| 研究生: |
張格綸 Chang, Ke-Lun |
|---|---|
| 論文名稱: |
應用蒸發皿係數推估地區蒸發散量之研究 Application of Pan Coefficients on Estimating Regional Reference Evapotranspiration |
| 指導教授: |
李振誥
Lee, Cheng-Haw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 蒸發皿係數 、蒸發皿蒸發量 、Penman-Monteith法 |
| 外文關鍵詞: | evapotranspiration, Penman-Monteith, Pan Coefficient |
| 相關次數: | 點閱:72 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在水文循環過程中,蒸發散對於區域性水資源評估及管理是相當中重要的水文因子。本研究主要目的以氣象資料評估蒸發散量及蒸發皿蒸發量,來推估蒸發皿係數,進而建立區域蒸發皿係數之分布圖,並探討蒸發皿係數之區域空間分布。另外,探討前人發展之蒸發皿係數(Kpan)經驗式並利用Penman-Monteith法與蒸發皿(Epan)之比值來進行實際蒸發皿係數之評估比較。本研究利用統計指標分析上述兩種蒸發皿係數方式所評估的蒸發散量之差異,以期尋求較簡單之經驗方程式解決氣候參數資料之不足等問題。結果顯示,全台灣區域與南、北部區域的蒸發散量與蒸發皿蒸發量均有相同的趨勢分布,蒸發散量呈現由北向南及由內陸高山區逐漸往沿海平原區遞增的情形。而在蒸發皿係數方面,Kpan值呈現由南向北遞增趨勢,且受區域性與季節性變化的影響。此分布情況可以正確的評估出真實蒸發散量做為區域性水文評估及管理之參考資訊。
於文中選用五個前人已發展蒸發皿經驗公式進行蒸發散量評估結果,顯示本研究利用較簡單的蒸發皿係數經驗式來替代繁雜的Penman-Monteith法,減化在計算過程所需要的眾多氣象參數資料,發現經驗式應用於台灣地區各氣象站中,除了山區測站評估相對誤差較大,其值平均為±25%;在其他平原地區測站推估蒸發散量有其參考價值,其相對誤差平均為±10%。本研究建議日後推估區域性蒸發散量,在資料不足之情況下亦可使用蒸發皿係數經驗式進行評估。
Evapotranspiration (ET) is an important component of hydrologic budgets, as well as plays an active role in the regional water resources assessment and management. The purpose of this study is to use the meteorological data to estimate the regional reference evapotranspiration and to assess the spatial distribution maps of pan coefficient (Kp) in study area. In addition, five empirical equations of pan coefficient by previous researches are applied to estimate the regional reference evapotranspiration. Moreover, In order to improve the absence of climatic data and to confirm the applicability of five empirical equations, results of empirical equations of pan coefficient compared with the ratio of Penman-Monteith combined method (ET) and pan evaporation (ETpan) recorded (Kp = ET / Epan). Finally, the differences of two methods are calculated by statistical analysis.
Results shows the reference evapotranspiration and pan evaporation have similar regional distribution patterns in the north and south of Taiwan. All with the high values being in the lower region and the low values being in the upper region;large values are found in west plain, the small are obtained in central mountain area of Taiwan. The pan coefficient (Kp) also varies both regionally and seasonally. The resultant map shows high Kp values towards the lower region, and small Kp values are found in the upper region. Several spatial distribution maps of the reference evapotranspiration have provided valuable information in water resources planning and management in thesis. Due to the insufficiency of the most meteorological stations data, it is difficult to assess the regional reference evapotranspiration. By applying empirical equations are in accord with the results of the Penman-Monteith combined method which have estimated performance. The relative error of both methods in central mountain areas are about ±25%, and in other plains are about ±10%, despite the fact that these empirical equations are to simplify the assessment of the regional reference evapotranspiration.
1. Allen, R. G., I.A. Walter, R. Elliot, T. Howell, D. Itenfisu, and M. Jensen, (2005), “The ASCE standardized reference evapotranspiration equation”, Final Rep., National Irrigation Symp., ASCEEWRI Task Committee, Phoenix.
2. Allen, R.G., L.S. Pereira, D. Raes, and M. Smith, (1998), “Crop evapotranspiration – guidelines for computing crop water requirements” FAO Irrigation and Drainge Paper 56, FAO, ISBN 92-5-104219-5.
3. Allen, R.G., and W.O. Pruitt, (1991), “FAO-24 reference evapotranspiration factors”, J. Irrig. Drain. Eng, pp. 758-773.
4. Blaney, H.F., (1942), “Determining water requirements in irrigated area from climatological irrigation data”, US Department of Agriculture, Soil Conservation Service Technical Paper No. 96, pp. 48.
5. Bowen, I.S., (1926), “The ratio of heat losses by conduction and by evaporation from any water surface”, Physical Review, 27, pp. 779-787.
6. Burman, R.D., Nixon, P.R. Wright, J. L., and W.O. Pruitt, (1980), ‘‘Water requirements.’’ M. E. Jensen, ed., Design and operation of farm irrigation systems, Monograph No. 3, American Society of Agricultural Engineers, St. Joseph, Mich., pp. 189-232.
7. Brutsaert, W., and M.B. Parlange, (1998), ‘‘Hydrologic cycle explains the evaporation paradox’’, Nature, 396, 30.
8. Choudhury, B.J., and J.L. Monteith, (1988), “A four-layer model for the heat budget of homogeneous land surfaces”, Quarterly Journal of the Royal Meteorological Society, 114, pp. 373-398.
9. Cuenca, R.H.,(1989), “Irrigation system design: an engineering approach”, New Jersey: Prentice-Hall, Englewood Cliffs, pp. 133.
10. Dalton, J.,(1802), “Experimental essays on the constitution of mixed gases: on the force of steam or vapor from water or other liquids in different temperatures, both in a Torricelli vacuum and in air; on evaporation; and on expansion of gases by heat”, Manchester Lit. Phil. Soc. Mem. Proc., 5, pp. 536-602.
11. Dickinson, R.E., (1988), “How will climate change? In The Greenhouse Effect, Climatic Change, and Ecosystems”, (SCOPE; 29) Bolin, W. (ed.)
12. Doorenbos, J. and W.O. Pruitt, (1984), “Guidelines for Predicting Crop Water Requirements”, Irrigation and Drainage Paper 24, 2nd Ed. FAO, Rome.
13. Golubev, V.S., P.Y. Groisman, N.A. Speranskaya, Zhuravin, S.A. Menne, M. J., T.C. Peterson, and R.W. Malone, (2001), “Evaporation changes over the contiguous United States and the former USSR: a reassessment”, Geophys. Res. Lett. 28(13), pp. 2665-2668.
14. Grismer M.E., M. Orang, R. Snyder, and R. Matyac, (2002), “Pan Evaporation to Reference Evapotranspiration Conversion Methods”, Journal of Irrigation and Drainage Engineering, 128(3), pp. 180-184.
15. Hamon, W.R., (1961), “Estimating potential evapotranspiration”, Journal of Hydraulics Division, Proceedings of the American Societh of Civil Engineers, 87, pp. 107-120.
16. Intergovernmental Panel on Climate Change, IPCC Third Assessment Report, Available from http://www.ipcc.ch/, 2001.
17. Itenfisu, D., R.L. Elliott, R.G. Allen, and I.A. Walter, (2003). “Comparison of reference evapotranspiration calculations as part of the ASCE standardization effort.” J. Irrig. Drain. Eng., 129(6), pp. 440–448.
18. Irmak S., M., J.O. Payero, D.L. Martin, M., A. Irmak, and T.A. Howell, (2006), “Sensitivity Analyses and Sensitivity Coefficients of Standardized Daily ASCE-Penman-Monteith Equation”, Journal of Irrigation and Drainage Engineering, 132(6), pp. 564-578.
19. Irmak, S., D.Z. Haman, and J.W. Jones, (2002), “Evaluation of Class A Pan Coefficients for Estimating Reference Evapotranspiration in Humid Location”, Journal of Irrigation and Drainage Engineering, 128(3), pp. 249-253.
20. Jayatilaka, C.J., B. Storm, L.B. Mudgway, (1998), “Simulation of water flow on irrigation bay scale with MIKE-SHE”, Journal of Hydrology, 208 pp. 108-130.
21. Jensen, M.E., H.R. Haise, (1963), “Estimating Evapotranspiration from Solar Radiation”, Journal of the Irrigation and Drainage Division ASCE, 89(4), pp. 15-41.
22. Jensen, M.E., (1973), “Consumptive Use of Water and Irrigation Water Requirements”, American Society of Civil Engineers, New York, pp. 215.
23. Kohler, M. A., T.J. Nordenson, and W.E. Fox, (1955), “Evaporation from Pans and Lakes”, U.S. Dept. of Commerce, Washington, pp. 1-19.
24. Malek, E., G.E. Bingham, (1993), “Comparison of the Bowen rationenergy balance and the water balance methods for the measurement of evapotranspiration”, Journal of Hydrology, 146, pp. 209-220.
25. Moges S.A., Z. Katambara, and K. Bashar, (2002), “Decision support system for estimation of potential evapotranspiration in Pangani basin”, 3rd WaterNet/Warfsa Symposium.Water Demand Management for Sustainable Development, Dar es Salaam.
26. Monteith, J.L., and M.H. Unsworth, (1990), “Principles of Environmental Physics”, Edward Arnold, London.
27. Monteith, J.L., (1965), “The State and Movement of Water in Living Organisms”, Evaportranspiration and environment, 19, pp. 205-234.
28. Monteith, J.L., (1981), “Evaporation and surface temperature”, Quarterly J. Royal Meteorol. Soc., 107, pp. 1-27.
29. Nandagiri L., and G.M. Kovoor, (2005), “Sensitivity of the Food and Agriculture Organization Penman-Monteith Evapotranspiration Estimates to Alternative Procedures for Estimation of Parameters”, Journal of Irrigation and Drainage Engineering, 131(3), pp. 238-248.
30. Orang, M., (1998), “Potential accuracy of the popular non-linear regression equations for estimating pan coefficient values in the original and FAO-24 tables”, Unpublished Rep, Calif. Dept. of Water Resources, Sacramento, Calif.
31. Omar, M.H., (1968), “Potential evapotranspiration in a warm arid climate”, Agroclimatological Methods:Proceedings of the reading symposium, Natural Resources Research, 7, UNESCO, pp. 348-353.
32. Oliveira, C.W., and R.E. Yoder, (2000), “Evaluation of daily reference evapotranspiration estimation methods for a location in the southeastern USA”, ASAE Paper No. 002030, St. Joseph, Mich.
33. Penman H.L., (1948), “Natural evaporation from open water, bare soil and grass”, Proc. R. Soc. London Ser. A, 193, pp. 120-145.
34. Penman, H.L., (1956a), “Estimating Evaporation”, Trans. Am. Geoph. U., 37(1), pp. 43-50.
35. Penman, H.L., (1956b), “Evaporation: an introductory survey”, Neth. J. Agr. Sci, 4, pp 9-29.
36. Priestley, C.H., and R.J. Taylor, (1972), “On the assessment of surface heat flux and evaporation using large-scale parameters”, Monthly Weather Review, 100(2), pp. 81-92.
37. Pruitt,W.O., (1966), ‘‘Empirical method of estimating evapotranspiration using primarily evaporation pans’’, Proc., Conf. on Evapotranspiration and Its Role in Water Resources Management, American Society of Agricultural Engineers, St. Joseph, Mich.
38. Snyder, R.L., (1992), “Equation for Evaporation Pan to Evapotranspiration Conversions”, Journal of Irrigation and Drainage Engineering, 118(6) pp. 977-980.
39. Snyder, R.L., M. Orang, S. Matyac, and M.E. Grismer, (2005), “Simplified Estimation of Reference Evapotranspiration from Pan Evaporation Data in California”, Journal of Irrigation and Drainage Engineering, 131(3), pp. 249-253.
40. Stanhill, G., (1962), “The use of Piche evaporimeter in the calculation of evaporation”, Quarterly Journal of the Royal Meteorological Society, Reading, v.88, pp. 80-82.
41. Sverdrup, H.U., (1946), “The humidity gradient over the sea surface”, J. Meteorol., 3, pp. 1-8.
42. Thornthwaite, C.W., (1948), “An Approach Toward A Rational Classification of Climate”, Geographical Review, 38, pp. 55-94.
43. Van Bavel C.H., (1966), “Potential Evaporation the Combination Concept and Its Experimental Verification”, Water Resource Research, 2(3), pp. 455-467.
44. Xu, C.Y., and V.P. Singh, (2000), “Evaluation and generalization of radiation-based methods for calculating evaporation”, Hydrological Processes, 14, pp. 339-349.
45. Xu, C.Y., and V.P. Singh, (2001), “Evaluation and generalization of temperature-based methods for calculating evaporation”, Hydrological Processes, 15, pp. 305-319.
46. Xu, C.Y., and V.P. Singh, (2002), “Cross-comparison of mass-transfer, radiation and temperature based evaporation models”, Water Resour. Manag, 16, pp. 197–219.
47. Xu, C.Y., and V.P. Singh, (2005), “Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions”, Journal of Hydrology, 308, pp. 105-121.
48. Xu, Chong-yu, Lebing Gong, Tong Jiang, Deliang Chen, and V.P. Singh, (2006), “Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment”, Journal of Hydrology, 327, pp. 81-93.
49. 中央氣象局,「氣候年報-地面資料,1990-2004」。
50. 王如意、易任,2001,「應用水文學」,國立編譯館出版,茂昌圖書公司。
51. 甘俊二,陳清田,陳焜耀,1996,「臺灣地區作物需水量推估模式之合適性研究」,農業工程學報,第42卷,第2期,8-19頁。
52. 汪中和,2004,「臺灣降雨的長期變化及對環境的衝擊,自然與文化研討會」,農委會林試所。
53. 吳瑞賢、朱佳仁、林永敏、蘇文瑞,1994,「台灣北部地區溫度、雨量變遷之初步探討」,農業工程研討會論文集,401-407頁。
54. 金紹興、謝明昌,2001,「氣候變遷對台灣水文環境之影響」,新世紀水資源問題研析與對策研討會,A1-A7頁。
55. 施嘉昌、黃振昌,1987,「作物需水量與氣象因子相關理論分析之研究」,農業工程學報,第33卷,第2期,1-27頁。
56. 紀水上,1998,「台灣的氣候」,教育部出版。
57. 夏禹九,1980,「集水區蒸發散量之初步研究」,農業工程學報,第26卷,第1期,50-55頁。
58. 曹以松,1967,「定水位蒸發皿之研究」,農業工程學報,第13卷,第2期,15-23頁。
59. 許晃雄,2000,「坦然面對氣候變遷」,科學月刊,第36卷,第5期,404-409頁。
60. 許晃雄、柯文雄、鄒治華、陳正達,2000,「台灣環境變遷與全球環境變遷衝擊之評析-氣候」,行政院國家科學委員會專題研究計畫成果報告。
61. 郭勝豐、程澄元、劉振宇,2006,「導傳遞神經網路應用於嘉南灌溉區作物蒸發散量之推估」,農業工程學報,第52卷,第1期,24-34頁。
62. 陳伸賢,2005,「台灣水資源永續發展策略」,水資源管理2005研討會-水資源永續利用之管理,台中,1-13頁。
63. 陳清田,1998,「以Penman-Monteith 法估算區域性參考作物需水量之研究」,嘉義技術學院學報,第58卷,53-62頁。
64. 陳清田,1991,「嘉義地區作物需水量推估之研究」,農業工程學報,第37卷,第1期,82-90頁。
65. 童慶斌、陳主惠,2001,「台灣地區合理之蒸發散折算係數與區域蒸發散量估算方法之建立(1/2)及(2/2)」,經濟部水資源局計畫報告。
66. 黃振昌、宋易倫(2003),「Penman-Monteith方程式蒸氣壓力差最佳計算式之探討」,氣象學報,45,53-70頁。
67. 葉信富、陳進發、李振誥,(2005a),「潛勢能蒸發散經驗公式之最佳化比較」,農業工程學報,第51卷,第1期,27-37頁。
68. 葉信富、陳進發、李振誥,(2005b),「台灣地區潛勢能蒸發散經驗公式之最佳化比較,第十一屆大地工程研討會」,淡江大學舉辦,台北。
69. 虞國興、許書平,1998,「氣候變遷對水資源之衝擊-雨量分析」,農業工程學報,第44卷,第1期,9-24頁。
70. 蔡西銘、邱金火、林殷瑋,2001,「地理資訊系統推估區域蒸發散量之研究」,中原學報,第29卷,第3期,219-229頁。
71. 鍾崇燊、向曼菁,2005,「春天的花兒秋天開?都是溫室效應惹的禍!」,科學發展,第388期,66-71頁。