| 研究生: |
施玟甄 Shih, Wen-Chen |
|---|---|
| 論文名稱: |
比較正常細胞和癌細胞在低滲透壓下造成的
細胞骨架重組情形 Osmotic swelling induces the differential cytoskeleton remodeling between normal and cancer cells |
| 指導教授: |
沈孟儒
Shen, Meng-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 體積調節 、低滲透壓 、F-actin細胞骨架 、卵巢癌 、子宮頸癌 |
| 外文關鍵詞: | cell volume regulation, hypotonicity, F-actin cytoskeleton, ovarian cancer, cervical cancer |
| 相關次數: | 點閱:121 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
低滲透壓引起的細胞脹大會造成細胞骨架的調節以及細胞膜上離子通道的活化而使得細胞體積減小。很少有文獻指出在正常細胞與癌細胞之間,體積調節是否存在著不同的細胞骨架的變化。本研究利用卵巢癌與子宮頸癌細胞為模式,想去探討受到低張溶液刺激而脹大的正常上皮細胞與癌細胞,他們之間的細胞骨架F-actin以及actin相關分子的變化是否有所不同。在低張溶液處理下,卵巢癌細胞及子宮頸癌細胞脹大並且有很明顯的細胞骨架結構改變,F-actin細胞骨架會進行重組,包括纖絲狀的F-actin減少,並在細胞周邊形成環狀的F-actin或點狀的F-actin。ezrin是一種actin結合蛋白,受到低張溶液刺激,會從細胞質跑到細胞周邊並和F-actin結合;低張溶液刺激下,也會使focal adhesion進行重組,並且增加FAK-pY397和ezrin之間的結合。我們也發現extracellular signal–regulated kinases 1 and 2 (ERK1/2)抑制劑PD98059 (50 μM)能減少F-actin、ezrin以及FAK-pY397之間的結合。相反地,正常卵巢及子宮頸上皮細胞的細胞面積調節能力較癌細胞差,他們沒有明顯的細胞骨架F-actin重組,也沒有focal adhesion的表現。綜合上述結果,本研究發現,在低張溶液刺激下而脹大的正常上皮細胞與癌細胞,他們的細胞骨架F-actin及actin相關分子有不同的變化情形。
Hypotonicity-induced cell swelling is characterized by a modulation of cytoskeletal architecture and activation of membrane ion transport, which result in regulatory volume decrease. Little is known about the possible signal differences involved in volume-regulated cytoskeletal dynamics between normal and cancer cells. By the models of ovarian and cervical cancer, my thesis aims to elucidate the dynamics of F-actin and actin-associated proteins in osmotic swelling of normal and cancer cells. In response to hypotonicity, ovarian and cervical cancer cells swelled and an obvious alteration in cellular architecture occurred. The actin cytoskeleton was remodeled to counteract cell swelling, which consisted of the reduction of the ventral stress fibers and the formation of cortical actin and F-actin patches at the cell border. In the isotonic condition, ezrin, a member of ERM family, mainly distributed in the cytosol. Hypotonicity induced the recruitment of ezrin as well as phospho-FAK Tyr397 to F-actin-enriched membrane protrusions. The converse alterations for actin network and ezrin recruitment were observed in parallel with surface area changes. Interestingly, hypotonicity-induced the interaction of F-actin, ezrin, and phospho-FAK Tyr397 was inhibited by the ERK1/ERK2 inhibitor (50 μM PD98059). These data indicate that hypotonicity-activated MAPK pathway (ERK1/ERK2) is involved the interaction between F-actin, ezrin, and phospho-FAK Tyr397. In contrast, normal epithelial cells of cervix and ovary showed poor adjustment of surface area change, no obvious F-actin remodeling, and no active focal adhesions in response to hypotonicity. Thus, this study demonstrates hypotonicity induces the different osmo-sensitive cytoskeletal remodeling between normal and cancer cells.
Bretscher A, Edwards K, Fehon RG. (2002). ERM proteins and merlin: integrators at the cell cortex. Nat. Rev. Mol. Cell. Biol 3:586-599.
Cardone RA, Bagorda A, Bellizzi A, Busco G, Guerra L, Paradiso A, Casavola V, Zaccolo M, Reshkin SJ. (2005). Protein kinase A gating of a pseudopodial-located RhoA/ROCK/p38/NHE1 signal module regulates invasion in breast cancer cell lines. Mol Biol Cell 16:3117-3127.
Carton I, Hermans D, Eggermont J. (2003). Hypotonicity induces membrane protrusions and actin remodeling via activation of small GTPases Rac and Cdc42 in Rat-1 fibroblasts. Am J Physiol Cell Physiol 285:C935-C944.
Chen YF, Chou CY, Wilkins RJ, Ellory JC, Mount DB, Shen MR. (2009). Motor protein-dependent membrane trafficking of KCl cotransporter-4 is important for cancer cell invasion. Cancer Res 15:8585-8593.
Chiang Y, Chou CY, Hsu KF, Huang YF, Shen MR. (2008). EGF up-regulates Na(+)/H(+) exchanger NHE1 by post-translational regulation that is important for cervical cancer cell invasiveness. J Cell Physiol 214:810-819.
Chou CY, Shen MR, Hsu KS, Huang HY, Lin HC. (1998). Involvement of PKC-alpha in regulatory volume decrease responses and activation of volume-sensitive chloride channels in human cervical cancer HT-3 cells. J Physiol 512:435-448.
Ciano-Oliveira C, Thirone AC, Szaszi K, Kapus A. (2006). Osmotic stress and the cytoskeleton: the R(h)ole of Rho GTPases. Acta Physiol 187:257-272.
Cosen-Binker LI, Kapus A. (2006). Cortactin: the gray eminence of the cytoskeleton. Physiology 21:352-361.
Denker SP, Barber DL. (2002). Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1. J Cell Biol 159:1087-1096.
Ebner HL, Cordas A, Pafundo DE, Schwarzbaum PJ, Pelster B, Krumschnabel G. (2005). Importance of cytoskeletal elements in volume regulatory responses of trout hepatocytes. Am J Physiol Regul Integr Comp Phsiol 289:R877-R890.
Erickson GR, Northrup DL, Guilak F. (2003). Hypo-osmotic stress induces calcium-dependent actin reorganization in articular chondrocytes. Osteoarthritis Cartilage 11:187-197.
Fievet B, Louvard D, Arpin M. (2007). ERM proteins in epithelial cell organization and functions. Biochim Biophys Acta 1773:653-660.
Frame MC, Fincham VJ, Carragher NO, Wyke JA. (2002). v-Src’s hold over actin and cell adhesions. Nat Rev Mol Cell Biol 3:233-245.
Gabriel B, Hausen AZ, Stickeler E, Dietz C, Gitsch G, Fischer DC, Bouda J, Tempfer C, Hasenburg A. (2006). Weak expression of focal adhesion kinase (pp125FAK) in patients with cervical cancer is associated with poor disease outcome. Clin Cancer Res 12:2476-2483.
Grisaru-Granovsky S, Salah Z, Maoz M, Pruss D, Beller U, Bar-Shavit R. (2005). Differential expression of protease activated receptor 1 (Par1) and pY397FAK in benign and malignant human ovarian tissue samples. Int J Cancer 113:372-378.
Hirakawa M, Oike M, Karashima Y, Ito Y. (2004). Sequential activation of RhoA and FAK/paxillin leads to ATP release and actin reorganization in human endothelium. J Physiol 558:479-488.
Hoffmann EK, Lambert IH, Pedersen SF. (2009). Physiology of cell volume regulation in vertebrates. Physiol Rev 89:193-277.
Hsu YM, Chen YF, Chou CY, Tang MJ, Chen JH, Wilkins RJ, Ellory JC, Shen MR. (2007). KCl cotransporter-3 down-regulates E-cadherin/beta-catenin complex to promote epithelial-mesenchymal transition. Cancer Res 15:11064-11073.
Kapus A, Zulys M, Pedersen SF, Thirone AC. (2007). Hyperosmotic stress induces Rho-Rho kinase-LIM kinase-mediated cofilin phosphorylation (Abstract). FASEB J A963.
Kim RD, Darling CE, Roth TP, Ricciardi R, Chari RS. (2001). Activator protein 1 activation following hypoosmotic stress in HepG2 cells is actin cytoskeleton dependent. J Surg Res 100:176-182.
Lambert IH, Hoffmann EK, Pedersen SF. (2008). Cell volume regulation: physiology and pathophysiology. Acta Physiol 194:255-282.
Lang F. (2007). Mechanisms and significance of cell volume regulation. Journal of the American College of Nutrition 26:613S-623S.
Lezama R, Ortega A, Ordaz B, Pasantes-Morales H. (2005). Hyposmolarity-induced ErbB4 phosphorylation and its influence on the non-receptor tyrosine kinase network response in cultured cerebellar granule neurons. J Neurochem 93:1189-1198.
Lionetto MG, Pedersen SF, Hoffmann EK, Giordano ME, Schettino T. (2002). Roles of the cytoskeleton and of protein phosphorylation events in the osmotic stress response in eel intestinal epithelium. Cell Physiol Biochem 12:163-178.
Louvet-Vallee S. (2000). ERM proteins: from cellular architecture to cell signaling. Biol Cell 92:305-316.
Lunn JA and Rozengurt E. (2004). Hyperosmotic stress induces rapid focal adhesion kinase phosphorylation at Tyrosines 397 and 577. J Bio Chem 279:45266-45278.
Malek AM, Xu C, Kim ES, Alper SL. (2007). Hypertonicity triggers Rho-A-dependent assembly of myosin-containing striated polygonal actin networks in endothelial cells. Am J Physiol Cell Physiol 292:C1645-C2659.
O’Connor ER, Kimelberg HK. (1995). Role of calcium in astrocyte volume regulation and in the release of ions and amino acids. J Neurosci 13:2638-2650.
Pedersen S, Pedersen SF, Nilius B, Lambert IH, Hoffmann EK. (1999). Mechanical stress induces release of ATP from Ehrlich ascites tumor cells. Biochim Biophys Acta 1416:271–284.
Pedersen SF, Hoffmann EK, Mills JW. (2001). The cytoskeleton and cell volume regulation. Comp Biochem Physiol A Mol Integr Physiol 130:385-399.
Pederson SF, Beisner KH, Hougaard C, Willumsen BM, Lambert IH, Hoffmann EK. (2002). Rho family GTP binding proteins are involved in the regulatory volume decrease process in NIH3T3 mouse fibroblasts. J Physiol 541:779-796.
Pollard TD and Copper JA. (2005). Actin, a central player in cell shape and movement. Science 326:1208-1212.
Poullet P, Gautreau A, Kadare G, Girault JA, Louvard D, Arpin M. (2001). Ezrin interacts with focal adhesion kinase and induces its activation independently of cell-matrix adhesion. J Biol Chem 276:37686-37691.
Rasmussen M, Alexander RT, Darborg BV, Mobjerg N, Hoffmann EK, Kapus A, Pedersen SF. (2008). Osmotic cell shrinkage activates ezrin/radixin/moesin (ERM) proteins: activation mechanisms and physiological implications. Am J Physiol Cell Physiol 294:C197-C212.
Shen MR, Wu SN, Chou CY. (1996). Volume-sensitive chloride channels in the primary culture cells of human cervical carcinoma. Biochim Biophys Acta 1315: 138-144.
Shen MR, Chou CY, Hsu KF, Wu ML. (1999). Modulation of volume-sensitive Cl - channels and cell volume by actin filaments and microtubules in human cervical cancer HT-3 cells. Acta Physiol Scand 167:215-225.
Shen MR, Chou CY, Ellory JC. (2000). Volume-sensitive KCl cotransport associated with human cervical carcinogenesis. Pflügers Arch - Eur J Physiol 440:751–760.
Shen MR, Chou CY, Browning J, Wilkins R, Ellory JC. (2001). Human cervical cancer cells use Ca2+ signalling, protein tyrosine phosphorylation and MAP kinase in regulatory volume decrease. Journal of Physiology 537.2:347-362.
Shen MR, Chou CY, Hsu KF, Hsu YM, Chiu WT, Tang MJ, Alper SL, Ellory JC. (2003). KCl cotransport is an important modulator of human cervical cancer growth and invasion. J Biol Chem 278:39941-39950.
Tamma G, Procino G, Svelto M, Valenti G.. (2007). Hypotonicity causes actin reorganization and recruitment of the actin-binding ERM protein moesin in membrane protrusions in collecting duct principal cells. Am J Physiol Cell Physiol 292:C1476-C1484.
Thirone AC, Sepight P, Zulys M, Rotstein OD, Szaszi K, Pedersen SF, Kapus A. (2009). Hyerosmotic stress induces Rho/Rho kinase/LIM kinase-mediated cofilin phosphrylation in tubular cells: key role in the osmotically triggered F-actin response. Am J Physiol Cell Physiol 296:C463-C475.
Wehner F, Olsen H, Tinel H, Kinne-Saffran E, Kinne RKH. (2003). Cell volume regulation: osmolytes, osmolyte transport, and signal transduction. Re Physiol Biochem Pharmacol 148:1-80.
Wu KL, Khan S, Lakhe-Reddy S, Jarad G, Mukherjee A, Obejero-Paz CA, Konieczkowski M, Sedor JR, Schelling JR. (2004). The NHE1 Na+/H+ exchanger recruits ezrin/radixin/moesin proteins to regulate Akt-dependent cell survival. J Biol Chem 279:26280-26286.
Yamamoto M, Chen MZ, Wang YJ, Sun HQ, Wei Y, Martinez M, Yin HL. (2006). Hypertonic stress increases PI(4,5)P2 levels by activating PIP5KIbeta. J Biol Chem 281:32630-32638.