-2144.
    23. Hsu, C.-y., et al., Elevated Blood Pressure and Risk of End-stage Renal Disease in Subjects Without Baseline Kidney Disease. Archives of Internal Medicine, 2005. 165(8): p. 923-928.
    24. Álvaro Cristóbal, A., et al., Hemostasis of arteriovenous fistula: Comparison of direct two-finger pressure to an adjustable device. Nefrología (English Edition), 2021. 41(5): p. 566-572.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE